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Abstract: As interest in Internet of Things environments rapidly increases throughout the IT
convergence field, compatibility with mobile devices must be provided to enable personalized
services. The security of mobile platforms and applications is critical because security vulnerabilities
of mobile devices can be spread to all things in these environments. Android, the leading open mobile
platform, has long used the Dalvik virtual machine as its runtime system. However, it has recently
been completely replaced by a new runtime system, namely Android Runtime (ART). The change
from Android’s Dalvik to ART means that the existing Dalvik bytecode-based application execution
structure has been changed to a machine code-based application execution structure. Consequently,
a detailed understanding of ART, such as new file formats and execution switching methods between
codes, is required from the viewpoint of application security. In this paper, we demonstrate that an
existing Dalvik-based application vulnerability can be exploited as-is in ART. This is because existing
Dalvik executable files coexist in the ART executable file, and these Dalvik bytecodes and compiled
machine codes have one-to-one mapping relationships. We then propose an ART-based application
protection scheme to secure this by dynamically eliminating the one-to-one mapping. In addition,
the proposed scheme is implemented to evaluate its reverse engineering resistance and performance
through experiments.

Keywords: internet of things; reverse engineering; Dalvik; ART; mobile code protection

1. Introduction

With the proliferation of mobile devices such as smartphone, the use of smart sensors has
increased, convergence and connectivity between devices have been secured, and interest in the
Internet of Things (IoT) environment has rapidly increased throughout the IT convergence field. ICBM
(IoT, Cloud, Big Data, and Mobile), which is currently the most important issue in the IT industry,
is attracting attention as the next-generation growth engine. Application of the IoT to reality from an
Internet-based convergence center is expected to increase efficiency and convenience and diversify
economic values. However, to achieve such a positive outcome in the future, it is necessary to solve
various risk factors implied by the IoT. For example, to connect various devices, compatibility problems
between devices should be solved. Furthermore, to provide personalized services, the compatibility of
mobile devices with intensive personal information will inevitably become necessary [1].

The largest share of the mobile platform market is occupied by Google Android. The number of
IoT devices that are compatible with Android is projected to reach over 25 billion by 2021 according to
Gartner [2]. In this hyper-connected service environment, mobile devices are vulnerable to security
threats that can infect all connected IoT devices. This means that we live in an era where the security
of mobile platforms is of the utmost importance. Android, as a typical open mobile platform, has been
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experiencing various security problems due to the Dalvik-based self-signing application structure [3].
Android applications implemented in the Java language and distributed as Android application
package (APK) files can be easily restored as smali code or original Java source code using reversing
tools such as apktool [4] or dex2jar [5]. The code of the disassembled (or decompiled) application
is easily exposed to attackers. As an attacker can analyze the code, the core application code can be
bypassed or modified, which can cause serious issues for the application developer. Furthermore,
malicious code can be inserted into the application, which is then redeployed as a benign application,
thereby extending such issues and damage to general users [6,7].

Several protection techniques have been explored in a variety of areas, such as application code
obfuscation [8], API hiding [9], tamper detection [10,11], and packing [12,13] to protect applications from
these malicious behaviors. However, as described above, these protection techniques and tools [14–16]
are not safe from attackers owing to the structural characteristics of Android, in which it is relatively easy
to analyze the code [17–21]. Therefore, researchers are reinforcing the complement through continuous
improvement of vulnerability, and attackers continue to analyze and utilize these technologies.

In terms of runtime systems, Android Runtime (ART), a new runtime system for Android [22],
has emerged and completely replaced Dalvik VM in Android 5.0. ART runs applications through
direct machine code, unlike the existing Dalvik VM-based runtime system, which does so by running
the application’s Dalvik bytecode through the interpreter. There are several improvements in ART
compared with the existing Dalvik VM, including improved performance of the application’s machine
code without the need for an interpreter. However, the reversing vulnerability due to code exposure
in the existing Dalvik VM has not been clearly solved, and the present reverse engineering analysis
technique can still be applied to the newly introduced ART [23–27].

Essentially, this is because existing Dalvik Executable (DEX) files coexist in the Optimized
Ahead-of-Time (OAT) file [28], which is the ART executable file, and these DEX and compiled machine
codes have one-to-one mapping relationships. For this reason, if it can be artificially manipulated to
call the DEX file inside the OAT, the vulnerability of the existing Dalvik VM can be exploited as-is in
ART. Therefore, in this paper, we propose a scheme to overcome this vulnerability by eliminating the
one-to-one mapping relationship between bytecode and machine code and exposing the disguised
bytecode to confuse analysts.

This paper is organized as follows. Section 2 is an analysis of ART, the latest Android runtime
system. Section 3 presents a newly discovered security vulnerability based on the ART structural
characteristics. Section 4 introduces the proposed scheme to solve the security vulnerability. Section 5
describes experiments with the implementation of the proposed scheme. Section 6 discusses the issues
considered in the proposed scheme. Section 7 concludes the paper.

2. Background

ART was first introduced to Android 4.4 (KitKat). Since Android 5.0 (Lollipop), the Dalvik VM
has been completely replaced by ART as the default runtime system [29]. In this section, we examine
differences between Dalvik and ART from the viewpoints of file and execution structure.

2.1. Differences between Dalvik VM and ART

2.1.1. Installation and Execution

Android applications are implemented in Java with high productivity and portability.
The Android execution environment also has an execution structure very similar to Java. The only
difference is that, for Android, the DEX file is distributed, which is the result of compiling the Java
bytecode (intermediate language) with Dalvik bytecode using the dx tool. This distributed Android
application runs on the Android device that contains the Dalvik VM.

Dalvik VM and ART differ largely in how they install and run applications internally. For the
Dalvik VM, the dexopt tool creates an Optimized DEX (ODEX) file for the DEX file in the deployed
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APK at the time of application installation. The ODEX file is the actual executable file in the Dalvik
VM environment and is almost the same as the original DEX file. However, some of the opcodes are
optimized for the execution environment, or the file with Inline expansion is applied. On the other
hand, in the case of ART, the DEX file is compiled through the dex2oat tool into a completely new form
called an OAT file. The OAT file is the result of ART’s Ahead-Of-Time (AOT) compilation [30] and is a
substantial executable file in ART that replaces the ODEX file.

The two runtime systems that create their own executable files, ODEX and OAT, at the time of
application installation also differ in their application execution. The Dalvik VM runs applications
based on their Dalvik bytecode. At present, Just-In-Time (JIT) compilation [31] is used, which contrasts
with the AOT compilation of ART. On the other hand, ART basically executes the application based on its
machine code and, in some cases, by alternating the two code areas through an execution conversion
structure between Dalvik bytecode and machine code.

2.1.2. Compilation

Both JIT compilation and AOT compilation improve the execution performance of the application
by generating its bytecode as machine code, but the time at which the machine code is generated
differs. JIT compilation, which has been applied from Android 2.2 Froyo, generates machine code at
the time of application execution. On the other hand, AOT compilation, applied with the introduction
of ART, generates machine code at the time of application installation. Compared to JIT compilation,
the AOT compilation at the time of installation improves execution performance. Compared with the
existing Dalvik VM-based Android, ART-based Android has increased application installation time,
and the capacity of the OAT file is also increased compared with the ODEX file in Dalvik VM.

2.2. Runtime Environment Transition

2.2.1. OAT File Structure

The OAT file is created through the dex2oat tool and follows the ELF file format, as shown on
the left of Figure 1. This OAT file is an executable file in ART that consists of an oatdata section in the
ELF file and an oatexec section. More specifically, there is a compiled machine code in the oatexec
section of the OAT file. The oatdata section consists of OatHeader, OatDexFile, OatClass, etc. and also
contains various information such as classes and methods to execute the application. There is a DEX
file in this oatdata section for creating an ODEX file in an existing Dalvik VM. That is, the classes.dex
file contained in the conventional APK (without special protection techniques such as changing the
APK structure to prevent reversing) is still present. The inclusion of the DEX file in the OAT file creation
process is closely related to the internal operation mechanism of ART to prepare for cases where the
original machine code does not exist, such as an abstract method.

2.2.2. Method Execution and Entry Point Management

Most methods in ART have a machine code compiled in the oatexec section in the OAT file, whereas
Dalvik bytecode exists in the DEX file in the oatdata section of the OAT file. Most ART methods are
based on compiled machine code, but certain methods operate through the interpreter as in existing
Dalvik VM-s. For example, if the method is an abstract method, the machine code corresponding to
the method does not exist, or if the runtime system is set to interpreter mode, it is executed as Dalvik
bytecode instead of as its own machine code. In the case of abstract methods, the body of the method
is defined in the child class, and so the machine code for the abstract method itself does not exist. Thus,
abstract methods are always executed through the interpreter area.

Whether a method exists in machine code and whether the runtime system is in interpreter
mode is determined by the NeedsInterpreter() function. If the machine code of the method does
not exist, the entry point of the method is set such that the method is executed through Dalvik
bytecode. Even if the machine code exists, the method is set to the interpreter mode based on the
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information of current_runtime_instance, and the execute method proceeds as Dalvik bytecode as
described above.

Figure 1. OAT file structure.

The execution transition mechanism caused by the mixture of machine code and Dalvik
bytecode is performed by each method rather than by the application unit. Even if only a single
application is run, the application methods will have their own execution flow. At the time the
application is loaded for the method execution flow, the ArtMethod class sets the entry points
for each method and changes the entry points during application execution. The ArtMethod class
not only manages information such as method indexes and access flags, but also manages the
entry point information of a method as a struct. Each entry points to one of several candidates
are represented in Figure 2. For example, an Entry_Point_from_Interpreter points to either
Interpreter_To_Interpreter_Bridge or Interpreter_To_Compiled_Code_Bridge.

Figure 2. List of ArtMethod class entry points.

The entry points of the method determine the entry point when called from each execution
area, as the name suggests. The execution region is divided into an interpreter execution region
for executing Dalvik bytecode and an execution region for executing the compiled machine code.
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For example, assuming that Method A calls Method B, if Method A is executed in the machine code
execution area, the entry point of Method B would be Entry_Point_from_Quick_Compiled_Code,
and if Method A is executed through the interpreter area, the entry point of Method B would be
Entry_Point_from_Interpreter. Thus, in an environment where Dalvik bytecode and machine
code executions are mixed, methods have multiple entry points. The actual execution switching is
accomplished through the trampoline and bridge techniques described below.

2.2.3. Bridge and Trampoline

The bridge is used to switch between the Dalvik bytecode execution region and the machine
code execution region. The trampoline is used to find the address of the actual method to be called in
order to support the dynamic loading and binding mechanism. Figure 3 shows the overall execution
switching structure through bridge and trampoline.

Figure 3. Execution switching between Interpreter region and machine code region.

Interpreter_To_Interpreter_Bridge (I2I Bridge): This bridge is used to maintain the execution
flow from the interpreter area to the interpreter area. After calling the callee method in the call
stack frame, it checks whether the class to which the method belongs is initialized, and finally
executes the method through the Execute() function in the interpreter area.

Interpreter_To_Compiled_Code_Bridge (I2C Bridge): This bridge is called when switching
the execution flow from the interpreter area to the machine code area. In the case of
Interpreter_To_Interpreter_Bridge, the callee method is searched from the call stack frame
to check whether the class to which the method belongs is initialized. However, the actual method
is executed through the Invoke() function, which is a member method of the ArtMethod class, not
the Execute() function. The Invoke() function internally calls the art_quick_invoke_stub()
function, which is written in assembly language, to execute the machine code of the method. In
other words, the Entry_Point_from_Quick_CompiledCode of the method is checked again, the
entry set point is entered, and finally the machine code of the method is executed.

Quick_To_Interpreter_Bridge (C2I Bridge): This bridge is used when a transition from the
compiled machine code execution region to the interpreter region is required. The bridge
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internally calls the EnterInterpreterFromStub() function, which causes the method to be
executed in the interpreter area via the Execute() function, exactly like the final execution of
Interpreter_To_Interpreter_Bridge described above.

3. Challenges to Reverse Engineering

3.1. Dynamic Debugging Support

In ART, the debugging mode uses Java Debug Wire Protocol (JDWP), similar to the one used in
the existing Dalvik VM environment. In other words, in debugging mode, even though the compiled
machine code of the target method exists, the Dalvik bytecode is executed through the interpreter area.
Here, the target method indicates a method that has an event such as a break or watch when debugging.
The debugging event is registered through the ProcessDeoptimizationRequest() function in the
Dbg class and changes the entry point to the method of the executing application through the
UpdateEntrypoints() function according to the request transmitted to the function.

Because of the use of the debugging mode to induce bytecode execution instead of the machine
code in OAT, it is possible to apply the reverse engineering analysis technique that was originally
operated in Dalvik. The following are a few best practices that allow an application to run in interpreter
mode through a break event.

kFullDeoptimization/kFullUndeoptimization: When the kFullDeoptimization request is passed
to the ProcessDeoptimizationRequest() function, bridges and trampolines are set at entry
points of the method so that all methods of the application operate in the interpreter domain.
Conversely, in the case of a kFullUndeoptimization request, method execution through the
interpreter is disabled, and bridges and trampolines are set at entry points of the method to act
as the method’s original execution flow. As shown in Figure 4, the above request occurs when
we break or release a breakpoint in a method’s header.

Figure 4. Set the event at method’s header.

kSelectiveDeoptimization/kSelectiveUndeoptimization: kSelectiveDeoptimization is a
request to execute only certain methods in the interpreter area. As shown in Figure 5,
when a breakpoint is placed on or off a method body, the request is made and the
entry points of the methods are set to the appropriate bridges and trampolines via the
UpdateEntryPoints() function.
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Assume that there is a part in the body of Method A that calls Method B. It is important to note
that Method A is executed in the interpreter area, and Method B, in the same step as step over or
step into the part where Method B is called, is executed in the interpreter area. On the contrary, in
case of resume, another entry point update is performed, and Method B is executed as machine
code through Interpreter_To_Compiled_Code_Bridge. When the call to Method B in the body
of Method A is finished, the remaining part of Method A is transferred to the interpreter area
through Quick_To_Interpreter_Bridge.

Figure 5. Set the event at method’s body.

3.2. Dynamic Analysis on Applications

As detailed by the analyses thus far, there is a class.dex file in the APK file, even in the ART
environment, and static analysis can be performed on ART without new tools or analysis techniques.
The DEX file of the application, which is the main target of static analysis, exists in the OAT file as
well as in the APK file. These OAT files can be analyzed using the oatdump tool. Figure 6 shows an OAT
file analysis using oatdump. The oatdump tool returns the header information of the OAT file and all
class and method information in the OAT file. In the case of a method, the Dalvik bytecode and its
corresponding machine code are shown.

Next, it can be said that dynamic analysis completely matches the existing analysis technique.
ART provides application dynamic debugging via JDWP similar to the Dalvik VM. Typical Android
application dynamic analysis tools include IDA and NetBeans, which provide dynamic analysis
through JDWP. In dynamic analysis, if you generate an event in the method you want to analyze,
the Dalvik bytecode of the method is exposed as usual, and the contents of the method are easily
analyzed (see Figure 7). Thus, despite the changes in runtime system, both static and dynamic reverse
engineering are possible using the same tools and techniques. The root cause of this is the exposure of
the Dalvik bytecode.

Figure 8 compares an original Java source code with its generated Dalvik bytecode. The Dalvik
bytecodes corresponding to each Java source code listed on the left are clear. In the case of the
assignment operator, the type of variable and its contents are immediately accessible. In the case of
string concatenation, procedures omitted at the time of development are indicated, and the amount of
code is increased so that there is no difficulty in its interpretation. You can also acquire information on
the type of arguments to be passed to the method, its contents, class information to which the method
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to be called belongs, and information on method prototypes. In addition, line information and variable
names in the Java source code are exposed, and detailed method information can be obtained.

Figure 6. OAT file dump from oatdump.

Figure 7. Dynamic analysis of an application using NetBeans.
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Figure 8. Original Java source code vs. Dalvik bytecode.

On the other hand, unlike Dalvik bytecode, machine code does not provide symbol information
such as strings, class names, and method names used in an application, and thus it is difficult to analyze.
Therefore, in the case of application analysis through machine code, the Dalvik bytecode should be
analyzed based on the signatures of the codes generated when it is compiled into machine code.

The code in Figure 9 is the code signature that calls the method. The ldr r0, [r0, INDEX]
command represents the index for ArtMethod in ArtMethodArray. In this case, because the method
that can be used as an index includes a preloaded method, it is not possible to analyze which method is
called other than the information that the method is called only by the corresponding OAT file. That is,
it is quite challenging to use signature-based application analysis to check for correct information such
as which method is called, what string is binding, and so on. Therefore, to protect your application
from reverse engineering, it is important to minimize the exposure of the Dalvik bytecode.

Figure 9. Function call signature.

4. Proposed Scheme

In ART, an executable OAT file contains a mix of machine code and Dalvik bytecode, and the
execution flow is separated for each method to check that the application is running. Therefore,
we confirmed that the existing Dalvik-based reverse engineering analysis technique can be applied by
switching the artificial execution flow to Dalvik bytecode. This paper proposes a scheme to protect the
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application by exposing the trap code which is arbitrary fake code to the bytecode part of the OAT file.
Given the structural characteristics of the ART, the Dalvik bytecode has no choice but to be exposed.

4.1. Principal Idea

As detailed in the above ART analysis, one method exists in the form of Dalvik bytecode and one
exists in the form of machine code in the ART environment. Assume that Method A, shown inside the
interpreter of Figure 10, is in the form of Dalvik bytecode, and Method A’ is in the form of machine
code. They differ in their forms, but the Dalvik bytecode is independent of the DEX file area (oatdata)
of the OAT file, which is the actual executable file in ART, and machine code in the machine code area
(oatexec) of the OAT file. Once the machine code is generated based on Dalvik bytecode, it is placed
in an independent area, which reduces the inter-code dependency. Therefore, an attacker can easily
perform reverse engineering analysis of a target application by using an existing bytecode analysis
technique without analyzing the relatively difficult machine code. Thus, the basic idea of this proposed
scheme is to hide the bytecode in the one-to-one mapping relationship between the bytecode and
machine code in the current OAT file and to expose a bytecode that is not related to the actual machine
code, as shown in Figure 11.

Figure 10. Dalvik bytecode and machine code in OAT.

Figure 11. Basic idea of proposed scheme.

Use of the proposed scheme increases resistance to reverse engineering not only for static analysis
but also for dynamic analysis. Dynamic debugging is accomplished through JDWP. This means that
debugging using JDWP uses bytecode rather than machine code. If Method A in the form of Dalvik
bytecode calls Method B (Figure 12), and the corresponding Method B’ in the form of machine code
is the same as B, then the contents of Method B can be analyzed through dynamic analysis. However,
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when the proposed scheme is applied to the two codes through Dalvik bytecode modulation, the results
of Method B’ through normal execution and of Method B through dynamic analysis are completely
different, which can greatly increase the analysis difficulty. In the end, dynamic analysis, similar to
static analysis, analyzes the trap code that behaves completely differently from the actual operation,
which can delay the analysis time and even lead to analysis failure.

Figure 12. Execution flow at normal execution (left) and at debugging (right).

4.2. Design Concept

The proposed scheme separates the core code part to be protected from the DEX file and generates
the core code as a separate OAT file, which is called the Core OAT file, as shown in Figure 13. Next,
to confuse the analyst, a DEX file is created that pretends to be bytecode corresponding to the machine
code, which is called Camo DEX (Camouflage DEX) in this paper.

Figure 13. Proposed system architecture.
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4.2.1. Core OAT Generation

Core OAT is an OAT file that contains core code in the form of machine code. Core OAT compiles
the core code existing in the original DEX file through dex2oat, then modifies the oatdata section
where the DEX file exists as mentioned in Section 4.1; as a result, the bytecode existing in Core OAT
has modulated bytecode instead of core code. In the proposed scheme, the bytecode corresponding
to rooting detection modifies with the reversing monitoring bytecode, bytecode corresponding to
the tamper detection modifies with the obfuscated fake code, and the core routine modifies with the
trap code having no relation to the original code to confuse the analyst’s reverse engineering process.
This Core OAT file can either be included in the APK to be dynamically loaded from the local device or
be distributed through a server as in [32–34]. The choice of distribution method may vary depending
on the execution environment and security policy.

4.2.2. Camo DEX Generation

Camo DEX has the same package name, class, and method structure as the actual Core OAT;
however, it is a file that is configured to perform a completely different operation from Core OAT
at run time. The behavior can be simply an application that prints “Hello World”, or any Android
application such as a calendar or file browser. Camo DEX, however, can be said to act as a trap because
it appears to be executing the code corresponding to the core routine, which is the target of the
dynamically loading.

Camo Dex plays a role not only in trapping but also in solving Core OAT compatibility issues.
The original OAT file has various checksum values, as shown in Table 1, based on various information
from the generation process. Even if there is one identical APK file, the OAT file that has been compiled
may have a different checksum due to slight differences depending on the environment of the
installed device. The Core OAT distributed with the proposed scheme also has its own checksum
values according to the environment at the time of generation, and problems arise when loading
classes dynamically because of these values.

Table 1. List of OAT file checksum data.

Sectioname Section Component Name

OatHeader alder32_checksum
OatHeader image file location oat checksum
OatHeader image file location oat data begin
OatDexFile dex file location checksum
Dex File dex file checksum
Dex File SHA1 signature

4.2.3. Core OAT Loading and Execution

As shown in Figure 14, an application with the proposed scheme should be able to dynamically
load a class that contains a separate Core OAT . It is assumed that the Core OAT file is included in the
APK. The first target for dynamic loading is Camo DEX. Assuming the cache does not exist when the
application first runs, DexClassLoader uses dex2oat to compile Camo DEX into Camo OAT and store it
in the cache path specified in the second parameter of DexClassLoader. From the saved Camo OAT,
extract the ChecksumB value corresponding to Table 1 and overwrite the checksumA in the Core OAT
with ChecksumB. At this time, delete the Camo OAT in the cache path and replace it with Core OAT . Now,
Core OAT along with ChecksumB will act as Camo DEX’s cache and the application will run normally.
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Figure 14. How to load Core OAT from Camo DEX.

5. Experimental Results

To evaluate the proposed scheme, the experiment on reverse engineering resistance was carried
out, comparing with the result of applying commercial obfuscation tools.

5.1. Experimental Setup

We first wrote a simple code, as shown in Figure 15, and then applied ProGuard [15] and
DexGuard [14], which are commercial obfuscation tools, as well as the proposed scheme. The degree of
difficulty was evaluated by applying existing reverse engineering techniques to APKs independently
built. The versions of ProGuard and DexGuard used in this experiment were 4.7 and 7.0.31, respectively,
and the obfuscation options were set to default values for each tool. Running the APK was done on
Google Nexus 5 devices with Android 5.1 Lollipop MR1, Android 6.0 Marshmallow, and Android 7.0
Nougat. Note that the specification of DexClassLoader has changed since Android 8 (API level 26),
so the proposed scheme works up to Android 7 which occupies more than 60% of the Android OS
market share [35].

5.2. Resistance to Reverse Engineering with ProGuard

Experiments were performed on resistance against reverse engineering attacks of obfuscated
sample code through ProGuard, which is the most basic obfuscation solution. Figure 16 shows that
the string data value and the routine of the function are exposed as naive. As a result of analyzing the
application using ProGuard, it can be seen that the output is the same except for the identifier name
and debugging information of the original code. In addition, Figure 17 is optimized for ProGuard;
hence, the optimized code can be observed for easy analysis. This is why ProGuard is vulnerable to
reverse engineering attacks.
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Figure 15. Sample source code.

Figure 16. Disassembled MethodA and MethodB with ProGuard.

Figure 17. Disassembled MethodC with ProGuard.

5.3. Resistance to Reverse Engineering with DexGuard

Unlike ProGuard, DexGuard cannot obtain meaningful information only through straightforward
disassembling using classA->’ object and classA->$(B,I,B) function common to both methodA()
and methodB(), as shown in Figure 18. The code in Figure 19 also shows less optimization than
ProGuard. However, it is a very simple routine, so there is not much applied to techniques that make
analysis difficult.
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Figure 18. Disassembled MethodA and MethodB with DexGuard.

Figure 19. Disassembled MethodC with DexGuard.

Figure 20 is a disassemble code of classA->’ object and classA->$(B,I,B) functions. It can
be observed that a String is created through a specific operation. The String generated from
the $ function is used as the input value of the Log, which is generated by Figure 18. Thus,
reverse engineering for DexGuard can also be achieved without significant difference from ProGuard,
even though there is a certain level of difficulty in finding decryption routines and decoding the hidden
data or routines.

Figure 20. Disassembled Class->$(B,I,B).

5.4. Resistance to Reverse Engineering with Proposed Scheme

This section compares and evaluates reverse engineering attack resistance and performance
through static and dynamic analysis of an application with the actual proposed scheme.
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Figure 21 shows the smali code that extracted and disassembled the Camo DEX file from the
application with the proposed scheme. Method A is a method that prints a string “Here is methodA
()” through the Android log method, then calls Method B and prints the returned strings by the result.
Method B assigns the strings “NORMAL” and “DEBUGGING” to the v0 and v1 registers, respectively, and
returns the v1 register. Therefore, when you call Method A, you can expect ‘RUN MODE: DEBUGGING” to
appear after the string “Here is methodA ()”. However, as a result of actual execution, “NORMAL” is
output instead of the string “DEBUGGING”, as shown in Figure 22.

Figure 21. Disassembled Camo Dex.

Figure 22. Result of Method A.

The above results show that the Camo DEX file is statically analyzed and the result is different from
the expected result. There is no difference when you look at the contents of the OAT file that is actually
executed. Figure 23 shows the dump of the OAT file using the oatdump tool. In Core OAT, you can still
see that Method B returns the string “DEBUGGING” and prints it in Method A.

Next, the result of executing Method C is shown in Figure 24. It can be observed that Method C
returns 9999 through the execution result, but, in the result of dumping the OAT file, 2222 and 1111
are allocated internally in Method C and then their difference is returned. That is, according to Dalvik
bytecode, the value that Method C should return is 1111, not 9999. However, the machine code can be
used to understand the results of Method C. In the machine code, you can find the sum of 5555 and 4444.

Thus, we can see that method analysis becomes more difficult by modulating its contents between
the Dalvik bytecode and native code so that they are not the same, as shown in Figure 25. Analysis of
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methods based on Dalvik bytecode, which is easy to analyze, yields incorrect analysis results, and then
the method must be analyzed based only on the native code. Therefore, the contents of the original
Dalvik bytecode are not exposed at the time of static analysis for the application where the proposed
scheme is applied, and it is possible to greatly enhance the difficulty of static analysis because analysts
must analyze machine code with a high analytical difficulty.

Figure 23. Dump Method A and Method B in Core OAT.

Figure 24. Result of Method C.

Figure 25. Dump Method C in Core OAT.
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5.5. Difficulty and Overhead Comparison

As is the case in the existing Dalvik environment, it is possible to analyze the application with only
the Dalvik bytecode reverse engineering techniques in the ART environment. In contrast, in the case of
an application using the proposed scheme, various skills such as machine code reverse engineering
and runtime system analysis technology are additionally required. Therefore, the proposed scheme
increase the difficulty of reverse engineering attacks. Based on the evaluation of reverse engineering
attack resistance, the ability required for analysts to analyze obfuscated applications compared to
existing obfuscation tools is shown in Table 2.

Table 2. Required reversing skills to analyze protected code.

Target Objects Required Skills ProGuard DexGuard Proposed Scheme

Bytecode

Decompile X X X
Dalvik bytecode X X X
API knowledge X X X

Repackaging X X X
Dalvik VM & ART framework X

Crypto routine Encryption algorithms X

Machine code

CPU instruction X
Disassemble X
Debugging X

OAT(ELF) file structure X

As the application is started, additional time and storage space are required to perform tasks
related to the proposed scheme. As a result of experiments based on 17 KB Core OAT and 33 KB
Camo DEX, the additional time required to execute the application was 17.793 ms, as shown in Table 3.
The proposed scheme has a run-time overhead 1.7 times that of the original application. It is slower than
ProGuard, but faster than DexGuard. In the case of ProGuard, a simple renaming technique is applied
in the process of APK generation and optimization is performed. On the other hand, in DexGuard,
the overhead is large because the decryption routine is executed each time the function is executed.
The proposed scheme is expected to be suitable for practical use with less overhead than the commercial
tool DexGuard.

Table 3. Runtime overhead.

Original ProGuard DexGuard Proposed Scheme

Execution time
(milliseconds) 11.494 11.073 58.699 17.793

In the end-user device environment, the storage capacity is the same size as the file stored in the
application local directory. The simplest expression is 2xCamoDex+2xCoreOAT, where the minimum
capacity of Camo DEX is approximately 33 KB, the most basic DEX file size.

6. Discussion

6.1. Core OAT Dynamic Loading Requirement

In this proposed scheme, the Core OAT file containing the core code is designed to be loaded
dynamically. The reason for this dynamic loading is the root privilege issue and OAT file modification
problem at the time of installation. The application is installed as an OAT file on the Android
device. As shown in Figure 26, the generated OAT file is in the “/data/dalvik-cache/[arch]/” path.
The partition requires a root privilege and cannot be accessed by end users or general applications.
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A permission problem occurs when attempting to apply the proposed scheme to the OAT file created
after the installation process.

Figure 26. OAT file creation path on Android device.

Therefore, if it is difficult to change the created OAT file, it is necessary to intervene in the OAT file
creation to apply the required code splitting, which can be done by artificially modifying the Android
platform. For this reason, the OAT file applied by the proposed scheme is designed to be recognized as
a normal cache file corresponding to the DEX file through class dynamic loading.

6.2. Additional Trapping through Core OAT Modulation

Core OAT files require basic understanding of OAT file structure and DEX file structure to modulate
the OAT file, and the degree of trap implementation may vary depending on the understanding of
the Dalvik bytecode command. The object to be modulated is Dalvik bytecode, and Dalvik bytecode
exists in the DEX file located in the oatdata section of the OAT file. The code_item entry in the DEX file
contains the actual register information and the actual Dalvik bytecode used by the method. Generally,
the modulation process can be divided into two types.

Figure 27 shows that all code_item entries in the method have been replaced with zeroes. In this
case, the register information and access information of the method are all 0, and all commands are
shown as a NOP state. This method has the advantage of being able to completely block exposure of
the original Dalvik bytecode from future reversing and is simple to implement. However, it has the
disadvantage of being very noticeable.

Figure 27. Delete the Dalvik bytecode.

To compensate, only a part of the Dalvik bytecode can be modulated. Figure 28 shows altering
the opcode of the instruction by modifying the “add-int” Dalvik bytecode command value 0x90 with
the “sub-int” Dalvik bytecode command value 0x91. Simply by increasing the value of the opcode
by 1, the method’s Dalvik bytecode becomes completely different from the machine code. In addition,
operands can be further modified to provide more complexity here and can be replaced by completely
different opcodes. This approach can intentionally expose the fake Dalvik bytecode to the analysts.
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It can confuse the analyst more effectively and force Dalvik bytecode and machine code to compare
and contrast.

Figure 28. Dalvik bytecode partial modulation.

The above procedure allows for the setting of various traps by effectively modulating the original
Dalvik bytecode with a primary trapping operation. The modified Core OAT can be deployed through
the server or distributed within the APK, and later applications can use the original Core OAT through
class dynamic loading on the Android device.

6.3. Core OAT Integrity Check

In the proposed scheme, the checksum of Core OAT is changed to the checksum value of Camo
OAT, and so integrity verification may become vulnerable. In this case, the Core OAT may be replaced
by the malicious OAT, or the application protection routine on the Core OAT may be disabled by the
analyst. Additional authentication mechanisms [36–38] are needed to address these vulnerabilities.
Applications could use only authenticated OAT files using a challenge-response method that allows the
application and Core OAT to communicate with and authenticate each other rather than a simple file
verification method. If the file is not an authenticated OAT file, the Core OAT should be reacquired.

6.4. Limitations

The proposed scheme interferes with the analysis by exposing the trapping code instead of the
core routine. Furthermore, several machine code reversing skills are required to analyze the code
generated by the proposed scheme. Unlike the existing solutions, which are easily reversible only with
static analysis, the proposed scheme increases the analysis difficulty by requiring knowledge of ART
structure and machine code analysis skills on Android architecture. However, if the attacker is able to
analyze the machine code of the Core OAT based on an understanding of the machine code and with
knowledge of the ART system structure, the proposed scheme also fails. Compared to other commercial
obfuscation solutions, the proposed scheme can compensate for these limitations because it requires
relatively low execution overhead. In addition, existing obfuscation tools must use a combination
of several options that require encryption, which can cause runtime overhead to be too high to be
practical. However, since the proposed scheme does not require encryption, it is more advantageous to
combine it with other schemes as well as has higher performance.

7. Conclusions

This paper describes an analysis of the contents of ART, the new runtime system of Android. Based
on this analysis, we propose a reverse engineering analysis prevention technique using the relationship
between Dalvik bytecode and machine code. The proposed scheme protects the application from
static analysis by preventing exposure of the Dalvik bytecode, which is easier to analyze compared
with machine code, and also prevents dynamic analysis using ART’s execution transition structure.
In addition, the proposed scheme introduces Core OAT and Camo DEX to provide versatility and
practicality. Camo DEX can also improve the reversing resistance of the proposed scheme by acting as
an additional trap along with solving the original Core OAT compatibility problem.
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The reverse engineering resistance of the proposed scheme is demonstrated through reverse
engineering analysis experiments on its application. In the reverse engineering analysis results, the
original state Dalvik bytecode could not be obtained by either the static analysis or dynamic analysis.
It was confirmed that only the trap code, which operates completely differently, was exposed.

In conclusion, the proposed anti-reversing scheme can be used as a core technology to protect
newly introduced ART-based Android applications from reversing by intentionally exposing the trap
to the application and blocking exposure of the core code. Ultimately, it is expected to contribute
greatly to the security of IoT devices that are compatible with ART-based mobile devices.
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