
sensors

Article

Multi-View Image Denoising Using Convolutional
Neural Network

Shiwei Zhou *, Yu-Hen Hu * and Hongrui Jiang

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706,
USA; hongrui@engr.wisc.edu
* Correspondence: szhou45@wisc.edu (S.Z.); yhhu@wisc.edu (Y.-H.H.); Tel.: +1-608-262-6724 (Y.-H.H.)

Received: 17 May 2019; Accepted: 4 June 2019; Published: 7 June 2019
����������
�������

Abstract: In this paper, we propose a novel multi-view image denoising algorithm based on
convolutional neural network (MVCNN). Multi-view images are arranged into 3D focus image
stacks (3DFIS) according to different disparities. The MVCNN is trained to process each 3DFIS
and generate a denoised image stack that contains the recovered image information for regions of
particular disparities. The denoised image stacks are then fused together to produce a denoised
target view image using the estimated disparity map. Different from conventional multi-view
denoising approaches that group similar patches first and then perform denoising on those patches,
our CNN-based algorithm saves the effort of exhaustive patch searching and greatly reduces the
computational time. In the proposed MVCNN, residual learning and batch normalization strategies
are also used to enhance the denoising performance and accelerate the training process. Compared
with the state-of-the-art single image and multi-view denoising algorithms, experiments show that
the proposed CNN-based algorithm is a highly effective and efficient method in Gaussian denoising
of multi-view images.

Keywords: multi-view denoising; convolution neural network; 3D focus image stacks; disparity
estimation

1. Introduction

Image denoising is an essential tool for image quality enhancement. It is often a required
preprocessing step to facilitate effective image understanding and other computer vision tasks, such as
segmentation, classification, and object detection. Due to the limitations of optical and electronic
devices, noise is inevitable in the process of image capture, which can be described using the image
degradation model y = x + n, where x is the clean image, y is the noisy observation, and n is the additive
noise, which is often modeled as additive white Gaussian noise (AWGN). Though real-world noises
are far more complicated, they can be approximated locally as AWGN [1], which is a natural choice
when the prior information of the noise in question is unknown. The purpose of image denoising is to
estimate x, given y and some statistical properties of n.

In recent years, with the increasing desire for 3D information that a single image cannot provide,
multi-view imaging systems have acquired attention from researchers and commercial companies [2].
With multiple cameras capturing the same scene simultaneously from different viewpoints, disparities
between distinct views can be acquired to recover the 3D information of the scene. However, cameras
in multi-view systems usually have limited aperture and sensor size, which result in noise corruption
in the captured images. In multi-view image denoising, the single image noise model is applied
to each of the views, and our goal is to achieve an estimate of the target view given a number of
noisy observations.

Sensors 2019, 19, 2597; doi:10.3390/s19112597 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3427-0677
http://www.mdpi.com/1424-8220/19/11/2597?type=check_update&version=1
http://dx.doi.org/10.3390/s19112597
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2597 2 of 24

Conventional image denoising methods [3–22] attempt to exploit various kinds of models that
can approximately describe the prior image. These model-based approaches, though capable of
achieving state-of-the-art denoising performance, are generally computationally expensive due to
exhaustive patch matching and optimization algorithms. Meanwhile, these models usually employ
many handcrafted parameters that need to be determined heuristically in prior, which is not flexible
enough to handle different image structures.

On the other hand, discriminative learning methods [23–31] have been recently developed to learn
the image prior in a data-driven manner that does not involve manual design. The most successful
among them is the convolutional neural network (CNN) that has a deep architecture for effectively
exploiting the image characteristics. Training data with degraded and ground truth image pairs are
fed into the network so that network parameters can be learned automatically with fast inference.
However, most existing algorithms, model-based or learning-based, are designed for single image
denoising. As far as we know, there is no existing deep network denoising algorithm developed for
multi-view images.

In this work, we present a convolutional neural network for multi-view image denoising (MVCNN).
Instead of using a single image as the input, the network we propose receives multiple views that have
been preprocessed and formed as a 3D matrix. The network can predict the residual images which
are also in the form of a 3D matrix. Subsequently, the denoised images are obtained by subtracting
the residual images from the observed noisy images. In general, the contribution of this paper can be
summarized below:

• A convolutional neural network that takes multiple views (in the form of 3D matrix) as the input
and delivers multiple residual images as the output.

• An efficient image fusion approach that integrates multiple denoised 3D focus image stacks into a
target denoised image using the disparity map.

• A novel and effective technique that detects and tackles occlusions from the disparity map through
morphological transformations.

To form the input 3D matrix, the proposed algorithm uses a special image structure called 3D
focus image stacks (3DFIS) that has been introduced in our previous work [32]. However, instead
of searching for similar patches in the 3DFIS and performing denoising on the grouped patches as
was done in [32], we process the entire image stacks through the proposed network and then fuse
these denoised image stacks using the disparity map to obtain the final denoised image. This new
processing of the 3DFIS using convolutional neural network helps us avoid the time-consuming
patch searching procedure, and hence significantly reduces the computational time, in addition to the
performance improvement.

The remainder of the paper is organized as follows. Section 2 gives a brief review of various
image denoising algorithms, including single image and multi-view methods. Sections 3 and 4 present
the proposed MVCNN model and the corresponding denoising algorithm. Section 5 demonstrates the
experimental results compared with current state-of-the-art approaches. Finally, the conclusion of the
paper is given in Section 6.

2. Related Work

2.1. Conventional Image Denoising

Conventional denoising algorithms model image denoising as an inverse problem that can be
approximated as maximum a posteriori (MAP) estimation using Bayesian inference. The problem may
be solved by applying various optimization strategies based on the image prior modeling. Over the
past decades, numerous image prior models have been proposed. One of the most popular models is
the non-local self-similarity (NSS) [3–9], following the observation that a local patch has many non-local
similar patches across the image. Many of the state-of-the-art algorithms employ this model, including

Sensors 2019, 19, 2597 3 of 24

Block-matching 3D (BM3D) [6] and Weighted Nuclear Norm Minimization (WNNM) [8]. Meanwhile,
researchers have also explored various other models, such as Markov random field (MRF) [10–13],
total variation [14–18], and sparsity [19–22]. Some of these methods also achieve great success in
terms of denoising quality. However, the complex optimization and exhaustive patch matching have
limited their applications in real-world problems due to the excessive computation burden involved.
The manually and heuristically determined parameters also lack flexibility when image structures are
abundant in real-world scenarios.

2.2. Deep Neural Networks for Single Image Denoising

Unlike conventional methods that learn the noise model using a specific statistical model with the
requirement of well-designed prior, deep neural network approaches learn the mapping between noisy
and clean images in a data-driven manner that achieves optimal denoising beyond human design.
Barbu et al. [23] proposed to train an MRF model with a fast inference algorithm through optimization
of a loss function on the training set. In [24], Xie et al. advocated adapting a denoising auto-encoder
that was designed for unsupervised feature learning to image denoising tasks. Later, Schmidt et al. [25]
put forward a random field-based architecture called shrinkage fields to effectively learn the model
parameters. Inspired by the field-of-expert (FoE) based model [11], Chen et al. [27] further developed
a trainable non-linear diffusion reaction (TNRD) algorithm that optimizes a time-discrete partial
differential equation with gradient descent/forward-backward steps. While early methods cannot
compete with state-of-the-art algorithms like BM3D, some of the recently developed algorithms, such as
TNRD, have achieved competitive or even better denoising performance.

In the meantime, plain discriminative learning methods that do not require prior explicit modeling
of an image have also received increasing attention. Burger et al. [27] learned a mapping between noisy
and clean images directly with a plain multi-layer perceptron (MLP) applied to image patches. Recently,
Zhang et al. [28] proposed a CNN-based network (DnCNN) that successfully adopts residual learning
and batch normalization to image denoising problems. DnCNN also achieves the current state-of-the-art
performance among learning-based algorithms that outperforms conventional approaches. Following
the success of DnCNN, the same group later developed a more flexible FFDNet algorithm [29].
The algorithm aims to deal with spatially variant noise by introducing a noise level map and applying
orthogonal regularization to improve the robustness to noise level mismatch. Jin et al. [30] proposed
to use direct inversion followed by a CNN to solve general normal-convolutional inverse problems,
including denoising. In order to improve the robustness and practicability of deep denoising models to
real-world noise, Guo et al. [31] implemented a convolutional blind denoising network comprised of a
noise estimation subnetwork and a denoising subnetwork. The network is trained using a more realistic
noise model by considering both the signal-dependent noise and the in-camera processing pipeline.

2.3. Multi-View Image Denoising

In the field of multi-view denoising, inter-view image dependencies are used to facilitate similar
patch matching, such that denoising performance can be further improved. Zhang et al. [33] proposed a
principal component/tensor analysis based denoising algorithm using a depth-guided patch similarity
measure. Similarly, Luo et al. [34] incorporated a depth-dependent robust metric in their adaptive
non-local means algorithm. In the perspective of 3D reconstruction, Xue et al. [35] introduced a
graphical model of surface patches that is able to model the intra-view and inter-view redundancy
more effectively, and noise can be attenuated using Wiener filtering on the sparse representation of
these patches. More recently, Yue et al. [36] employed a two-stage strategy that explores both internal
and external correlations with the help of web images. To accelerate processing speed, Miyata et al. [37]
developed a fast multi-view image reconstruction algorithm. This algorithm uses plane sweeping [38]
to obtain a number of pre-denoised images and assembles the in-focus parts of those images to get
the final estimation. Inspired by plane sweeping, our previous work [32] introduced a new data

Sensors 2019, 19, 2597 4 of 24

structure called 3D focus image stacks (3DFIS) and a more robust multi-view denoising algorithm that
incorporates depth-guided adaptive windows and low-rank approximation.

Recently, the application of a deep neural network to multi-view denoising has attracted researchers’
attention. Chen et al. [39] proposed a light field denoising framework based on anisotropic parallax
analysis. In this work, two convolutional neural networks (CNN) will jointly predict parallax
information and restore non-Lambertian variations to each view. In [40], S. Fujita et al. divided the high
dimensional 4D light field into multiple 2D subspaces. Then, denoising was performed by cascading
two or three CNNs applied to different subspaces.

In this work, leveraging the 3DFIS develop in our previous research [32], we further explore the
adaptation of a convolutional neural network to multi-view denoising. We demonstrate that with the
help of discriminative learning, denoising performance using CNN can be elevated to a higher level.

3. The Proposed Denoising Network

In this section, we present the proposed multi-view denoising network (MVCNN) that features
multi-view input and output. The network architecture is modified from DnCNN [28], such that it
can take a 3D matrix composed of multiple images as the input. In order to capture the inter-view
image redundancy, we require the images in the input matrix to be well-aligned in the third dimension.
We also adopt residual learning [41] and batch normalization [42], strategies that are popular in other
computer vision tasks.

3.1. Network Architecture

Existing CNN models [27–31] are all designed exclusively for single image denoising. In the
multi-view scenario, the most intuitive approach is to perform these single image algorithms on each
of the views separately. This method, though simple and convenient, does not exploit the redundant
image information that exists in multiple views capturing the same scene. Numerous studies [32–44]
have demonstrated that inter-view redundant information is essential for recovering the original
image details without creating undesirable over-smoothing artifacts that are common in single image
denoising. Therefore, we believe that the denoising performance of CNN model can be further
enhanced if inter-view information, in addition to intra-view information, is taken into consideration.

Distinct from the single image denoising network that takes single images or patches as the
input, our proposed MVCNN accepts a 3D input matrix, which consists of multiple noisy images or
patches. Figure 1 illustrates our proposed deep network, which is composed of M layers. Given n
images of dimension W × H forming an input matrix of size W × H × n, the first layer consists of j
convolution filters of size 3 × 3 × n and a rectified linear unit (ReLU) as the activation function that
provides non-linearity. This result in an output of dimension W × H × j, which acts as the input of
the next layer. For layer 2 to M − 1, there are three components including j convolution filters of size
3 × 3 × j, batch normalization and ReLU. The batch normalization is included to alleviate the effects
of internal covariate shift [42] as well as to speed up the training process. The last layer contains n
convolution filters of size 3 × 3 × j to generate an output that has the same dimension with the input of
the network. In each layer, zero padding of length 1 is added before convolution so that the image
dimension does not change as it passes through the network. Note that while the input images can
be any size, the number of input images is fixed as n, since this determines the inner structure of the
network, i.e., the filter size in the first layer and the number of filters in the last layer. If we have a
different number of input images, we can either retrain the network or divide the input images into
groups of n and integrate the denoised images of those groups.

Sensors 2019, 19, 2597 5 of 24

Sensors 2019, 19, x FOR PEER REVIEW 4 of 23

parallax analysis. In this work, two convolutional neural networks (CNN) will jointly predict parallax
information and restore non-Lambertian variations to each view. In [40], S. Fujita et al. divided the
high dimensional 4D light field into multiple 2D subspaces. Then, denoising was performed by
cascading two or three CNNs applied to different subspaces.

In this work, leveraging the 3DFIS develop in our previous research [32], we further explore the
adaptation of a convolutional neural network to multi-view denoising. We demonstrate that with the
help of discriminative learning, denoising performance using CNN can be elevated to a higher level.

3. The Proposed Denoising Network

In this section, we present the proposed multi-view denoising network (MVCNN) that features
multi-view input and output. The network architecture is modified from DnCNN [28], such that it
can take a 3D matrix composed of multiple images as the input. In order to capture the inter-view
image redundancy, we require the images in the input matrix to be well-aligned in the third
dimension. We also adopt residual learning [41] and batch normalization [42], strategies that are
popular in other computer vision tasks.

3.1. Network Architecture

Existing CNN models [27–31] are all designed exclusively for single image denoising. In the
multi-view scenario, the most intuitive approach is to perform these single image algorithms on each
of the views separately. This method, though simple and convenient, does not exploit the redundant
image information that exists in multiple views capturing the same scene. Numerous studies [32–44]
have demonstrated that inter-view redundant information is essential for recovering the original
image details without creating undesirable over-smoothing artifacts that are common in single image
denoising. Therefore, we believe that the denoising performance of CNN model can be further
enhanced if inter-view information, in addition to intra-view information, is taken into consideration.

Distinct from the single image denoising network that takes single images or patches as the
input, our proposed MVCNN accepts a 3D input matrix, which consists of multiple noisy images or
patches. Figure 1 illustrates our proposed deep network, which is composed of M layers. Given n
images of dimension W × H forming an input matrix of size W × H × n, the first layer consists of j
convolution filters of size 3 × 3 × n and a rectified linear unit (ReLU) as the activation function that
provides non-linearity. This result in an output of dimension W × H × j, which acts as the input of the
next layer. For layer 2 to M − 1, there are three components including j convolution filters of size 3 ×
3 × j, batch normalization and ReLU. The batch normalization is included to alleviate the effects of
internal covariate shift [42] as well as to speed up the training process. The last layer contains n
convolution filters of size 3 × 3 × j to generate an output that has the same dimension with the input
of the network. In each layer, zero padding of length 1 is added before convolution so that the image
dimension does not change as it passes through the network. Note that while the input images can
be any size, the number of input images is fixed as n, since this determines the inner structure of the
network, i.e., the filter size in the first layer and the number of filters in the last layer. If we have a
different number of input images, we can either retrain the network or divide the input images into
groups of n and integrate the denoised images of those groups.

Figure 1. The architecture of the proposed network. Figure 1. The architecture of the proposed network.

Similar to previous CNN denoising models [28–31], we also adopt a residual learning [41] strategy
by training a residual mapping that maps the noisy images to noise components. The clean images can
then be obtained by subtracting the noise components from the noisy images. Previous research [28] has
indicated that residual mapping is not only easier to be optimized but also helps batch normalization
in reducing an internal covariate shift. Specifically, the loss function l on the network parameters Θ is
defined as:

l(Θ) =
1

Ns

∑
i
d(R(Yi, Θ), Yi −Xi), (1)

where Yi is the matrix of noisy image, Xi is the matrix of ground truth image with i referring to the ith
training sample, and Ns is the number of training samples. In Equation (1), R(Yi, Θ) stands for the
residual matrix that is mapped from Yi with network parameters Θ, and d(·,·) represents the distance
between the estimated and ground truth residuals.

In implementation, we set the number of images in the input to be n = 9, which is common in
multi-view imaging scenarios. In consideration of the tradeoff between complexity and performance,
we set the number of layers M as 12. This number is sufficient to capture the inter-view dependencies
for our multi-view denoising, while more layers will dramatically increase the computation burden.
The number of feature maps j in each layer is dependent on the number of input images. More input
images would not only require a larger number of feature maps, but also increase computational time.
In our implementation, considering the tradeoff between performance and complexity, we empirically
set j = 96. As for the distance metric d(·,·) in Equation (1), we will use the Euclidean distance.

In order to capture the pixel correlations across different views, during the training stage, we take
a single image from the dataset and duplicate it multiple times to form the input 3D matrix. Additive
white Gaussian noise is then added to the input matrix, and the corresponding output matrix is the
noise matrix. In other words, all pixels in the input matrix can be considered well-aligned along the
third dimension. More discussions of this kind of training input setting will be provided in Section 3.3,
and detailed parameter settings of network training are described in Section 5.

3.2. Network Testing: Single Image vs. Multi-View

In order to test the proposed network, we duplicate single images from the testing set multiple
times such that they form 3D matrices with each pixel coordinate containing a vector of pixels having
the same intensity value. Synthetic Gaussian noise is then added to the 3D matrices to form the
noisy input. The trained network is then applied to the testing input matrices that are composed
of well-aligned pixels. Since the network is trained in a way such that pixel correlations between
well-aligned pixels are fully exploited, the output images from the network in these tests should be
properly denoised without any artifacts. The denoising result for a different number of images (1, 3,
and 9) involved in the input matrix with white Gaussian noise (σ = 25) added is shown in Figure 2.
Two regions with fine textures are enlarged specifically for close inspection. As can be observed,
with an increasing number of images in the input, the inter-view dependency can be better exploited,
which leads to superior detail preservation than single image denoising. The peak signal-to-noise ratio

Sensors 2019, 19, 2597 6 of 24

(PSNR) comparison also indicates that the denoising performance improves with more views added to
the input.Sensors 2019, 19, x FOR PEER REVIEW 6 of 23

(a) (b) (c) (d) (e)

Figure 2. Comparison of single image convolutional neural network (CNN) and multi-view CNN
models. (a) Ground truth; (b) Noisy image, PSNR = 20.15 dB; (c) DnCNN [28], PSNR = 29.44 dB; (d)
Multi-view image denoising algorithm based on convolutional neural network (MVCNN) (3 views),
PSNR = 31.91 dB; (e) MVCNN (9 views), PSNR = 34.68 dB.

3.3. Signal Processing Interpretation of MVCNN

Referring to Figure 1, the MVCNN network produces residual images which resemble spatially
uncorrelated Gaussian noise inherent in the input image. This seems to be quite different from
popular CNN networks, where the output feature maps are used for detecting/classifying the content
of the image. In this subsection, we will provide some signal processing interpretations of the
function of the MVCNN.

3.3.1. General Mechanism of the Denoising Network

To illustrate the mechanism behind the denoising network, we draw the feature maps generated
in different layers as shown in Figure 3 using an image that consists of a wide range of frequency
components. In the first layer, the convolution filters act as feature extraction operators to acquire
numerous important features from the input images, such as edges, corners, and other textures,
including noise. Then, in subsequent layers, the pixel correlations and dependencies in the images
are exploited and removed from the feature maps. This results in a number of refined feature maps
that are mostly comprised of noise components, which have no correlations among neighboring
pixels. The final layer then reconstructs the residual images from the refined feature maps.

To justify our conjecture, the output of the first layer is shown in Figure 3b. Due to the page limit,
we only display the first five feature maps. It can be observed that some of the feature maps look like
the result of edge detection, such as those in the second and third row. The filter parameters
corresponding to these feature maps are shown in Figure 4. For simplicity, here we only show five
out of the nine 3 × 3 matrices in each 3 × 3 × 9 filter. We observe that these matrices have a similar
structure to common edge detectors, and they resemble each other within each 3 × 3 × 9 filter when
the edge detection effect is obvious. Therefore, we believe that the convolution filters in the first layer
act as feature extractors that extract various feature information from the input images, although
some of the features may be too complex to be represented by human-designed detectors.

The subsequent layers, except the last one, are responsible for processing these features. In other
image tasks such as classification, these low-level features are processed to form higher-level
semantic representations so that the network is able to relate these representations to particular
categories of objects. In our denoising task, on the other hand, the intra-view and inter-view
correlations in these features are explored such that the information related to image structures is
gradually suppressed, as shown in Figure 3c–f. Further analysis of these two types of correlation is
discussed below.

Figure 2. Comparison of single image convolutional neural network (CNN) and multi-view CNN
models. (a) Ground truth; (b) Noisy image, PSNR = 20.15 dB; (c) DnCNN [28], PSNR = 29.44 dB;
(d) Multi-view image denoising algorithm based on convolutional neural network (MVCNN) (3 views),
PSNR = 31.91 dB; (e) MVCNN (9 views), PSNR = 34.68 dB.

However, in multi-view denoising, the multiple views are not perfectly aligned due to different
camera positions. Pixels from one view are moved by a certain distance, which is called disparity,
in other views. The disparity is closely related to the depth of the surface point, in an inversely
proportional manner. In order to align corresponding points from all views, we have previously
introduced the 3D focus image stacks (3DFIS) [32] that generate several 3D image stacks consisting of
translated multi-view images. Each stack corresponds to a specific disparity (or depth) value such
that corresponding pixels with that disparity are located on the same coordinates. Therefore, regions
with the correct disparity values appear to be well-aligned in the corresponding image stack and the
proposed MVCNN can be properly employed. Details of the denoising algorithm that combines the
network output with 3DFIS and the disparity map are elaborated in Section 4.

3.3. Signal Processing Interpretation of MVCNN

Referring to Figure 1, the MVCNN network produces residual images which resemble spatially
uncorrelated Gaussian noise inherent in the input image. This seems to be quite different from popular
CNN networks, where the output feature maps are used for detecting/classifying the content of the
image. In this subsection, we will provide some signal processing interpretations of the function of
the MVCNN.

3.3.1. General Mechanism of the Denoising Network

To illustrate the mechanism behind the denoising network, we draw the feature maps generated
in different layers as shown in Figure 3 using an image that consists of a wide range of frequency
components. In the first layer, the convolution filters act as feature extraction operators to acquire
numerous important features from the input images, such as edges, corners, and other textures,
including noise. Then, in subsequent layers, the pixel correlations and dependencies in the images are
exploited and removed from the feature maps. This results in a number of refined feature maps that
are mostly comprised of noise components, which have no correlations among neighboring pixels.
The final layer then reconstructs the residual images from the refined feature maps.

To justify our conjecture, the output of the first layer is shown in Figure 3b. Due to the page
limit, we only display the first five feature maps. It can be observed that some of the feature maps
look like the result of edge detection, such as those in the second and third row. The filter parameters
corresponding to these feature maps are shown in Figure 4. For simplicity, here we only show five
out of the nine 3 × 3 matrices in each 3 × 3 × 9 filter. We observe that these matrices have a similar

Sensors 2019, 19, 2597 7 of 24

structure to common edge detectors, and they resemble each other within each 3 × 3 × 9 filter when
the edge detection effect is obvious. Therefore, we believe that the convolution filters in the first layer
act as feature extractors that extract various feature information from the input images, although some
of the features may be too complex to be represented by human-designed detectors.Sensors 2019, 19, x FOR PEER REVIEW 7 of 23

(a)

(b) (c) (d) (e) (f)

Figure 3. (a) Ground truth image; (b–f) Patches from first five feature maps from the output of Layer
1, 3, 5, 7, and 11 (M = 12).

Figure 4. Parameters of the second (top row) and third (bottom row) convolution filters in the first
layer (only the first 5 out of 9 matrices are displayed for each 3 × 3 × 9 filter, bright color indicates large
values and dark color means small values).

3.3.2. Intra-View Correlation

During the processing of image features, pixel correlation within the image, which is also known
as intra-view correlation, plays an important role in assisting the network to identify the image
structures from the noise components. This correlation is also the foundation of most existing
denoising algorithms. To further justify this claim, clean images without noise are sent into the
network for testing. Theoretically, if the input images contain no noise, the estimated residual image
should be all zeros. However, in reality, image components with very high frequency could
demonstrate a bit of noise-like behavior due to the lack of sufficient pixel correlations within the
neighborhood. This would lead to estimation errors in high-frequency regions. An example is shown

Figure 3. (a) Ground truth image; (b–f) Patches from first five feature maps from the output of Layer 1,
3, 5, 7, and 11 (M = 12).

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23

(a)

(b) (c) (d) (e) (f)

Figure 3. (a) Ground truth image; (b–f) Patches from first five feature maps from the output of Layer
1, 3, 5, 7, and 11 (M = 12).

Figure 4. Parameters of the second (top row) and third (bottom row) convolution filters in the first
layer (only the first 5 out of 9 matrices are displayed for each 3 × 3 × 9 filter, bright color indicates large
values and dark color means small values).

3.3.2. Intra-View Correlation

During the processing of image features, pixel correlation within the image, which is also known
as intra-view correlation, plays an important role in assisting the network to identify the image
structures from the noise components. This correlation is also the foundation of most existing
denoising algorithms. To further justify this claim, clean images without noise are sent into the
network for testing. Theoretically, if the input images contain no noise, the estimated residual image
should be all zeros. However, in reality, image components with very high frequency could
demonstrate a bit of noise-like behavior due to the lack of sufficient pixel correlations within the
neighborhood. This would lead to estimation errors in high-frequency regions. An example is shown

Figure 4. Parameters of the second (top row) and third (bottom row) convolution filters in the first
layer (only the first 5 out of 9 matrices are displayed for each 3 × 3 × 9 filter, bright color indicates large
values and dark color means small values).

The subsequent layers, except the last one, are responsible for processing these features. In other
image tasks such as classification, these low-level features are processed to form higher-level semantic

Sensors 2019, 19, 2597 8 of 24

representations so that the network is able to relate these representations to particular categories of
objects. In our denoising task, on the other hand, the intra-view and inter-view correlations in these
features are explored such that the information related to image structures is gradually suppressed,
as shown in Figure 3c–f. Further analysis of these two types of correlation is discussed below.

3.3.2. Intra-View Correlation

During the processing of image features, pixel correlation within the image, which is also known
as intra-view correlation, plays an important role in assisting the network to identify the image
structures from the noise components. This correlation is also the foundation of most existing denoising
algorithms. To further justify this claim, clean images without noise are sent into the network for
testing. Theoretically, if the input images contain no noise, the estimated residual image should be all
zeros. However, in reality, image components with very high frequency could demonstrate a bit of
noise-like behavior due to the lack of sufficient pixel correlations within the neighborhood. This would
lead to estimation errors in high-frequency regions. An example is shown in Figure 5a–d with regions
of particularly high frequency being zoomed for inspection. Though hardly perceived by human eyes,
estimation errors can be still observed in these high-frequency regions after rescaling the intensity.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 23

in Figure 5a–d with regions of particularly high frequency being zoomed for inspection. Though
hardly perceived by human eyes, estimation errors can be still observed in these high-frequency
regions after rescaling the intensity.

3.3.3. Inter-View Correlation

Apart from the intra-view correlations, the inter-view correlations are also essential to our multi-
view denoising network. Since we use the same image and duplicate it multiple times to form a 3D
input matrix during the training stage, so pixels at the same coordinates in different views are aligned
in the input matrix. Therefore, there exists a strong correlation among pixels over the third dimension
in the input matrix (before noise is added), and this correlation is called inter-view correlation. The
network is trained to identify such correlation, in addition to intra-view correlation, so that image
structure-related information can be further distinguished from noise information. This can be
justified by a simple counterexample. If the additive noise has the same pattern in each image, then
noise in each pixel is also correlated across different views, which will make the network misidentify
the noise as image structures and hence incorrectly estimate the residual images. Figure 5e–h shows
such an example by adding the same noise pattern to each of the input images. As a result, the
estimated residual image shows significant bias from the true one, as if there is no noise.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. (a–d) Noise level = 0: input image, true residual image, estimated residual image, and
estimated residual image with intensity rescaled to [0,15]; (e–h) Noise level = 25 and all input images
have the same noise pattern: input image, true residual image, estimated residual image, and
estimated residual image with intensity rescaled to [0,25].

3.4. Relationship with Previous Works

The proposed MVCNN shares a similar linear topology with some of the previously proposed
deep networks. This linear topology, though simple, is very effective in performing various computer
vision tasks, including denoising [27–29], super-resolution [45–48], image recognition [49,50], etc.
Since the output of the network has the same dimension as the input, the pooling layer is typically
not needed, and zero padding is often required in image denoising tasks. In comparison with
DnCNN, which is the current state-of-the-art Gaussian denoiser for single images, our proposed
network has a few similarities and some noticeable differences, detailed below.

• The original DnCNN only takes one single image, which is a 2D matrix, as input for grayscale
image denoising, while the input of MVCNN usually has a 3D input and output. This changes
the filter size in the first convolution layer and the number of filters in the last layer.

• As the input matrix has more dimension, the number of layers and the number of feature maps
also need to be adjusted accordingly. In specifics, the number of feature maps in each layer needs

Figure 5. (a–d) Noise level = 0: input image, true residual image, estimated residual image,
and estimated residual image with intensity rescaled to [0,15]; (e–h) Noise level = 25 and all input
images have the same noise pattern: input image, true residual image, estimated residual image,
and estimated residual image with intensity rescaled to [0,25].

3.3.3. Inter-View Correlation

Apart from the intra-view correlations, the inter-view correlations are also essential to our
multi-view denoising network. Since we use the same image and duplicate it multiple times to form
a 3D input matrix during the training stage, so pixels at the same coordinates in different views
are aligned in the input matrix. Therefore, there exists a strong correlation among pixels over the
third dimension in the input matrix (before noise is added), and this correlation is called inter-view
correlation. The network is trained to identify such correlation, in addition to intra-view correlation,
so that image structure-related information can be further distinguished from noise information.
This can be justified by a simple counterexample. If the additive noise has the same pattern in
each image, then noise in each pixel is also correlated across different views, which will make the
network misidentify the noise as image structures and hence incorrectly estimate the residual images.
Figure 5e–h shows such an example by adding the same noise pattern to each of the input images. As a
result, the estimated residual image shows significant bias from the true one, as if there is no noise.

Sensors 2019, 19, 2597 9 of 24

3.4. Relationship with Previous Works

The proposed MVCNN shares a similar linear topology with some of the previously proposed
deep networks. This linear topology, though simple, is very effective in performing various computer
vision tasks, including denoising [27–29], super-resolution [45–48], image recognition [49,50], etc. Since
the output of the network has the same dimension as the input, the pooling layer is typically not
needed, and zero padding is often required in image denoising tasks. In comparison with DnCNN,
which is the current state-of-the-art Gaussian denoiser for single images, our proposed network has a
few similarities and some noticeable differences, detailed below.

• The original DnCNN only takes one single image, which is a 2D matrix, as input for grayscale
image denoising, while the input of MVCNN usually has a 3D input and output. This changes
the filter size in the first convolution layer and the number of filters in the last layer.

• As the input matrix has more dimension, the number of layers and the number of feature maps
also need to be adjusted accordingly. In specifics, the number of feature maps in each layer needs
to be increased in order to capture sufficient inter-view correlations and achieve a satisfactory
denoising performance. Figure 6 illustrates a denoising example using different numbers of feature
maps. Meanwhile, as the number of feature map and number of views increment, the training
time also rapidly increases. In order to keep a balance between denoising performance and
computational complexity, we choose to slightly decrease the number of layers without sacrificing
the performance.

• Simply passing the 3DFIS into the network produces a number of denoised image stacks, which
are not the desired final denoised images. Further processing needs to be carried out to integrate
these denoised image stacks into denoised images, with careful handling of occlusion. Therefore,
a novel image fusion procedure and occlusion handling technique are proposed.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 23

to be increased in order to capture sufficient inter-view correlations and achieve a satisfactory
denoising performance. Figure 6 illustrates a denoising example using different numbers of
feature maps. Meanwhile, as the number of feature map and number of views increment, the
training time also rapidly increases. In order to keep a balance between denoising performance
and computational complexity, we choose to slightly decrease the number of layers without
sacrificing the performance.

• Simply passing the 3DFIS into the network produces a number of denoised image stacks, which
are not the desired final denoised images. Further processing needs to be carried out to integrate
these denoised image stacks into denoised images, with careful handling of occlusion. Therefore,
a novel image fusion procedure and occlusion handling technique are proposed.

(a) (b) (c) (d)

Figure 6. Denoising image (9 views) using different number of feature maps: (a) Ground truth; (b)
Noisy image, 20.25 dB; (c) 64 feature maps, 29.71 dB; (d) 96 feature maps, 36.05 dB.

4. Multi-View Denoising Algorithm

In this section, we describe, in more detail, the procedures of our multi-view denoising algorithm
using the proposed MVCNN model. In general, we assume the multi-view images are acquired from
a planar camera array in which the cameras are separated with equal distances. Each camera
corresponds to a coordinate (s, t) ∈ Z2 on the camera array, and without loss of generality, we assume
the center view (0,0) is the target view we want to denoise. Each noisy image Is,t can be represented as: 𝐼௦,௧ሺ𝑥, 𝑦ሻ = 𝐼௦,௧ᇱ ሺ𝑥, 𝑦ሻ + 𝑛௦,௧ሺ𝑥, 𝑦ሻ, (2)

where x and y are pixel coordinates in each image, I’s,t is the ground truth clean image and ns,t is the
i.i.d. zero-mean Gaussian noise with variance σ2. The objective is to estimate the clean target image
from the multiple noisy images.

The general procedure of the proposed multi-view denoising algorithm is summarized as
follows. First, the multi-view images are transformed into a number of 3D focus image stacks with
respect to different disparity values, and the disparity map for the target view is estimated. Next,
each of the image stacks is processed by the MVCNN model to remove the noise. Finally, the final
denoised image is estimated by extracting and fusing corresponding in-focus regions from each of
the denoised image stacks using disparity values. The processing pipeline of the algorithm is
summarized in Figure 7, and the details of the algorithm are discussed in the following subsections.

4.1. 3D Focus Image Stacks and Disparity Estimation

In our previous work [32], we have introduced the notion of 3D focus image stacks (3DFIS) and
utilized 3DFIS as an efficient way of searching for similar patches. The proposed denoising algorithm
also takes advantage of the merits of 3DFIS for the purpose of aligning corresponding pixels. Instead
of searching for similar patches as we did in the previous work, we directly use the 3DFIS for
denoising purpose. Assume that all the images have been rectified so that their epipolar lines are
parallel to horizontal lines. This turns the complex homography between different views into pure
translation, which significantly simplifies the problem.

Figure 6. Denoising image (9 views) using different number of feature maps: (a) Ground truth; (b) Noisy
image, 20.25 dB; (c) 64 feature maps, 29.71 dB; (d) 96 feature maps, 36.05 dB.

4. Multi-View Denoising Algorithm

In this section, we describe, in more detail, the procedures of our multi-view denoising algorithm
using the proposed MVCNN model. In general, we assume the multi-view images are acquired from a
planar camera array in which the cameras are separated with equal distances. Each camera corresponds
to a coordinate (s, t) ∈ Z2 on the camera array, and without loss of generality, we assume the center
view (0,0) is the target view we want to denoise. Each noisy image Is,t can be represented as:

Is,t(x, y) = I′s,t(x, y) + ns,t(x, y), (2)

where x and y are pixel coordinates in each image, I’s,t is the ground truth clean image and ns,t is the
i.i.d. zero-mean Gaussian noise with variance σ2. The objective is to estimate the clean target image
from the multiple noisy images.

The general procedure of the proposed multi-view denoising algorithm is summarized as follows.
First, the multi-view images are transformed into a number of 3D focus image stacks with respect to

Sensors 2019, 19, 2597 10 of 24

different disparity values, and the disparity map for the target view is estimated. Next, each of the
image stacks is processed by the MVCNN model to remove the noise. Finally, the final denoised image
is estimated by extracting and fusing corresponding in-focus regions from each of the denoised image
stacks using disparity values. The processing pipeline of the algorithm is summarized in Figure 7,
and the details of the algorithm are discussed in the following subsections.Sensors 2019, 19, x FOR PEER REVIEW 10 of 23

Figure 7. Processing pipeline of the proposed denoising algorithm: (1) Construct the 3D focus image
stacks (3DFIS); (2) Estimate the disparity map; (3) Process the 3DFIS using the MVCNN model; (4)
Image fusion from the denoised 3DFIS and disparity maps; (5) Occlusion detection and handling.

For a number of candidate disparity values d = 1, …, dmax, we create a series of image stacks Fd by
translating the views and stacking them into 3D matrices as: 𝐹ௗሺ𝑥, 𝑦, 𝑘ሻ = 𝐼௦,௧ሺ𝑥 − 𝑠 ∙ 𝑑, 𝑦 − 𝑡 ∙ 𝑑ሻ, d = 1, …, dmax (3)

where k is an integer that has a unique mapping to each of the camera coordinates (s,t). From the
perspective of stereo vision, for a pixel (x,y) in the target image, its corresponding image coordinate
in other views will be of a distance away from (x,y) coordinates. Such distance is proportional to the
disparity d of pixel (x,y). For example, corresponding points of pixel (x,y) in adjacent views are d
pixels away from (x,y) in either horizontal or vertical directions, depending on the relative location
of the view with respect to the target view. However, if a view is not adjacent to the target view, but
is separated by a number of other views (which can be found using the camera coordinates (s,t)), then
the corresponding points of (x,y) will be s·d and t·d away instead.

Therefore, if a pixel (x,y) in the target view has a true disparity d, its corresponding points in
other views, which have distances of s·d and t·d in the x and y directions, will be shifted to the same
position in the image stack Fd. In other words, all pixels with disparity value d will be well-aligned
(which is called in-focus) in Fd. Since we have trained the MVCNN such that the network is able to
denoise pixels that are well-aligned. Applying MVCNN model to each Fd will remove the noise in
regions that have true disparity d. By going through all the 3DFIS Fd (d = 1, …, dmax) using the denoising
network, we obtain a series of image stacks with different in-focus regions being denoised, which
will be elaborated in the next subsection.

The disparity map, which is the key to fuse the denoised 3DFIS into the final denoised image,
can be estimated from the 3DFIS using photo-consistency between different views. Previously, we
have proposed a robust disparity map estimation algorithm [32] that achieves a satisfactory error rate
under noise interference. In this work, we use the same algorithm with a few modifications to obtain
the disparity map. In specific, after obtaining the cost function C(x,y,d) for each pixel (x,y) and for
each candidate disparity d, we further append a smoothness term S, which computes the sum of
absolute differences of disparity values of adjacent pixels. The goal is to minimize the following
objective function 𝐸 = ∑ 𝐶ሺ௫,௬ሻ + 𝜆 ∑ ∑ 𝑆ሺ𝑖, 𝑗ሻሺ௜,௝ሻ∈ேరሺ௫,௬ሻሺ௫,௬ሻ , (4)

where C is the cost function we defined previously in [32] as 𝐶ሺ𝑥, 𝑦, 𝑑ሻ = ଵ௡೛௄ ∑ ∑ ห𝐹ௗሺ𝑖, 𝑗, 𝑘ሻ − 𝐼଴,଴ሺ𝑖, 𝑗ሻหሺ௜,௝ሻ∈ௐሺ௫,௬ሻ௄௞ୀଵ , (5)

S serves as the smoothness term which is defined as

Figure 7. Processing pipeline of the proposed denoising algorithm: (1) Construct the 3D focus image
stacks (3DFIS); (2) Estimate the disparity map; (3) Process the 3DFIS using the MVCNN model; (4) Image
fusion from the denoised 3DFIS and disparity maps; (5) Occlusion detection and handling.

4.1. 3D Focus Image Stacks and Disparity Estimation

In our previous work [32], we have introduced the notion of 3D focus image stacks (3DFIS) and
utilized 3DFIS as an efficient way of searching for similar patches. The proposed denoising algorithm
also takes advantage of the merits of 3DFIS for the purpose of aligning corresponding pixels. Instead of
searching for similar patches as we did in the previous work, we directly use the 3DFIS for denoising
purpose. Assume that all the images have been rectified so that their epipolar lines are parallel to
horizontal lines. This turns the complex homography between different views into pure translation,
which significantly simplifies the problem.

For a number of candidate disparity values d = 1, . . . , dmax, we create a series of image stacks Fd

by translating the views and stacking them into 3D matrices as:

Fd(x, y, k) = Is,t(x− s·d, y− t·d), d = 1, . . . , dmax (3)

where k is an integer that has a unique mapping to each of the camera coordinates (s,t). From the
perspective of stereo vision, for a pixel (x,y) in the target image, its corresponding image coordinate in
other views will be of a distance away from (x,y) coordinates. Such distance is proportional to the
disparity d of pixel (x,y). For example, corresponding points of pixel (x,y) in adjacent views are d
pixels away from (x,y) in either horizontal or vertical directions, depending on the relative location of
the view with respect to the target view. However, if a view is not adjacent to the target view, but is
separated by a number of other views (which can be found using the camera coordinates (s,t)), then
the corresponding points of (x,y) will be s·d and t·d away instead.

Therefore, if a pixel (x,y) in the target view has a true disparity d, its corresponding points in other
views, which have distances of s·d and t·d in the x and y directions, will be shifted to the same position
in the image stack Fd. In other words, all pixels with disparity value d will be well-aligned (which is
called in-focus) in Fd. Since we have trained the MVCNN such that the network is able to denoise
pixels that are well-aligned. Applying MVCNN model to each Fd will remove the noise in regions
that have true disparity d. By going through all the 3DFIS Fd (d = 1, . . . , dmax) using the denoising

Sensors 2019, 19, 2597 11 of 24

network, we obtain a series of image stacks with different in-focus regions being denoised, which will
be elaborated in the next subsection.

The disparity map, which is the key to fuse the denoised 3DFIS into the final denoised image,
can be estimated from the 3DFIS using photo-consistency between different views. Previously, we
have proposed a robust disparity map estimation algorithm [32] that achieves a satisfactory error
rate under noise interference. In this work, we use the same algorithm with a few modifications to
obtain the disparity map. In specific, after obtaining the cost function C(x,y,d) for each pixel (x,y) and
for each candidate disparity d, we further append a smoothness term S, which computes the sum
of absolute differences of disparity values of adjacent pixels. The goal is to minimize the following
objective function

E =
∑

(x, y)
C + λ

∑
(x,y)

∑
(i, j)∈N4(x,y)

S(i, j), (4)

where C is the cost function we defined previously in [32] as

C(x, y, d) =
1

npK

∑K

k=1

∑
(i, j)∈W(x,y)

∣∣∣Fd(i, j, k) − I0,0(i, j)
∣∣∣, (5)

S serves as the smoothness term which is defined as

S(i, j)
∣∣∣(i, j)∈N4(x,y) =

∣∣∣d(i, j) − d(x, y)
∣∣∣, (6)

and λ is a weighting coefficient that balances the cost function and smoothness term. In Equation (5),
W(x,y) is the patch centered at (x,y), np is the number of pixels in each patch, and K is the number
of views. In Equation (6), N4(x,y) is the four-neighborhood of pixel (x,y), and d(x,y) is the estimated
disparity value for (x,y). The final disparity map can be estimated by optimizing Equation (4) using
graph cut [51].

Note that what we have described so far in this subsection is the only part that has been introduced
in our previous work [32]. The rest of the paper proposes a novel denoising method using the 3DFIS,
disparity map and the trained MVCNN model.

4.2. Multi-View Denoising Using MVCNN

The denoising process involves processing 3DFIS Fd by feeding Fd into the proposed MVCNN
model for each disparity d = 1, . . . , dmax. According to our analysis in Section 3, the MVCNN model
will generate a number of 3D matrices Rd consisting of pure noise corresponding to each Fd. Then the
matrix of clean images F̂d can be acquired by subtracting the noise matrix Rd from the input image
stack Fd, i.e., F̂d = Fd

−Rd. If all the images in Fd are well-aligned, then F̂d contains the images that
have been denoised.

However, in multi-view scenarios, due to parallax, only parts of the input images that are in-focus
are actually well-aligned in corresponding Fd, so that the MVCNN model is only able to correctly
estimate the noise in these regions. For out-of-focus regions, the noise estimation may not be accurate
due to the violation of the alignment rule of MVCNN. Figure 8 shows an example of denoising
one of the 3DFIS Fd (d = 5) using MVCNN. The background of the scene has the true disparity 5
and thus will be well-aligned in the input matrix F5. As can be seen from Figure 8d, the network
successfully removes the noise in those background regions but fails to correctly estimate the noise
in other out-of-focus regions, leaving undesirable blurring artifacts. This issue can be overcome by
selecting the appropriate in-focus regions from each 3DFIS F̂d using the disparity map in a plane
sweeping [38] manner, as discussed in the next paragraph.

After initial denoising using MVCNN, we obtain several denoised 3DFIS F̂d (d = 1, . . . , dmax) with
in-focus regions recovered from noise corruption. The next step is to extract these in-focus regions
and fuse them into the denoised image. Intuitively, for each pixel (x,y), its disparity value d(x,y)
can be found in the disparity map, and we can get its denoised pixel value from the image stack

Sensors 2019, 19, 2597 12 of 24

F̂d(x, y). The denoised image can be acquired by performing this operation on every pixel. However,
such a pixel-wise processing of in-focus regions tends to cause seams at disparity discontinuities,
especially when the disparity value is not accurate. Although we have substantially improved the
disparity accuracy in noisy conditions [32], estimation error in specific regions like flat areas and object
boundaries are still inevitable. In response, we decide to adopt a patch-wise selection and aggregation
strategy. For each pixel, we extract the patch centered at it from the denoised 3DFIS F̂d and assign
it to the corresponding position in the denoised image. Each pixel in the denoised image will then
be covered by multiple patches, and we can take a weighted average of these patches to get the final
pixel value. The weight depends on the difference between each patch P and the reference patch

Pref as w = e−(P − Pre f)
2
. The weighted averaging scheme helps mitigate the impact of inaccuracy of

disparity estimation.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 23

𝑆ሺ𝑖, 𝑗ሻ|ሺ௜,௝ሻ∈ேరሺ௫,௬ሻ = |𝑑ሺ𝑖, 𝑗ሻ − 𝑑ሺ𝑥, 𝑦ሻ|, (6)

and λ is a weighting coefficient that balances the cost function and smoothness term. In Equation (5),
W(x,y) is the patch centered at (x,y), np is the number of pixels in each patch, and K is the number of
views. In Equation (6), N4(x,y) is the four-neighborhood of pixel (x,y), and d(x,y) is the estimated
disparity value for (x,y). The final disparity map can be estimated by optimizing Equation (4) using
graph cut [51].

Note that what we have described so far in this subsection is the only part that has been
introduced in our previous work [32]. The rest of the paper proposes a novel denoising method using
the 3DFIS, disparity map and the trained MVCNN model.

4.2. Multi-View Denoising Using MVCNN

The denoising process involves processing 3DFIS Fd by feeding Fd into the proposed MVCNN
model for each disparity d = 1, …, dmax. According to our analysis in Section 3, the MVCNN model
will generate a number of 3D matrices Rd consisting of pure noise corresponding to each Fd. Then the
matrix of clean images 𝐹෠ௗ can be acquired by subtracting the noise matrix Rd from the input image
stack Fd, i.e., 𝐹෠ௗ = 𝐹ௗ − 𝑅ௗ. If all the images in Fd are well-aligned, then 𝐹෠ௗ contains the images that
have been denoised.

However, in multi-view scenarios, due to parallax, only parts of the input images that are in-
focus are actually well-aligned in corresponding Fd, so that the MVCNN model is only able to
correctly estimate the noise in these regions. For out-of-focus regions, the noise estimation may not
be accurate due to the violation of the alignment rule of MVCNN. Figure 8 shows an example of
denoising one of the 3DFIS Fd (d = 5) using MVCNN. The background of the scene has the true
disparity 5 and thus will be well-aligned in the input matrix F5. As can be seen from Figure 8d, the
network successfully removes the noise in those background regions but fails to correctly estimate
the noise in other out-of-focus regions, leaving undesirable blurring artifacts. This issue can be
overcome by selecting the appropriate in-focus regions from each 3DFIS 𝐹෠ௗ using the disparity map
in a plane sweeping [38] manner, as discussed in the next paragraph.

(a) (b) (c) (d)

Figure 8. Denoising 3DFIS F5 using MVCNN. The background has the correct disparity d = 5. (a)
Target noisy image; (b) true disparity map; (c) estimated noise components; (d) denoised target image
in F5.

After initial denoising using MVCNN, we obtain several denoised 3DFIS 𝐹෠ௗ (d = 1, …, dmax) with
in-focus regions recovered from noise corruption. The next step is to extract these in-focus regions
and fuse them into the denoised image. Intuitively, for each pixel (x,y), its disparity value d(x,y) can
be found in the disparity map, and we can get its denoised pixel value from the image stack 𝐹෠ௗሺ𝑥, 𝑦ሻ.
The denoised image can be acquired by performing this operation on every pixel. However, such a
pixel-wise processing of in-focus regions tends to cause seams at disparity discontinuities, especially
when the disparity value is not accurate. Although we have substantially improved the disparity
accuracy in noisy conditions [32], estimation error in specific regions like flat areas and object
boundaries are still inevitable. In response, we decide to adopt a patch-wise selection and aggregation
strategy. For each pixel, we extract the patch centered at it from the denoised 3DFIS 𝐹෠ௗ and assign it
to the corresponding position in the denoised image. Each pixel in the denoised image will then be
covered by multiple patches, and we can take a weighted average of these patches to get the final
pixel value. The weight depends on the difference between each patch P and the reference patch Pref

Figure 8. Denoising 3DFIS F5 using MVCNN. The background has the correct disparity d = 5. (a) Target
noisy image; (b) true disparity map; (c) estimated noise components; (d) denoised target image in F5.

Theoretically, all the views in the camera array can be denoised, as our MVCNN model generates
the denoised image stack that consists of multiple shifted views. In this paper, without loss of generality,
we will be focusing on denoising the target view for simplicity. The overview of the entire denoising
algorithm is listed in Algorithm 1.

Algorithm 1 Multi-view Image Denoising

Input: Multi-view images Is,t, maximum candidate disparity value dmax, pre-trained MVCNN, target image
number k.
Output: Denoised target image Iest.
Initialize: Denoised target image Iest = zeros(size(Is,t)), weight matrix W = zeros(size(Is,t)).
1: for d = 1:dmax

2: Construct 3D focus image stacks Fd using Equation (3);
3: Obtain denoised image stacks F̂d by applying MVCNN to Fd;
4: end
5: Estimate the disparity map for the target image using Equations (4)-(6);
6: for each pixel (x, y)
7: Find its disparity d(x, y);
8: Obtain a patch P centered at (x, y) in the kth image of image stack F̂d(x, y), and compute

its weight w.r.t. the reference patch Pref as w = e−(P − Pre f)
2
;

9: Update Iest = Iest + w·P;
10: Update W = W + w;
11: end
12: Compute the denoised target image Iest = Iest/W;
13: Detect and handle occlusion using Algorithm 2.

4.3. Occlusion Detection and Handling

Due to occlusion, the denoised image acquired from the above procedures still has blurring
artifacts near object boundaries where disparity discontinuity occurs. This is caused by the inconsistent
image contents in such regions as the surface points in the scene are only visible to part of the views.

Sensors 2019, 19, 2597 13 of 24

In these regions, it is not possible to find a 3DFIS in which the pixels are well-aligned, and thus the
MVCNN tends to produce a blurry effect that is similar to the averaging different values.

To handle the occlusion problem, we introduce a novel yet simple approach that estimates the
occlusion regions using disparity values. Figure 9a illustrates the theory behind the detection algorithm.
Suppose an image contains the background (blue) with disparity d1 and foreground object (red) with
disparity d2, where d2 > d1. When we construct the 3DFIS, all pixels in the image are shifted by the
same amount, e.g., by s·d1 (or t·d1 if shifting in the vertical direction), such that the background can be
well-aligned in the corresponding image stack Fd2. However, the foreground object should actually
be shifted by s·d2 if we want to align them. Consequently, the difference, as indicated by the dark
blue region in Figure 9a, is the occluded region that will appear as blurring artifacts after preliminary
denoising. The occlusion amount can be computed as s·(d2 – d1) (or t·(d2 – d1) for vertical translations).

Sensors 2019, 19, x FOR PEER REVIEW 13 of 23

where s1 and s2 are horizontal coordinates of the leftmost and rightmost cameras in the multi-view
camera array. The vertical coordinates t1 and t2 of the top and bottom cameras can also be used and
should lead to the same result for square camera arrays. In other words, the bigger the difference, the
more dilation it requires as more areas will be occluded. In the case of non-square camera arrays, the
larger one of s2 – s1 and t2 – t1 will be used in Equation (7). Next, we perform an AND operation of the
current object regions and the dilated regions of previous disparities to get the occluded regions of
the current objects. This procedure continues until we reach the minimum disparity d = 1. Figure 10
shows the incremental occluded regions estimated using Algorithm 2 for a sample disparity map.
We can see that this algorithm efficiently captures the location and coverage of each occlusion. For
pixels in the occluded regions, we simply denoise them using single image denoising methods, such
as DnCNN. The effects of occlusion handling on removing the blurring artifacts are shown in Figure 9b,c.

(a) (b) (c)

Figure 9. (a) Illustration of occlusion detection; (b) denoised image before occlusion handling; (c)
denoised image after occlusion handling.

(a) (b) (c)

(d) (e) (f)

Figure 10. Occlusion detection incremental results: (a) iteration 4; (b) iteration 5; (c) iteration 7; (d)
iteration 9; (e) iteration 10; (f) iteration 11.

In implementation, we empirically found that the MVCNN model can actually handle small
amount of misalignment (e.g., 1–2 pixels) and still produce excellent denoising result that is better
than its single image counterpart. Therefore, we further apply morphological transformations using
erosion and dilation to eliminate small occlusions. Given the occlusion map we get from Algorithm
2, an image erosion, followed by an image dilation with the same kernel size, is performed in sequence.

Figure 9. (a) Illustration of occlusion detection; (b) denoised image before occlusion handling;
(c) denoised image after occlusion handling.

In Algorithm 2, we propose an occlusion detection algorithm using this occlusion amount. Starting
from the second closest objects with dcurr = dmax − 1 where dcurr is the current disparity value, the region
of these objects is selected, and a dilation operation is performed on regions of previous disparities
with dprev > dcurr. The kernel size of dilation is defined as twice the occlusion amount since we want to
dilate symmetrically on both directions for each occluded pixel. Since we assume the target view is
located on camera coordinate (0, 0), the kernel size of dilation SE can be simply defined as

SE =
(
dprev − dcurr

)
·(s2 − s1) + 1, (7)

where s1 and s2 are horizontal coordinates of the leftmost and rightmost cameras in the multi-view
camera array. The vertical coordinates t1 and t2 of the top and bottom cameras can also be used and
should lead to the same result for square camera arrays. In other words, the bigger the difference,
the more dilation it requires as more areas will be occluded. In the case of non-square camera arrays,
the larger one of s2 – s1 and t2 – t1 will be used in Equation (7). Next, we perform an AND operation of
the current object regions and the dilated regions of previous disparities to get the occluded regions of
the current objects. This procedure continues until we reach the minimum disparity d = 1. Figure 10
shows the incremental occluded regions estimated using Algorithm 2 for a sample disparity map.
We can see that this algorithm efficiently captures the location and coverage of each occlusion. For pixels
in the occluded regions, we simply denoise them using single image denoising methods, such as
DnCNN. The effects of occlusion handling on removing the blurring artifacts are shown in Figure 9b,c.

Sensors 2019, 19, 2597 14 of 24

Sensors 2019, 19, x FOR PEER REVIEW 13 of 23

where s1 and s2 are horizontal coordinates of the leftmost and rightmost cameras in the multi-view
camera array. The vertical coordinates t1 and t2 of the top and bottom cameras can also be used and
should lead to the same result for square camera arrays. In other words, the bigger the difference, the
more dilation it requires as more areas will be occluded. In the case of non-square camera arrays, the
larger one of s2 – s1 and t2 – t1 will be used in Equation (7). Next, we perform an AND operation of the
current object regions and the dilated regions of previous disparities to get the occluded regions of
the current objects. This procedure continues until we reach the minimum disparity d = 1. Figure 10
shows the incremental occluded regions estimated using Algorithm 2 for a sample disparity map.
We can see that this algorithm efficiently captures the location and coverage of each occlusion. For
pixels in the occluded regions, we simply denoise them using single image denoising methods, such
as DnCNN. The effects of occlusion handling on removing the blurring artifacts are shown in Figure 9b,c.

(a) (b) (c)

Figure 9. (a) Illustration of occlusion detection; (b) denoised image before occlusion handling; (c)
denoised image after occlusion handling.

(a) (b) (c)

(d) (e) (f)

Figure 10. Occlusion detection incremental results: (a) iteration 4; (b) iteration 5; (c) iteration 7; (d)
iteration 9; (e) iteration 10; (f) iteration 11.

In implementation, we empirically found that the MVCNN model can actually handle small
amount of misalignment (e.g., 1–2 pixels) and still produce excellent denoising result that is better
than its single image counterpart. Therefore, we further apply morphological transformations using
erosion and dilation to eliminate small occlusions. Given the occlusion map we get from Algorithm
2, an image erosion, followed by an image dilation with the same kernel size, is performed in sequence.

Figure 10. Occlusion detection incremental results: (a) iteration 4; (b) iteration 5; (c) iteration 7; (d)
iteration 9; (e) iteration 10; (f) iteration 11.

In implementation, we empirically found that the MVCNN model can actually handle small
amount of misalignment (e.g., 1–2 pixels) and still produce excellent denoising result that is better
than its single image counterpart. Therefore, we further apply morphological transformations using
erosion and dilation to eliminate small occlusions. Given the occlusion map we get from Algorithm 2,
an image erosion, followed by an image dilation with the same kernel size, is performed in sequence.

Meanwhile, when the images are seriously corrupted by noise, the disparity estimation can be
much less accurate, resulting in an overwhelming number of false positives in occlusion detection.
Moreover, single image denoising, including state-of-the-art methods like DnCNN, tends to create
significantly blurry artifacts at high noise levels. These two factors combine to make the occlusion
handling unreliable when the noise is high. In such cases, we determine to refine the occlusion map
using edge detection. When the noise level σ ≥ 30, the edge map of the image was estimated using the
Canny edge detector, such that only significantly noticeable edges are detected. Both the occlusion
map and the edge map are dilated to increase their compatibility and robustness. Finally, we perform
an AND operation on the edge map and occlusion map to eliminate the false positives. This process
helps suppress blurry artifacts by strictly limiting the regions of single image denoising replacement
only to those with a large number of misalignments.

Algorithm 2 Occlusion Detection

Input: Disparity map D.
Output: Occlusion map O.
Initialize: O = zeros(size(D)).
1: for dcur = (dmax – 1):−1:1
2: Acur = {(x, y): D(x, y) = dcur};
3: for dprev > dcur

4: SE = (dprev – dcur)(s2 – s1) + 1;
5: Aprev = {(x, y): D(x, y) = dprev};
6: Adilate = imdilate(Aprev, SE);
7: O = (Acur & Adilate) | O;
8: end
9: end

Sensors 2019, 19, 2597 15 of 24

5. Experimental Results

5.1. Parameter Settings for Network Training

For the purpose of training the network, we used a dataset consisting of 68 natural images from
Berkeley segmentation dataset [52]. Since our input contains 9 images, it is equivalent to 612 images for
training in single image denoising. Adding more images does not empirically improve the denoising
performance significantly, but tremendously increases the training time and computer memories.
Patches of size 40 × 40 are extracted from each image with a stride of 10 pixels. Each patch is then
duplicated 9 times and stacked into a 3D matrix with AWGN of noise level σ= 15, 25, 35, 50 being added.
Each image in the dataset has a dimension of 481 × 321, thus creating a total of 1536 × 612 patches for
network training.

The noisy 3D matrices, as well as their ground truth, are fed into the network to learn the weights
of convolution layers. The loss function l defined in Equation (1) is optimized using the Adaptive
Moment Estimation (Adam) algorithm [53]. The mini-batch size is 128, and we train the MVCNN
model for 50 epochs. The learning rate decreases from 10−3 to 10−4 as the training errors drop along
the training process. The MVCNN model is trained in Matlab R2018a environment with MatConvNet
package [54] on a PC with Intel® CoreTM i7-6700K CPU 4GHz and Nvidia GeForce® GTX 980 Ti GPU.
The whole training process takes around 6–7 h for grayscale images, and 12–14 h for color images
on GPU.

The datasets that we use to evaluate the denoising algorithm consist of seven multi-view image sets
from different online datasets, as shown in Figure 11. The “Tsukuba” dataset is from the Middlebury
multi-view stereo dataset [55]. The “Knights” and “Tarot” datasets are from the Stanford light field
archive [56]. The “Bicycle”, “Dishes”, “Medieval”, and “Sideboard” datasets are from the 4D light field
benchmark [57]. For all image datasets, we take a subset of nine images (3 × 3) for our experiment,
and all the images except “Tsukuba” are resized to 256 × 256 for the purpose of simplicity and efficiency.
Sensors 2019, 19, x FOR PEER REVIEW 15 of 23

(a) (b) (c) (d) (e) (f) (g)

Figure 11. Testing image datasets: (a) Bicycle; (b) Dishes; (c) Knights; (d) Medieval; (e) Sideboard; (f)
Tarot; (g) Tsukuba.

5.2. Blind Denoising

In most image denoising literature, including our proposed MVCNN model, it is assumed that
the noise level is already known so that the algorithm can be applied using a specific noise variance
σ2. This requires that the noise level should be pre-estimated if images of unknown noise are given,
which makes the denoising performance affected by the accuracy of noise estimation. In the case of
Gaussian noise of unknown variance, instead of estimating the noise level, we train the network using
images with a wide range of noise levels. Specifically, different levels of noise (e.g., σ ∈ [0,55]) are
added to different layers of the input 3D matrix, with σ remains the same within each layer. The CNN
model trained in this way is capable of handling images with various noise levels. With this blind
denoising scheme, we no longer need to train several networks with respect to different noise levels.
As long as the noise level of test images is within the range of [0,55], the proposed denoising model
can still estimate the clean image without knowing the noise variance. We refer to this blind denoising
model as MVCNN-B.

5.3. Color Image Denoising

The size of input color images is set to W × H × 3, where 3 denotes the RGB channels. The network
described in Section 3 is modified such that the input of the network has a dimension of W × H × 3n,
where n is the number of views. Specifically, the convolution filters in the first layers now have the
dimension of 3 × 3 × 3n, and the number of filters in the last layer is 3n, so that the output has the
same dimension of input. The training parameters remain the same as grayscale image denoising.
Likewise, the 3DFIS also has shifted images of all RGB channels, which makes each stack three times
thicker. All other procedures are the same as grayscale image denoising. We refer to the color image
denoising model as MVCNN-C.

5.4. Evaluation of Denoising Performance

We compare our proposed MVCNN and MVCNN-B methods with existing state-of-the-art
denoising algorithms, including both single image and multi-view denoising. In comparison with
single image denoising, we experimented on BM3D [6], WNNM [8], and DnCNN [28]. The first two
are representative methods that explore the non-local self-similarity image prior, while the last one
is one of the more popular algorithms in discriminative learning. For a multi-view denoising
comparison, we employed three algorithms that demonstrate decent denoising performance,
including Miyata’s fast denoising algorithm [37], VBM4D [58] and our previous work [32] (Zhou et
al.). VBM4D is an extension of BM3D that handles volumetric data using 3D or 4D input images or
videos. When applied to our multi-view scenario, the multiple views can be stacked into a 3D matrix
and fed into the algorithm. Our previous work has successfully denoised image by exploring non-
local self-similarity, both within the target view and across other views, and exhibited comparable or
even better performance than VBM4D.

For color image denoising, since some of the denoising algorithms do not support color images,
we compare the proposed MVCNN-C method with CBM3D [59], CDnCNN [28], and CVBM3D [59]
algorithms. CBM3D and CDnCNN are just color versions of the BM3D and DnCNN methods.
CVBM3D is an RGB video denoising algorithm that can also be applied to multi-view images by
treating the images as a sequence of frames.

Figure 11. Testing image datasets: (a) Bicycle; (b) Dishes; (c) Knights; (d) Medieval; (e) Sideboard;
(f) Tarot; (g) Tsukuba.

5.2. Blind Denoising

In most image denoising literature, including our proposed MVCNN model, it is assumed that
the noise level is already known so that the algorithm can be applied using a specific noise variance σ2.
This requires that the noise level should be pre-estimated if images of unknown noise are given, which
makes the denoising performance affected by the accuracy of noise estimation. In the case of Gaussian
noise of unknown variance, instead of estimating the noise level, we train the network using images
with a wide range of noise levels. Specifically, different levels of noise (e.g., σ ∈ [0,55]) are added to
different layers of the input 3D matrix, with σ remains the same within each layer. The CNN model
trained in this way is capable of handling images with various noise levels. With this blind denoising
scheme, we no longer need to train several networks with respect to different noise levels. As long
as the noise level of test images is within the range of [0,55], the proposed denoising model can still
estimate the clean image without knowing the noise variance. We refer to this blind denoising model
as MVCNN-B.

Sensors 2019, 19, 2597 16 of 24

5.3. Color Image Denoising

The size of input color images is set to W ×H × 3, where 3 denotes the RGB channels. The network
described in Section 3 is modified such that the input of the network has a dimension of W × H × 3n,
where n is the number of views. Specifically, the convolution filters in the first layers now have the
dimension of 3 × 3 × 3n, and the number of filters in the last layer is 3n, so that the output has the same
dimension of input. The training parameters remain the same as grayscale image denoising. Likewise,
the 3DFIS also has shifted images of all RGB channels, which makes each stack three times thicker.
All other procedures are the same as grayscale image denoising. We refer to the color image denoising
model as MVCNN-C.

5.4. Evaluation of Denoising Performance

We compare our proposed MVCNN and MVCNN-B methods with existing state-of-the-art
denoising algorithms, including both single image and multi-view denoising. In comparison with
single image denoising, we experimented on BM3D [6], WNNM [8], and DnCNN [28]. The first
two are representative methods that explore the non-local self-similarity image prior, while the last
one is one of the more popular algorithms in discriminative learning. For a multi-view denoising
comparison, we employed three algorithms that demonstrate decent denoising performance, including
Miyata’s fast denoising algorithm [37], VBM4D [58] and our previous work [32] (Zhou et al.). VBM4D
is an extension of BM3D that handles volumetric data using 3D or 4D input images or videos. When
applied to our multi-view scenario, the multiple views can be stacked into a 3D matrix and fed
into the algorithm. Our previous work has successfully denoised image by exploring non-local
self-similarity, both within the target view and across other views, and exhibited comparable or even
better performance than VBM4D.

For color image denoising, since some of the denoising algorithms do not support color images,
we compare the proposed MVCNN-C method with CBM3D [59], CDnCNN [28], and CVBM3D [59]
algorithms. CBM3D and CDnCNN are just color versions of the BM3D and DnCNN methods. CVBM3D
is an RGB video denoising algorithm that can also be applied to multi-view images by treating the
images as a sequence of frames.

Table 1 shows the PSNR values of different methods on various datasets for grayscale image
denoising. As can be observed, the three single image denoising methods have relatively similar
denoising performance, with WNNM and DnCNN outperforming BM3D by a little margin. On the
other hand, benefiting from inter-view image redundancies, multi-view denoising algorithms exhibit
considerably enhanced performance for most of the datasets. Our previous work has been consistently
outperforming single image denoising by around 1–2 dB across all noise levels. The VBM4D method
also shows excellent denoising performance when the disparity values between different views are small
but falls behind if adjacent views have a large disparity, such as the “Tsukuba” dataset. The method
of Miyata et al. exhibits satisfactory denoising performance under low-level noise, but the quality of
the denoised image quickly deteriorates as the noise level increases due to its oversimplified nature.
Nevertheless, the proposed MVCNN and MVCNN-B excel these competing multi-view denoising
algorithms by a margin of around 1–2 dB, especially when the noise level is high. The fixed noise model
MVCNN slightly outperforms the blind model MVCNN-B, which is expected since the fixed noise
model is able to explore the noise characteristics when all training samples have the corresponding
noise level.

Sensors 2019, 19, 2597 17 of 24

Table 1. Grayscale image denoising performance (PSNR—dB) comparison of different methods on
various datasets with noise level 15, 25, 35, 50. (bold—best result, underline—second best result).

BM3D
[6]

WNNM
[8]

DnCNN
[28]

Miyata
et al. [37]

VBM4D
[58]

Zhou
et al. [32] MVCNN MVCNN-B

σ = 15

Bicycle 29.44 29.72 30.21 29.90 31.56 31.32 32.10 31.33
Dishes 31.49 32.34 32.56 31.03 33.65 33.54 35.00 34.78

Knights 30.97 31.80 31.91 30.73 33.51 33.00 34.15 33.72
Medieval 32.17 32.55 32.64 31.22 33.92 34.26 35.92 35.07
Sideboard 29.32 30.61 29.70 29.91 31.48 31.50 32.70 32.20

Tarot 28.20 28.71 29.25 27.96 30.27 30.58 30.32 29.96
Tsukuba 32.77 33.14 33.34 30.35 32.64 34.34 35.48 34.96

σ = 25

Bicycle 26.72 26.92 27.51 26.60 28.93 28.60 30.15 29.32
Dishes 28.55 29.29 29.73 26.94 30.75 30.46 32.89 32.19

Knights 27.71 28.56 28.59 26.99 30.42 29.97 32.02 31.25
Medieval 30.19 30.58 30.44 27.20 31.73 31.37 33.31 32.70
Sideboard 26.31 27.43 26.60 26.47 28.62 28.77 30.63 29.83

Tarot 24.87 25.30 25.99 25.16 27.43 27.93 28.15 28.01
Tsukuba 29.65 30.28 30.09 26.65 29.66 30.89 32.31 32.04

σ = 35

Bicycle 24.93 25.24 25.69 24.15 27.24 26.93 28.68 27.88
Dishes 26.36 27.35 27.47 24.31 28.66 28.32 31.00 30.28

Knights 25.51 26.53 26.30 24.42 28.23 27.75 29.96 29.35
Medieval 28.77 29.18 28.90 24.63 30.23 29.36 31.16 31.07
Sideboard 24.32 25.25 24.63 23.94 26.49 26.95 28.95 28.17

Tarot 22.74 23.33 23.81 23.00 25.36 26.03 26.99 26.60
Tsukuba 27.56 28.48 27.69 24.20 27.54 28.69 29.32 29.51

σ = 50

Bicycle 22.86 23.44 23.84 21.34 25.39 24.96 26.28 26.26
Dishes 24.18 25.37 25.41 21.50 26.37 26.05 27.90 27.89

Knights 23.14 24.41 24.08 21.61 25.81 25.25 26.92 26.94
Medieval 26.57 27.68 26.43 21.79 28.31 27.30 28.93 29.00
Sideboard 22.09 23.12 22.70 20.94 24.03 24.89 26.03 26.25

Tarot 20.53 21.42 21.83 20.34 22.96 23.87 25.03 24.83
Tsukuba 25.07 26.66 25.01 21.62 25.14 25.95 26.83 26.69

The visual results of different methods are illustrated in Figures 12 and 13. Two regions are zoomed
in so that the comparison of details can be closely observed. From the visual comparison, we can see
that single image denoising algorithms, including BM3D, WNNM, and DnCNN, tend to over-smooth
find details such as edges and textures. VBM4D exhibits severe ghost artifacts if the disparity is large
between different views as shown in Figure 13e. Our previous work is able to preserve those details,
but at the cost of keeping some of the noise in the estimated image. This results from the principle
of the algorithm that is heavily dependent on the number of views, and the issue can be mitigated
by including more views into the denoising. In comparison, the proposed MVCNN and MVCNN-B
demonstrate significantly more consistent and reliable denoising performance with preservation of
fine details. The fixed noise model and blind model do not have an observable difference in terms of
visual appearance.

Sensors 2019, 19, 2597 18 of 24

Sensors 2019, 19, x FOR PEER REVIEW 17 of 23

The visual results of different methods are illustrated in Figures 12 and 13. Two regions are
zoomed in so that the comparison of details can be closely observed. From the visual comparison, we
can see that single image denoising algorithms, including BM3D, WNNM, and DnCNN, tend to over-
smooth find details such as edges and textures. VBM4D exhibits severe ghost artifacts if the disparity
is large between different views as shown in Figure 13e. Our previous work is able to preserve those
details, but at the cost of keeping some of the noise in the estimated image. This results from the
principle of the algorithm that is heavily dependent on the number of views, and the issue can be
mitigated by including more views into the denoising. In comparison, the proposed MVCNN and
MVCNN-B demonstrate significantly more consistent and reliable denoising performance with
preservation of fine details. The fixed noise model and blind model do not have an observable
difference in terms of visual appearance.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Denoising performance of different methods on “Dishes” dataset with noise level σ = 25.
(a) Noisy image; (b) BM3D [6]; (c) WNNM [8]; (d) DnCNN [28]; (e) VBM4D [58]; (f) Zhou et al. [32];
(g) MVCNN; (h) MVCNN-B.

(a) (b) (c) (d)

Figure 12. Denoising performance of different methods on “Dishes” dataset with noise level σ = 25.
(a) Noisy image; (b) BM3D [6]; (c) WNNM [8]; (d) DnCNN [28]; (e) VBM4D [58]; (f) Zhou et al. [32];
(g) MVCNN; (h) MVCNN-B.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 23

The visual results of different methods are illustrated in Figures 12 and 13. Two regions are
zoomed in so that the comparison of details can be closely observed. From the visual comparison, we
can see that single image denoising algorithms, including BM3D, WNNM, and DnCNN, tend to over-
smooth find details such as edges and textures. VBM4D exhibits severe ghost artifacts if the disparity
is large between different views as shown in Figure 13e. Our previous work is able to preserve those
details, but at the cost of keeping some of the noise in the estimated image. This results from the
principle of the algorithm that is heavily dependent on the number of views, and the issue can be
mitigated by including more views into the denoising. In comparison, the proposed MVCNN and
MVCNN-B demonstrate significantly more consistent and reliable denoising performance with
preservation of fine details. The fixed noise model and blind model do not have an observable
difference in terms of visual appearance.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Denoising performance of different methods on “Dishes” dataset with noise level σ = 25.
(a) Noisy image; (b) BM3D [6]; (c) WNNM [8]; (d) DnCNN [28]; (e) VBM4D [58]; (f) Zhou et al. [32];
(g) MVCNN; (h) MVCNN-B.

(a) (b) (c) (d)

Sensors 2019, 19, x FOR PEER REVIEW 18 of 23

(e) (f) (g) (h)

Figure 13. Denoising performance of different methods on “Tsukuba” dataset with noise level σ = 25.
(a) Noisy image; (b) BM3D [6]; (c) WNNM [8]; (d) DnCNN [28]; (e) VBM4D [58]; (f) Zhou et al. [32];
(g) MVCNN; (h) MVCNN-B.

Table 2 shows the color image denoising performance of different methods when the noise level
is 25. Similar to grayscale image denoising, our proposed network significantly outperforms the two
comparing single image denoising algorithms (CBM3D, CDnCNN), and exhibits a competitive
performance with CVBM3D on most datasets with an average PSNR lead of 0.41 dB. Note that
although CVBM3D obtains slightly better PSNR on some of the datasets, it suffers from the same
problem of large disparities (e.g., the “Tsukuba” dataset) as its grayscale version, VBM4D, while
MVCNN-C demonstrates a more consistent denoising performance so that it can be applied to more
general situations.

Table 2. Color image denoising performance (PSNR—dB) comparison of different methods on
various datasets with noise level 25. (bold—best result, underline—second best result).

 CBM3D [59] CDnCNN [28] CVBM3D [59] MVCNN-C
Bicycle 28.26 29.23 30.45 30.51
Dishes 30.73 31.89 33.16 33.74

Knights 29.96 30.89 32.74 32.40
Medieval 31.01 31.45 33.41 33.26
Sideboard 27.69 28.63 29.73 30.82

Tarot 26.87 28.15 28.66 28.95
Tsukuba 31.13 31.64 31.40 32.68
Average 29.38 30.27 31.36 31.77

Figures 14 and 15 illustrate the visual quality of different methods on color images. As we can
see, both CBM3D and CDnCNN tend to over-smooth the image structures, making them visually
unrecognizable. In comparison, the multi-view methods, CVBM3D and MVCNN-C, present great
detail preservation and superior denoising performance. In particular, when the ground truth image
contains noise-like textures, such as the “Bicycle” dataset (Figure 14), our proposed MVCNN-C is still
able to separate the noise from the texture without creating blurring artifacts, while the other three
comparing methods failed to do so.

5.5. Run Time

Given multi-view images with a size of W × H, the complexity of the proposed denoising
algorithm using trained MVCNN is O(W·H·K·M·j), where K is the total number of views, M is the
number of layers in the network, and j is the number of feature maps in each layer. The occlusion
detection and patch aggregation processes are negligible compared to the convolution computation.
In comparison, our previous approach [32] is a patch-based denoising algorithm with the complexity
of O(W·H·K·n·r2·R2) for the patch matching procedure and O(W·H·[(r2)2·K·n + (K·n)3]) for the SVD

Figure 13. Denoising performance of different methods on “Tsukuba” dataset with noise level σ = 25.
(a) Noisy image; (b) BM3D [6]; (c) WNNM [8]; (d) DnCNN [28]; (e) VBM4D [58]; (f) Zhou et al. [32];
(g) MVCNN; (h) MVCNN-B.

Sensors 2019, 19, 2597 19 of 24

Table 2 shows the color image denoising performance of different methods when the noise level
is 25. Similar to grayscale image denoising, our proposed network significantly outperforms the
two comparing single image denoising algorithms (CBM3D, CDnCNN), and exhibits a competitive
performance with CVBM3D on most datasets with an average PSNR lead of 0.41 dB. Note that
although CVBM3D obtains slightly better PSNR on some of the datasets, it suffers from the same
problem of large disparities (e.g., the “Tsukuba” dataset) as its grayscale version, VBM4D, while
MVCNN-C demonstrates a more consistent denoising performance so that it can be applied to more
general situations.

Table 2. Color image denoising performance (PSNR—dB) comparison of different methods on various
datasets with noise level 25. (bold—best result, underline—second best result).

CBM3D [59] CDnCNN [28] CVBM3D [59] MVCNN-C

Bicycle 28.26 29.23 30.45 30.51
Dishes 30.73 31.89 33.16 33.74

Knights 29.96 30.89 32.74 32.40
Medieval 31.01 31.45 33.41 33.26
Sideboard 27.69 28.63 29.73 30.82

Tarot 26.87 28.15 28.66 28.95
Tsukuba 31.13 31.64 31.40 32.68

Average 29.38 30.27 31.36 31.77

Figures 14 and 15 illustrate the visual quality of different methods on color images. As we can
see, both CBM3D and CDnCNN tend to over-smooth the image structures, making them visually
unrecognizable. In comparison, the multi-view methods, CVBM3D and MVCNN-C, present great
detail preservation and superior denoising performance. In particular, when the ground truth image
contains noise-like textures, such as the “Bicycle” dataset (Figure 14), our proposed MVCNN-C is still
able to separate the noise from the texture without creating blurring artifacts, while the other three
comparing methods failed to do so.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 23

operation [60], where n is the number of similar patches, r and R are side lengths of patches and
searching windows, respectively.

(a) (b) (c) (d) (e)

Figure 14. Color image denoising performance on “Bicycle” dataset with noise level σ = 25. (a) CBM3D
[59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

(a) (b) (c) (d) (e)

Figure 15. Color image denoising performance on “Medieval” dataset with noise level σ = 25. (a)
CBM3D [59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

Table 3 lists the runtime of different algorithms on various datasets (grayscale) with noise level
25. The “Tsukuba” dataset contains images with a size of 288 × 384, while images in all other datasets
are of size 256 × 256. BM3D and VBM4D are written in C/C++ and called in Matlab using the MEX
functions. The other algorithms are written in Matlab. The memory transfer time between CPU and
GPU is counted for DnCNN and our MVCNN algorithm.

Table 3. Run time (seconds) comparison of different methods on various datasets (grayscale) with
noise level 25.

 BM3D [6] WNNM [8] DnCNN [28] Miyata et al. [37] VBM4D [58] Zhou et al. [32] MVCNN
Bicycle 0.5 76.1 0.040 2.74 18.8 93.1 1.73
Dishes 0.6 76.3 0.044 2.70 18.6 99.6 1.82

Knights 0.5 75.5 0.045 2.68 17.5 94.4 2.08
Medieval 0.6 75.9 0.040 2.57 18.1 94.6 1.88
Sideboard 0.5 75.3 0.040 2.73 17.4 90.4 1.70

Tarot 0.4 78.5 0.048 3.48 17.6 94.1 1.73
Tsukuba 1.0 134.1 0.050 4.49 38.6 170.7 2.62
Average 0.58 84.53 0.044 3.06 20.94 105.27 1.94

From the table, we can observe that the DnCNN using GPU is the fastest method of all
competitors, which is understandable due to the fast inference of the convolution neural network.
Furthermore, the deep learning package MatConvNet [54] is a fully optimized library that is more
efficient than our hand-written code. When just comparing with multi-view denoising algorithms,
our proposed MVCNN is around ten times faster than VBM3D and takes much less time than our
previous work. This is also within expectation, since the proposed method does not involve the time-

Figure 14. Color image denoising performance on “Bicycle” dataset with noise level σ = 25.
(a) CBM3D [59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

5.5. Run Time

Given multi-view images with a size of W ×H, the complexity of the proposed denoising algorithm
using trained MVCNN is O(W·H·K·M·j), where K is the total number of views, M is the number of layers
in the network, and j is the number of feature maps in each layer. The occlusion detection and patch
aggregation processes are negligible compared to the convolution computation. In comparison, our
previous approach [32] is a patch-based denoising algorithm with the complexity of O(W·H·K·n·r2

·R2)
for the patch matching procedure and O(W·H·[(r2)2

·K·n + (K·n)3]) for the SVD operation [60], where n is
the number of similar patches, r and R are side lengths of patches and searching windows, respectively.

Sensors 2019, 19, 2597 20 of 24

Sensors 2019, 19, x FOR PEER REVIEW 19 of 23

operation [60], where n is the number of similar patches, r and R are side lengths of patches and
searching windows, respectively.

(a) (b) (c) (d) (e)

Figure 14. Color image denoising performance on “Bicycle” dataset with noise level σ = 25. (a) CBM3D
[59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

(a) (b) (c) (d) (e)

Figure 15. Color image denoising performance on “Medieval” dataset with noise level σ = 25. (a)
CBM3D [59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

Table 3 lists the runtime of different algorithms on various datasets (grayscale) with noise level
25. The “Tsukuba” dataset contains images with a size of 288 × 384, while images in all other datasets
are of size 256 × 256. BM3D and VBM4D are written in C/C++ and called in Matlab using the MEX
functions. The other algorithms are written in Matlab. The memory transfer time between CPU and
GPU is counted for DnCNN and our MVCNN algorithm.

Table 3. Run time (seconds) comparison of different methods on various datasets (grayscale) with
noise level 25.

 BM3D [6] WNNM [8] DnCNN [28] Miyata et al. [37] VBM4D [58] Zhou et al. [32] MVCNN
Bicycle 0.5 76.1 0.040 2.74 18.8 93.1 1.73
Dishes 0.6 76.3 0.044 2.70 18.6 99.6 1.82

Knights 0.5 75.5 0.045 2.68 17.5 94.4 2.08
Medieval 0.6 75.9 0.040 2.57 18.1 94.6 1.88
Sideboard 0.5 75.3 0.040 2.73 17.4 90.4 1.70

Tarot 0.4 78.5 0.048 3.48 17.6 94.1 1.73
Tsukuba 1.0 134.1 0.050 4.49 38.6 170.7 2.62
Average 0.58 84.53 0.044 3.06 20.94 105.27 1.94

From the table, we can observe that the DnCNN using GPU is the fastest method of all
competitors, which is understandable due to the fast inference of the convolution neural network.
Furthermore, the deep learning package MatConvNet [54] is a fully optimized library that is more
efficient than our hand-written code. When just comparing with multi-view denoising algorithms,
our proposed MVCNN is around ten times faster than VBM3D and takes much less time than our
previous work. This is also within expectation, since the proposed method does not involve the time-

Figure 15. Color image denoising performance on “Medieval” dataset with noise level σ = 25.
(a) CBM3D [59]; (b) CDnCNN [28]; (c) CVBM3D [59]; (d) MVCNN-C; (e) Ground truth.

Table 3 lists the runtime of different algorithms on various datasets (grayscale) with noise level 25.
The “Tsukuba” dataset contains images with a size of 288 × 384, while images in all other datasets
are of size 256 × 256. BM3D and VBM4D are written in C/C++ and called in Matlab using the MEX
functions. The other algorithms are written in Matlab. The memory transfer time between CPU and
GPU is counted for DnCNN and our MVCNN algorithm.

Table 3. Run time (seconds) comparison of different methods on various datasets (grayscale) with
noise level 25.

BM3D
[6]

WNNM
[8]

DnCNN
[28]

Miyata
et al. [37]

VBM4D
[58]

Zhou et al.
[32] MVCNN

Bicycle 0.5 76.1 0.040 2.74 18.8 93.1 1.73
Dishes 0.6 76.3 0.044 2.70 18.6 99.6 1.82

Knights 0.5 75.5 0.045 2.68 17.5 94.4 2.08
Medieval 0.6 75.9 0.040 2.57 18.1 94.6 1.88
Sideboard 0.5 75.3 0.040 2.73 17.4 90.4 1.70

Tarot 0.4 78.5 0.048 3.48 17.6 94.1 1.73
Tsukuba 1.0 134.1 0.050 4.49 38.6 170.7 2.62

Average 0.58 84.53 0.044 3.06 20.94 105.27 1.94

From the table, we can observe that the DnCNN using GPU is the fastest method of all competitors,
which is understandable due to the fast inference of the convolution neural network. Furthermore,
the deep learning package MatConvNet [54] is a fully optimized library that is more efficient than
our hand-written code. When just comparing with multi-view denoising algorithms, our proposed
MVCNN is around ten times faster than VBM3D and takes much less time than our previous work.
This is also within expectation, since the proposed method does not involve the time-consuming patch
matching and SVD operations. Specifically, for MVCNN, most of the time is spent on the construction
of the 3DFIS, as we have many more dimensions in multi-view denoising than single image denoising,
including the number of views and disparity values. The actual denoising time of MVCNN on each
image stack is comparable to that of DnCNN. Therefore, we believe that, like DnCNN, with the
optimization of image stack constructions, our proposed MVCNN shows a more promising prospect
in real life applications than other comparable approaches.

6. Conclusions

In this paper, we proposed a new CNN model, namely MVCNN, for multi-view image denoising.
Unlike single image CNN models, the proposed network can take multiple images formed as a 3D
matrix as the input and produce a denoised 3D matrix consisting of clean images. The 3D focus
image stacks introduced in our previous work are generated from multiple views to form inputs to the

Sensors 2019, 19, 2597 21 of 24

MVCNN network, and disparity values are utilized to extract the corresponding denoised parts in
each image stack. Extensive experiments that we have performed indicate that the proposed MVCNN
model produces a state-of-the-art performance for image denoising. Meanwhile, compared to existing
multi-view denoising algorithms, MVCNN also achieves faster computational speed thanks to the fast
inference of convolutional neural network and GPU acceleration. In the future, we will be focusing on
the denoising of real image noise, which is more complicated than AWGN.

Author Contributions: Conceptualization, S.Z.; methodology, S.Z.; software, S.Z.; validation, S.Z.; formal analysis,
S.Z., Y.-H.H.; investigation, S.Z.; resources, Y.-H.H., H.J.; data curation, S.Z.; writing—original draft preparation,
S.Z.; writing—review and editing, S.Z., Y.-H.H., H.J.; supervision, Y.-H.H., H.J.; project administration, H.J.;
funding acquisition, H.J.

Funding: This research was funded by the U.S. National Science Foundation through the cyber-physical systems
program under grant number CNS1329481, and the National Institute of Biomedical Imaging and Bioengineering
(NIBIB) of the U.S. National Institutes of Health under award number R01EB019460.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389.
[CrossRef]

2. Kutoba, A.; Smolic, A.; Magnor, M.; Tanimoto, M.; Chen, T.; Zhang, C. Multiview imaging and 3DTV.
IEEE Signal Process. Mag. 2007, 24, 10–21.

3. Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally centralized sparse representation for image restoration.
IEEE Trans. Image Process. 2013, 22, 1620–1630. [CrossRef] [PubMed]

4. Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 2, pp. 60–65.

5. Wang, J.; Guo, Y.; Ying, Y.; Liu, Y.; Peng, Q. Fast non-local algorithm for image denoising. In Proceedings of
the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 1429–1432.

6. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain
collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [CrossRef] [PubMed]

7. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration.
In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan,
29 September–2 October 2009; pp. 2272–2279.

8. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA, 23–28 June 2014; pp. 2862–2869.

9. Xu, J.; Zhang, L.; Zuo, W.; Zhang, D.; Feng, X. Patch group based nonlocal self-similarity prior learning for
image denoising. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 7–13 December 2015; pp. 244–252.

10. Malfait, M.; Roose, D. Wavelet-based image denoising using a Markov random field a priori model. IEEE Trans.
Image Process. 1997, 6, 549–565. [CrossRef]

11. Roth, S.; Black, M.J. Fields of experts: A framework for learning image priors. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 2, pp. 860–867.

12. Lan, X.; Roth, S.; Huttenlocher, D.; Black, M.J. Efficient belief propagation with learned higher-order Markov
random fields. In Proceedings of the European conference on Computer Vision, Graz, Austria, 7–13 May
2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 269–282.

13. Szeliski, R.; Zabih, R.; Scharstein, D.; Veksler, O.; Kolmogorov, V.; Agarwala, A.; Tappen, M.; Rother, C.
A comparative study of energy minimization methods for markov random fields with smoothness-based
priors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1068–1080. [CrossRef]

14. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D
Nonlinear Phenom. 1992, 60, 259–268. [CrossRef]

http://dx.doi.org/10.1016/S0146-664X(81)80018-4
http://dx.doi.org/10.1109/TIP.2012.2235847
http://www.ncbi.nlm.nih.gov/pubmed/23269751
http://dx.doi.org/10.1109/TIP.2007.901238
http://www.ncbi.nlm.nih.gov/pubmed/17688213
http://dx.doi.org/10.1109/83.563320
http://dx.doi.org/10.1109/TPAMI.2007.70844
http://dx.doi.org/10.1016/0167-2789(92)90242-F

Sensors 2019, 19, 2597 22 of 24

15. Vogel, C.R.; Oman, M.E. Iterative methods for total variation denoising. SIAM J. Sci. Comput. 1996, 17,
227–238. [CrossRef]

16. Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vision
2004, 20, 89–97.

17. Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and
deblurring problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [CrossRef]

18. Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral image denoising employing a spectral-spatial adaptive total
variation model. IEEE Trans. Geosci. Remote. Sens. 2012, 50, 3660–3677. [CrossRef]

19. Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries.
IEEE Trans. Image Process. 2006, 15, 3736–3745. [CrossRef] [PubMed]

20. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Process. 2006, 54, 4311. [CrossRef]

21. Mairal, J.; Elad, M.; Sapiro, G. Sparse representation for color image restoration. IEEE Trans. Image Process.
2008, 17, 53–69. [CrossRef] [PubMed]

22. Li, S.; Yin, H.; Fang, L. Group-sparse representation with dictionary learning for medical image denoising
and fusion. IEEE Trans. Biomed. Eng. 2012, 59, 3450–3459. [CrossRef] [PubMed]

23. Barbu, A. Learning real-time MRF inference for image denoising. In Proceedings of the 2009 IEEE Conference
on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1574–1581.

24. Xie, J.; Xu, L.; Chen, E. Image denoising and inpainting with deep neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December
2012; pp. 341–349.

25. Schmidt, U.; Roth, S. Shrinkage fields for effective image restoration. In Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 2774–2781.

26. Chen, Y.; Pock, T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image
restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1256–1272. [CrossRef] [PubMed]

27. Burger, H.C.; Schuler, C.J.; Harmeling, S. Image denoising: Can plain neural network compete with BM3D?
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 16–21 June 2012; pp. 2392–2399.

28. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond gaussian denoiser: Residual learning of deep cnn
for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

29. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for cnn based image denoising.
IEEE Trans. Image Process. 2018, 27, 4608–4622. [CrossRef]

30. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in
imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

31. Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward convolutional blind denoising of real photographs.
arXiv 2018, arXiv:1807.04686.

32. Zhou, S.; Lou, Z.; Hu, Y.H.; Jiang, H. Multiple view image denoising using 3D focus image stacks. Comput. Vis.
Image Underst. 2018, 171, 34–47. [CrossRef]

33. Zhang, L.; Vaddadi, S.; Jin, H.; Nayar, S. Multiple view image denoising. In Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1542–1549.

34. Luo, E.; Chan, S.H.; Pan, S.; Nguyen, T. Adaptive non-local means for multiview image denoising: Search for
the right patches via a statistical approach. In Proceedings of the 2013 IEEE International Conference on
Image Processing, Melbourne, VIC, Australia, 15–18 September 2013; pp. 543–547.

35. Xue, Z.; Yang, J.; Dai, Q.; Zhang, N. Multi-view image denoising based on graphical model of surface patch.
In Proceedings of the 2010 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D
Video, Tampere, Finland, 7–9 June 2010; pp. 1–4.

36. Yue, H.; Sun, X.; Yang, J.; Wu, F. Image denoising by exploring external and internal correlations. IEEE Trans.
Image Process. 2015, 24, 1967–1982. [CrossRef] [PubMed]

37. Miyata, M.; Kadoma, K.; Hamamoto, T. Fast multiple-view denoising based on image reconstruction by
plane sweeping. In Proceedings of the 2014 IEEE Visual Communications and Image Processing Conference,
Valletta, Malta, 7–10 December 2014; pp. 462–465.

http://dx.doi.org/10.1137/0917016
http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1109/TGRS.2012.2185054
http://dx.doi.org/10.1109/TIP.2006.881969
http://www.ncbi.nlm.nih.gov/pubmed/17153947
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TIP.2007.911828
http://www.ncbi.nlm.nih.gov/pubmed/18229804
http://dx.doi.org/10.1109/TBME.2012.2217493
http://www.ncbi.nlm.nih.gov/pubmed/22968202
http://dx.doi.org/10.1109/TPAMI.2016.2596743
http://www.ncbi.nlm.nih.gov/pubmed/27529868
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1109/TIP.2018.2839891
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1016/j.cviu.2018.05.007
http://dx.doi.org/10.1109/TIP.2015.2412373
http://www.ncbi.nlm.nih.gov/pubmed/25781875

Sensors 2019, 19, 2597 23 of 24

38. Collins, R.T. A space-sweep approach to true multi-image matching. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996;
pp. 358–363.

39. Chen, J.; Hou, J.; Chau, L.P. Light field denoising via anisotropic parallax analysis in a CNN framework.
IEEE Signal Process. Lett. 2018, 25, 1403–1407. [CrossRef]

40. Fujita, S.; Takahashi, K.; Fujii, T. How should we handle 4D light fields with CNNs? In Proceedings of the
25th IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 2600–2604.

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

42. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning,
Lille, France, 6–11 July 2015; pp. 448–456.

43. Song, K.; Chung, T.; Oh, Y.; Kim, C.S. Error concealment of multi-view video sequences using inter-view and
intra-view correlations. J. Vis. Commun. Image Represent. 2009, 20, 281–292. [CrossRef]

44. Jing, X.Y.; Hu, R.; Zhu, Y.P.; Wu, S.; Liang, C.; Yang, J.Y. Intra-view and inter-view supervised correlation
analysis for multi-view feature learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Québec City, QC, Canada, 27–31 July 2014; Volume 14, pp. 1882–1889.

45. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 38, 295–307. [CrossRef]

46. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolution networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1646–1654.

47. Kim, J.; Kwon Lee, J.; Mu Lee, K. Deeply-recursive convolutional network for image super-resolution. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016; pp. 1637–1645.

48. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings
of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer:
Cham, Switzerland; pp. 391–407.

49. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

50. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 3431–3440.

51. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 23, 1222–1239. [CrossRef]

52. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE
International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423.

53. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
54. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd

ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692.
55. Middlebury Multi-View Stereo Datasets. Available online: http://vision.middlebury.edu/stereo/data/

(accessed on 1 March 2019).
56. The (New) Stanford Light Field Archive. Available online: http://lightfield.stanford.edu/lfs.html (accessed

on 1 March 2019).
57. Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A dataset and evaluation methodology for

depth estimation on 4D light fields. In Proceedings of the Asian Conference on Computer Vision, Taipei,
Taiwan, 20–24 November 2016; Springer: Cham, Switzerland, 2016; pp. 19–34.

58. Maggioni, M.; Boracchi, G.; Foi, A.; Egiazarian, K. Video denoising, deblocking, and enhancement through
separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 2012, 21, 3952–3966. [CrossRef]

http://dx.doi.org/10.1109/LSP.2018.2861212
http://dx.doi.org/10.1016/j.jvcir.2009.02.002
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/34.969114
http://vision.middlebury.edu/stereo/data/
http://lightfield.stanford.edu/lfs.html
http://dx.doi.org/10.1109/TIP.2012.2199324

Sensors 2019, 19, 2597 24 of 24

59. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Color image denoising via sparse 3D collaborative filtering
with grouping constraint in luminance-chrominance space. In Proceedings of the IEEE International
Conference on Image Processing, San Antonio, TX, USA, 16–19 September 2007; Volume 1, pp. 313–316.

60. Golub, G.H.; van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Conventional Image Denoising
	Deep Neural Networks for Single Image Denoising
	Multi-View Image Denoising

	The Proposed Denoising Network
	Network Architecture
	Network Testing: Single Image vs. Multi-View
	Signal Processing Interpretation of MVCNN
	General Mechanism of the Denoising Network
	Intra-View Correlation
	Inter-View Correlation

	Relationship with Previous Works

	Multi-View Denoising Algorithm
	3D Focus Image Stacks and Disparity Estimation
	Multi-View Denoising Using MVCNN
	Occlusion Detection and Handling

	Experimental Results
	Parameter Settings for Network Training
	Blind Denoising
	Color Image Denoising
	Evaluation of Denoising Performance
	Run Time

	Conclusions
	References

