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Abstract: In the estimation of the direction of arrival (DOA) for interference signals,
the direction-finding error of the multiple signal classification (MUSIC) algorithm will increase
in the case of multiple interferences or when the interfering signal power is weak. In this paper,
a space-time conversion MUSIC (STC-MUSIC) algorithm is proposed, and the concept of a focusing
parameter is introduced to improve the performance of the DOA estimation. Meanwhile, a method
of variable step size peak search is proposed to reduce the amount of calculation of the STC-MUSIC
algorithm. The final simulation and experimental results show that the STC-MUSIC algorithm
improves the purity of the noise subspace effectively, thus improving the precision and robustness of
the DOA estimation for interference signals significantly. In comparison to traditional algorithms,
the convergence, stability, root mean square error (RMSE) and other performance characteristics are
improved greatly.

Keywords: DOA; MUSIC; focusing parameter; subspace; space-time

1. Introduction

With the complications of the electromagnetic environment, the global navigation satellite system
(GNSS) faces increasing unintentional or intentional interference. For the navigation terminal, in addition
to the stable anti-interference ability, it also needs to have the ability to estimate the interference direction,
so as to provide the necessary conditions for destroying the interference source accurately in the military
environment [1].

The general technique for interference source localization usually needs to estimate the direction
of arrival (DOA) for the interference signal to obtain azimuth and elevation angles [2,3]. The multiple
signal classification (MUSIC) algorithm is a common DOA estimation algorithm based on the array that
can measure multiple signals simultaneously and eliminate limitations, due to the beam width
of the array [4]. Its performance is better than the Capon algorithm and directional antenna,
phase interferometer and other methods [5].The shortcomings of the traditional MUSIC algorithm
primarily include (1) the DOA estimation of the coherent signal cannot be obtained accurately;
(2) the number of received signals is limited by the number of array elements, and needs to be
smaller than the number of array elements; (3) as the jamming-to-noise ratio (JNR) decreases,
the DOA estimation error will increase; and (4) DOA estimation accuracy is sensitive to the characteristics
of the RF channel and mutual coupling [6,7]. For deficiencies in the case of coherent signals, The spatial
smoothing algorithm has been used in References [8] and [9]. This method divides the array into
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several sub-arrays, which overlap each other, and obtains the mean of all sub-array covariance
matrices. The covariance matrix is restored to a full rank state to ensure that the constructed
signal subspace and the noise subspaces are orthogonal. Similarly, the authors in Reference [10]
used a differential smoothing method to obtain accurate DOA estimation for coherent signals.
To address the limitation in the number of array elements in the algorithm, a DOA estimation
method based on array interpolation was proposed in Reference [11] to increase the number of
resolvable sources. In Reference [12], a vectorized MUSIC algorithm was introduced, which optimizes
the array by constructing a differential summation to obtain more degrees of freedom. A coprime
array interpolation approach was proposed in References [13] and [14] to improve the number of
achievable degrees-of-freedom. In Reference [15], a fast gridless maximum likelihood method was
proposed, which improved computational efficiency effectively and can detect more sources. To
improve the accuracy for direction-finding, an extended-aperture DOA estimation algorithm based
on a unitary root-MUSIC algorithm for a coprime array was proposed in Reference [16]. Through
simulation and comparison, the proposed method can obtain more accurate direction-finding results.
In Reference [17], a novel two-stage processing method was proposed that can effectively decompose
a signal into a mixture of correlated and uncorrelated components, thereby improving the accuracy of
the algorithm. In practice, arrays sensitive to polarization can also be used to extend the characteristic
information from the received signal to improve the direction-finding accuracy and the degree of
freedom of the array [18]. In addition, sparse representation or compressed sensing can be used to obtain
better performance [19], but the computational complexity is increased significantly. In References [20]
and [21], a novel estimation method was proposed for obtaining the sample covariance matrix of
a signal. The method effectively reduces the computational complexity and improves the performance
of the algorithm in the case of a limited sample length.

A space-time conversion MUSIC (STC-MUSIC) algorithm is proposed in this paper, which effectively
expands the order of the signal covariance matrix, improves the isolation of the target signal subspace
and the noise subspace, and thus obtains a purer noise subspace that improves the spectral function
accuracy and robustness of the traditional algorithm. Especially in the multi-interference scenario,
the performance is improved significantly compared to the traditional method. At the same time,
a direction-finding focusing parameter is introduced, and the eigenvectors of the noise subspace can
be adjusted to obtain optimal DOA estimation performance. Finally, the direction-finding errors for
different JNR conditions are evaluated.

The outline for the remainder of this paper is as follows. Section 2 presents the signal model.
The underlying theory and signal process for the STC-MUSIC algorithm and the focusing parameter are
presented in Section 3. Simulation results and conclusions are presented in Sections 4 and 5, respectively.

2. Signal Model

We consider an arbitrary array with M elements. Each array element has the same directional
characteristics, and O is the center of the array, as shown in Figure 1.
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Figure 1. Schematic diagram of the array. 
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Figure 1. Schematic diagram of the array.

It is assumed that the P satellite signals and the Q interference signals are incident on the array
and satisfy the condition of far field incidence. (The far field means that the interference source is
far enough away from the array that the wave reaching the array can be regarded as a parallel wave.
The actual interference signal generally satisfies this condition). The signal received by the array can
be expressed as

x(t) =
P∑

p = 1

a(θp,ϕp)sp(t) +
Q∑

q = 1

a(θq,ϕq jq(t) + n(t), (1)

where x(t) = [x1(t), x2(t), · · ·, xM(t)]T represents the signal obtained by the M dimensional array
at the unit sampling time; sp(t) and jq(t) represent the envelopes for the corresponding useful signals
and interference signals, respectively; P and Q represent the number of satellite signals and interference
signals, respectively; and n(t) represents the noise vector received by the M dimensional array.
The vectors a(θp,ϕp) and a(θq,ϕq) represent the steering vectors corresponding to the useful signal
and interference signal, respectively, whereθ represents the elevation angle andϕ represents the azimuth
angle.

a(θ,ϕ) = [e− juTp1 , e− juTp2 , · · · , e− juTpM ]
T

, (2)

where
u =

2π
λs

[
sinθ cosϕ sinθ sinϕ cosθ

]T
, (3)

and λs represents the incident signal wavelength, and

pk =
[

pxk pyk pzk
]T

, k = 1, 2, · · ·M, (4)

pk represents the three-dimensional coordinates of the array element.
It should be noted that regarding the DOA estimation based on the array antenna, the distinction

between the narrowband and the wideband signals is relative to the array. In general, we require
that the maximum time difference between the signals arriving at each element is small enough,
i.e., the signal envelope received by each element is consistent. We assume that the maximum time
difference is τmax, and the signal bandwidth is Bw, then it needs to satisfy

τmax �
1

Bw
, (5)

i.e., the maximum time difference between the signals arriving at each element is much smaller than
the equivalent time width of the signal. If so, we call the array as a coherent array with respect to
the signal, corresponding to a narrowband signal, otherwise it is a wideband signal.
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τmax is related to the total aperture of the array antenna. i.e.,

τmax =
D
c

=
D
λs f

, (6)

where D represents the total aperture of the array antenna, c represents the speed of light and f
represents the signal frequency. In general, the element spacing of most array antennas is designed to
be about λs/2. In addition, the size and shape of the array also need to be considered for miniaturization
in applications, so D and λs are basically on the same order of magnitude. Substitute (6) into (5), we can
compare f and Bw to determine whether the signal is narrowband or wideband. Since the GNSS signal
is generally in the L-band, the signal bandwidth is generally 2 MHz to 20 MHz, and the interference
bandwidth for the GNSS signal is also in this range. Therefore, for the GNSS receiver, the interference
signal generally faced is basically a narrow band. Of course, broadband interference may also exist in
practice, but this paper does not focus on this research.

3. STC-MUSIC Algorithm

3.1. Principle and Signal Processing Process

First, if the number of elements is M, and the number of snapshots is N, then the received signal
by the array for one data block can be expressed as

X =


x11 x12 · · · x1(N− 1) x1N

x21 x22 · · · x2(N− 1) x2N
...

... · · ·
...

...
xM1 xM2 · · · xM(N− 1) xMN

 (7)

The STC-MUSIC algorithm is built under the space-time structure.
As shown in Figure 2, for the processing of the space-time structure, there are (L− 1) delay units

after each array element, and the delay is ∆. After the space-time domain conversion of X, we obtain

XST =



x1L x1(L+ 1) x1(L+ 2) · · · x1N
...

...
... · · ·

...
x11 x12 x13 · · · x1(N−L+ 1)
x2L x2(L+ 1) x2(L+ 2) · · · x2N

...
...

... · · ·
...

x21 x22 x23 · · · x2(N−L+ 1)
...
...

...

...

...

...

· · ·

· · ·

...

...
xML xM(L+ 1) xM(L+ 2) · · · xMN

...
...

... · · ·
...

xM1 xM2 xM3 · · · xM(N−L+ 1)



(8)

Then, we calculate the covariance matrix of XST,

RST = E[XSTXST
H] (9)
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In practice, we usually use the sampling covariance matrix, denoted by R̂ST, and the matrix dimension
is represented by ML×ML. After the eigen decomposition of R̂ST, we yield

R̂ST =
ML∑

i = 1

λivivH
i = Û jΛ jÛ

H
j + ÛnΛnÛH

n , (10)

where λi represents the eigenvalue [22].

Λ j =


λ1

λ2
. . .

λK

, (11)

represents a diagonal array containing K large eigenvalues. Û j = [v1, v2, · · · , vK] represents
an interference signal subspace formed by the eigenvectors corresponding to K large eigenvalues.

Λn =


λK+ 1

λK+ 2
. . .

λM×L

, (12)

represents a diagonal array of M× L−K small eigenvalues. Ûn = [vK + 1, vK + 2, · · · , vM×L] represents
the noise subspace formed by the eigenvectors corresponding to the M × L − K eigenvalues [23].
Since the GNSS uses the spread spectrum technology, the satellite signal is embedded in the white
noise, and the signal power is about 20 dB–30 dB lower than the noise power, and the influence of
satellite signals on the construction of noise subspace and interference signal subspace can be ignored.
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The spectral function of the STC-MUSIC algorithm is

Ps(θ,ϕ) =
1

aH
st (θ,ϕ)ÛnÛH

n ast(θ,ϕ)
, (13)

where ast(θ,ϕ) represents the space-time steering vector,

ast(θ,ϕ) = a(θ,ϕ) ⊗ at, (14)
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a(θ,ϕ) as shown in (2), represents the space steering vector, and ⊗ represents the Kronecker product.

at = (1, e− j2π( fI+ fD)∆t, · · · , e− j2π(L− 1)( fI+ fD)∆t), (15)

is the delay vector of the received signal. In the delay vector, ∆t represents the sampling period,
fI represents the intermediate frequency of the GNSS receiver after down-conversion, fD represents
the Doppler frequency, and (L− 1) represents the number of delaying units. Based on Equation (13),
we traverse (θ,ϕ) and perform a two-dimensional search to find the peak of the spectral function,
and then make a decision to determine the direction of the interference signal.

Since the array signal is delayed, the obtained covariance matrix includes not only the correlation
items between the array elements at the current time, but also the correlation items between the array
elements at different moments in the past. The signal changes from a simple spatial domain to a space-time
two-dimensional domain. Therefore, the accuracy of the noise subspace and the interference subspace
will be improved when performing eigen decomposition.

3.2. Variable Step Size Peak Search

Due to the introduction of the space-time conversion, the eigenvector dimension corresponding
to the noise subspace and the dimension of the space-time steering vector are all expanded.
Therefore, the spectral peak search will bring more computation than before. We introduce a variable
step size peak search method to reduce the computational complexity of the STC-MUSIC algorithm.

We assume that the number of interferences is Q. When searching for spectral peaks, we first
search by a larger step size ∆H. In order to ensure the convergence of the algorithm, we generally
can’t take too large values. In this paper, we take 1◦ or 2◦, and then we can get Q extreme values,
their corresponding angles can be expressed as{

(θ1,ϕ1), (θ2,ϕ2), . . . , (θQ,ϕQ)
}
, (16)

and the corresponding two-dimensional search times are

St_ 1 = (1 + 90◦/∆H) · (1 + 180◦/∆H). (17)

Then we can search in a small step size ∆h1, which can take 0.1◦, the search intervals for the Q
interferences are {

(θ1 ± ∆θ,ϕ1 ± ∆ϕ), (θ2 ± ∆θ,ϕ2 ± ∆ϕ), . . . , (θQ ± ∆θ,ϕQ ± ∆ϕ)
}
. (18)

In order not to miss the peak as much as possible, the value of ∆θ and ∆ϕ cannot be less than
∆H/2. The corresponding two-dimensional search times are

St_ 2 = Q · (1 + 2∆θ/∆h1) · (1 + 2∆ϕ/∆h1). (19)

The total search times are the sum of Equations (17) and (19). Of course, according to actual needs,
we can follow the above steps to search again with a smaller step size ∆h2.

We take three interferences as an example to calculate. It takes 901× 1801 times to search globally
with a step of 0.1◦, and 91× 181 + 11× 11× 3 times with a variable step of 1◦ and 0.1◦. Comparing
the two methods, the number of searches has been reduced by 1605867 times, which is about a hundred
times lower.

3.3. Direction-finding Focusing Parameter

In the eigen decomposition, the eigenvectors corresponding to the larger eigenvalues are
formed into the subspace of the interference signal, and the eigenvectors corresponding to
the smaller eigenvalues are formed into the noise subspace. Due to the inevitable crossover leakage
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between the interference signal subspace and the noise subspace, to obtain a purer noise subspace,
the eigenvector corresponding to the smaller eigenvalue can be selected to constitute the noise
subspace. The STC-MUSIC algorithm can construct a higher-dimensional eigenmatrix, which provides
a greater choice space for obtaining a purer noise subspace. Therefore, in the STC-MUSIC algorithm,
the boundary value of the eigenvalue has a larger selection range, and the boundary value also affects
the final direction-finding accuracy. We use K to represent the boundary value of the eigenvalues in
descending order, and 1 ≤ K < M× L. In this range, the value of K can be larger than the traditional
method, and the eigenvector corresponding to the smaller eigenvalue can be selected to obtain a purer
noise subspace, thereby improving the accuracy of the spectral function. K usually has an optimal
interval, within a certain range, the larger the value, the higher the direction-finding accuracy, but it is
not the larger the better. When K is close to the maximum, i.e., K = M× L− 1, only one eigenvector
can be used to construct the noise subspace. Thus, the accuracy of the spectral function may decrease.
To facilitate an intuitive understanding, we introduce the concept of a direction-finding focusing
parameter to define K visually, which we call the focusing parameter. The STC-MUSIC algorithm
provides us with a way to improve the performance of the DOA estimation by changing the focusing
parameter, and it is more prominent in multiple interference situations.

Next, we are concerned with how to obtain the optimal focusing parameter. Since the noise
usually does not exhibit autocorrelation and the features are stable, after the eigen decomposition of
the covariance matrix, the eigenvalues corresponding to the noise subspace are very small and the sizes
are basically the same, so we can use the following method to determine K. First, we arrange the ML
eigenvalues in descending order, and define

δi = lg(
λi
λi+ 1

), (20)

with i = 1, 2, · · ·M× L− 1, where δi can be called a discriminating factor. We calculate the δi in order.
Since the size of the small eigenvalues corresponding to the noise subspace is almost the same, after
the transition from the large eigenvalue to the small eigenvalue, when λi/λi+ 1 ≈ 1 and δi tends to 0,
the corresponding value of i − 1 is the boundary value, i.e., K = i − 1 can be used as the optimal
focusing parameter. In practice, the threshold of δi can be set to 10− 2. In the next simulation, we will
combine the actual data to verify the above conclusions.

3.4. Delay Units

In the STC-MUSIC algorithm, we also need to determine the number of delay units, i.e., the range
of L, which requires a comprehensive consideration of the calculated amount and the final performance
for direction-finding. Generally, we can achieve stable performance by taking L = 2 ∼ 5. Continuing to
increase L will result in more calculations, and the DOA estimation performance will no longer increase
significantly. In addition, if L is too large, it may cause distortion to the signal.

4. Simulation Results and Analysis

In this section, we simulate and analyze the STC-MUSIC algorithm to verify and evaluate
the performance of the algorithm. First, it is necessary to simulate the influence of the data block
length (i.e., the number of snapshots) on the STC-MUSIC algorithm to obtain the optimal interference
direction-finding scheme. Second, compared with the traditional MUSIC algorithm, the accuracy
and robustness of the DOA estimation by the STC-MUSIC algorithm under single interference
and multiple interference conditions are verified, and then the method for determining the optimal
focusing parameter is verified and analyzed. Finally, the direction-finding error under different
JNRs are evaluated to further verify the performance of the STC-MUSIC algorithm. In the following
simulations, the number of the array elements is 4, the antenna array configuration is shown in Figure 3,
and the array element spacing is a half wavelength. The basic simulation parameters are shown
in Table 1.
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Table 1. Basic simulation parameters.

Category Parameter Value

Signal parameter
Sampling frequency 62 MHz

RF frequency 1268.52 MHz
Intermediate frequency 46.52 MHz

Array parameter
Number of array

element 4

Array type Circular array
Element spacing Half wavelength

4.1. Simulation of Data Block Length

In practice, we usually process the received signal in the form of data blocks. The length of
the data block affects the convergence and accuracy of the algorithm, but we also need to consider
the computational complexity. The simulation parameters are as follows: A Gaussian interference with
a JNR of 0 dB, an elevation angle of 60◦, and an azimuth angle of 30◦, the bandwidth is about 2 MHz.
We then alter the length of the data block processed each time and estimate the DOA of the interference,
and the number of delay units is set to 3. As shown in Figure 4, the range of T is between 0.4 ms
and 4 ms. When T = 0.4 ms, the algorithm tends to converge, and the direction-finding result is
accurate. When T = 1 ms, the spectral functions of the azimuth angle and elevation angle are steeper
at the interference angle. With further increases in T, the slope of the spectral function at the peak is
essentially stable, and there is no obvious change, but the amount of calculation is gradually increasing.
Based on the real-time performance, we can set the time length for the data block to 1 ms.
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angle is 30◦; Bottom: The corresponding azimuthal angle spectrum function curves when the elevation
angle is 60◦).

4.2. Analysis of the Optimal Focusing Parameter

In Section 3, we introduce a method for calculating the optimal focusing parameter, which uses
the feature that the small eigenvalues are almost equal. We first verify the method and then discuss
the influence of the focusing parameter on the final direction-finding accuracy.

First, we verify the distribution law of the eigenvalues after the eigen decomposition of
the covariance matrix in the STC-MUSIC algorithm. We set two interference scenarios, which are
single interference and two interferences. The specific parameters are shown in Table 2. The number of
delay units of the STC-MUSIC algorithm is set to 3, i.e., L = 4.

Table 2. Interference scene parameters.

Scene 1 Value

Number of interference 1
Type of interference BPSK

Interference bandwidth 2.046 MHz
JNR(Jamming-to-noise ratio) 0 dB

Scene 2 Value

Number of interference 2
Type of interference a BPSK and a Gaussian

Interference bandwidth 2.046 MHz
JNR 0 dB
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Figure 5. The distribution of the eigenvalues. (a) The distribution of the eigenvalues in scene 1;
(b) The distribution of the eigenvalues in scene 2.

We arrange the eigenvalues after eigen decomposition in each interference scene in descending
order, Figure 5a,b show the distribution of the eigenvalues corresponding to Scene 1 and Scene 2,
respectively. It can be seen that the small eigenvalues after large eigenvalues in each scene are basically
the same, and there is no significant change between them, so that we can get the optimal focusing
parameter according to Equation (20).

Next, we discuss the influence of the focusing parameter on the accuracy of DOA estimation.
The simulation parameters are set as follows: A single-carrier interference with an elevation angle of 20◦
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and an azimuth angle of 90◦; a Gaussian interference with an elevation angle of 45◦ and an azimuth
angle of 120◦; a BPSK modulated interference with an elevation angle of 60◦ and an azimuth angle of 30◦.
The JNR is 0 dB, and the bandwidth of the Gaussian interference and BPSK modulated interference is
about 2 MHz. The number of delay units of the STC-MUSIC algorithm is 3, i.e., L = 4.

As shown in Figure 6, the corresponding eigenvalues after the eigendecomposition of the sampling
covariance matrix are obtained. We find that, after transitioning from large eigenvalues to small
eigenvalues, the small eigenvalues are essentially the same and almost unchanged. Calculated by
Equation (20), we can get δ9 ≤ 0.01. The focusing parameter thus enters the optimal interval when
K = 8. We analyze and verify the direction-finding results with different focusing parameters.
As shown in Figure 7a, when K = 4, the spectral function does not form the correct peak in
the interference direction. As we continue to increase K, as shown in Figure 7b,c, we obtain the spectral
functions of K = 8 and K = 12. The direction-finding results are accurate and stable and it can
be seen that there is no significant difference between the two spectral functions. When K continues
to increase to the maximum allowable value i.e., K = 15. As shown in Figure 7d, the peak value
and accuracy of the spectral function decrease. In summary, the simulation results are consistent with
the analysis results.Sensors 2019, 19, x 11 of 17 
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Figure 7. The normalized spectral function. (a) The normalized spectral function at K = 4;
(b) The normalized spectral function at K = 8; (c) The normalized spectral function at K = 12;
(d) The normalized spectral function at K = 15.

We also calculated the root mean square error (RMSE) of the direction-finding results with different
focusing parameters. As shown in Figure 8, it is the result of 100 Monte Carlo experiments, and the peak
search steps are 1◦ and 0.1◦. We can conclude that the optimal interval is 8 ≤ K ≤ 12. In the interval of
K < 6, the algorithm does not converge, and the direction of the three interferences cannot be obtained
accurately. In practice, we do not need to find an interval and can directly calculate the boundary value
of the optimal interval as the best focusing parameter according to the proposed method.
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Figure 8. The direction-finding RMSE of STC-MUSIC algorithm with different focusing parameters.

4.3. Performance Verification of the STC-MUSIC Algorithm

4.3.1. Single Interference Scenario

The interference is set to a Gaussian interference with a JNR of 0 dB, an elevation angle
of 60◦, and an azimuth angle of 30◦, the bandwidth is about 2MHz. The number of delay units
in the STC-MUSIC algorithm is set to 3, i.e., L = 4, and the focusing parameter is calculated
according to Equation (20) to obtain K = 2, and the value of K corresponding to the MUSIC algorithm
is also 2. As shown in Figure 9a,b, we give the three-dimensional normalized spectral function graph
obtained by the MUSIC algorithm and the STC-MUSIC algorithm, respectively. Both methods estimate
the direction of the interference signal accurately. We further analyze and draw the spectral function
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curves corresponding to the azimuth and elevation angles, respectively. As shown in Figure 10a,
the spectral function curve obtained using the STC-MUSIC algorithm is steeper at the interference
angle. In practice, the direction finding result we sometimes give is a range. Obviously, when
a threshold is set for the spectral function, the range of the angle obtained by the STC-MUSIC algorithm
is narrower, so the convergence is better relatively. Figure 10b shows the contour map of the spectral
function. The abscissa is the azimuth angle, and the ordinate is the elevation angle. The figure
clearly shows the differences in the convergence between the two algorithms from another angle,
and the direction-finding result obtained by the STC-MUSIC algorithm is more accurate.

1 
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Figure 9. The normalized spectral function. (a) The normalized spectral function derived from
the MUSIC algorithm (M = 4, K = 2); (b) The normalized spectral function derived from
the STC-MUSIC algorithm (M = 4,L = 4,K = 2).
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Figure 11. (a) The normalized spectral function derived from the MUSIC algorithm ( 4M  ,  3K ); 

(b) The normalized spectral function derived from the STC-MUSIC algorithm ( 4M  , 4L  , 8K  ). 

Figure 10. (a) Estimation results for elevation and azimuth obtained by MUSIC and STC-MUSIC
algorithms (Top: The corresponding elevation angle spectrum function curves when the azimuthal
angle is 30◦; Bottom: The corresponding azimuthal angle spectrum function curves when the elevation
angle is 60◦); (b) Contour map of the spectral function.

4.3.2. Multiple Interference Scenario

The interference parameters are set as follows: A single-carrier interference with an elevation
angle of 20◦ and an azimuth angle of 90◦, a Gaussian interference with an elevation angle of 45◦

and an azimuth angle of 120◦, and a BPSK modulated interference with an elevation angle of 60◦
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and an azimuth angle of 30◦. The JNR is 0 dB, and the bandwidth of the Gaussian interference and BPSK
modulated interference is about 2 MHz. We first use the MUSIC algorithm for direction finding, and K
can only take 3. As shown in Figure 11a, for the case of multiple interferences, the spectral function
derived from the traditional MUSIC algorithm based on four array elements is completely distorted,
and it is impossible to estimate the direction of the three interferences. There is only one peak in
the spectral function and the error is large.
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Figure 11. (a) The normalized spectral function derived from the MUSIC algorithm ( 4M  ,  3K ); 

(b) The normalized spectral function derived from the STC-MUSIC algorithm ( 4M  , 4L  , 8K  ). 

Figure 11. (a) The normalized spectral function derived from the MUSIC algorithm (M = 4, K = 3);
(b) The normalized spectral function derived from the STC-MUSIC algorithm (M = 4,L = 4,K = 8).

Then, we use the STC-MUSIC algorithm for direction-finding. For the case of multiple interferences,
the cross-diffusion between the interference subspace and the noise subspace will be aggravated.
The advantage of using the focusing parameter in the STC-MUSIC algorithm is more evident. Due to
the expansion of the covariance matrix, we can select the eigenvectors corresponding to the smaller
eigenvalues to construct a purer noise subspace, which increases the isolation between the interference
subspace and the noise subspace. Then, we calculate the focusing parameter according to Equation (20)
to get K = 8. As shown in Figure 11b, the spectral function forms obvious peaks in the directions
corresponding to the three interferences and the DOA estimation results are accurate.

4.4. Evaluation of DOA Estimation Error

In this section, the performance of the STC-MUSIC algorithm is evaluated mainly from the aspect
of the direction-finding error. Through 100 Monte Carlo experiments, we calculate and record the RMSE
of the DOA estimation result, and the peak search steps are 1◦ and 0.01◦.

RMSE =

√√√√
1

100Q

100∑
n

Q∑
q

[(θ̂
(n)
q − θq)

2
+ (ϕ̂

(n)
q −ϕq)

2
], (21)

where θq and ϕq are the set elevation angle and azimuth angle, respectively, and θ̂(n)q and ϕ̂(n)
q are

the corresponding estimates of the nth trial. Q is the number of interference signals.
We simulate two interference scenarios: Single interference and three interferences. The JNR range

is set to 0 dB–60 dB, with an interval of 10 dB. The interference direction is estimated using the MUSIC
algorithm and the STC-MUSIC algorithm, and the corresponding RMSE is calculated. We also give
the Cramer-Rao bound (CRB) of the STC-MUSIC algorithm in the corresponding scene. As shown in
Figure 12, as the interference intensity increases, the direction-finding errors of the two algorithms
gradually decrease. In the case of single interference, the STC-MUSIC algorithm is significantly better
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than the traditional MUSIC algorithm, and the direction-finding error is smaller. For the case of three
interferences, the traditional MUSIC algorithm cannot converge. However, the STC-MUSIC algorithm
can still get the direction-finding result normally, and the RMSE remains low. In summary, the simulation
results verify the performance and advantages of the STC-MUSIC algorithm, which effectively improves
the accuracy and robustness of the traditional DOA estimation algorithm. In addition, the STC-MUSIC
algorithm maintains high precision when the interference signal is weak.
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4.5. Test based on Actual Signal

We used a 4-element array antenna to acquire the signal. As shown in Figure 13, the RF
frequency is 1268.52 MHz and the array element spacing is half wavelength. Each array element
contains a down conversion channel and outputs an intermediate frequency analog signal, respectively.
The intermediate frequency is 46.52 MHz, and signal bandwidth is about 20 MHz. The middle element
is irrelevant to this test, and the channel is closed. For the signal collector, we used the AlazarTech
ATS 9440, a four-channel acquisition card. The A/D is 14 bits and the sampling rate is set to 62 MHz.
The interference generator includes two RF channels and supports the simultaneous output of two
different interferences, the interference parameters are shown in Table 3.

Table 3. Interference parameters.

Parameter Value

Number of interference 2
Type of interference Gaussian

Interference bandwidth 4 MHz
JNR 20 dB

The results of the DOA estimation of the MUSIC algorithm and the STC-MUSIC algorithm are
shown in Figure 14a,b. It can be seen that the MUSIC algorithm does not converge, and the STC-MUSIC
algorithm can estimate the direction of the interference signal normally, there are two distinct peaks
in Figure 14b. It should be noted that the elevation and azimuth angles in Figure 14b are meaningless
because the directional pattern of the array antenna is not calibrated with the actual orientation
accurately, including the calibration and measurement of the array element coordinates and the angle
of arrival of the interference.
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5. Conclusions 

For the DOA estimation of the interference signal by GNSS receivers, the STC-MUSIC 

algorithm is proposed in this paper. By effectively extending the order of the covariance matrix and 
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effectiveness and advantages of the STC-MUSIC algorithm are verified and evaluated via simulation 

and experiment. In particular, for multi-interference situations, the algorithm compensates for the 

shortcomings of the traditional MUSIC algorithm effectively. 
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Figure 14. (a) The normalized spectral function derived from the MUSIC algorithm; (b) The normalized
spectral function derived from the STC-MUSIC algorithm (L = 4, K = 12).

5. Conclusions

For the DOA estimation of the interference signal by GNSS receivers, the STC-MUSIC algorithm
is proposed in this paper. By effectively extending the order of the covariance matrix and introducing
the focusing parameter, the accuracy and robustness of the DOA estimation for the interference signal
are significantly improved. Meanwhile, a method of variable step size peak search is proposed to
reduce the amount of calculation of the STC-MUSIC algorithm. The effectiveness and advantages of
the STC-MUSIC algorithm are verified and evaluated via simulation and experiment. In particular,
for multi-interference situations, the algorithm compensates for the shortcomings of the traditional
MUSIC algorithm effectively.
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