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Abstract: The existing compressive sensing (CS) reconstruction algorithms require enormous
computation and reconstruction quality that is not satisfying. In this paper, we propose a novel
Dual-Channel Reconstruction Network (DC-Net) module to build two CS reconstruction networks:
the first one recovers an image from its traditional random under-sampling measurements (RDC-Net);
the second one recovers an image from its CS measurements acquired by a fully connected
measurement matrix (FDC-Net). Especially, the fully connected under-sampling method makes
CS measurements represent original images more effectively. For the two proposed networks, we use
a fully connected layer to recover a preliminary reconstructed image, which is a linear mapping
from CS measurements to the preliminary reconstructed image. The DC-Net module is used to
further improve the preliminary reconstructed image quality. In the DC-Net module, a residual block
channel can improve reconstruction quality and dense block channel can expedite calculation, whose
fusion can improve the reconstruction performance and reduce runtime simultaneously. Extensive
experiments manifest that the two proposed networks outperform state-of-the-art CS reconstruction
methods in PSNR and have excellent visual reconstruction effects.
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1. Introduction

In the past decade, compressive sensing [1] theory has achieved great success in signal sampling
paradigm because it can obtain high-quality recovery from CS measurements. Based on CS, several new
imaging systems have been developed, such as single-pixel camera [2], compressive spectral imaging
system [3], Hyperspectral imaging [4], high-speed video camera [5] and fast Magnetic Resonance
Imaging (MRI) system [6].

For a given image x € RN, the CS linear measurements y = ®x € RM, where ® isan M x N
measurement matrix and M < N. The original image has a sparse representation x = ¥s where ¥
isan N x N basis matrix. Compressive sensing is mainly concerned with the problem of recovering
original image x from CS measurements y, which contains two kinds of methods: conventional iterative
optimization strategies [7-14] and deep learning-based methods [15-18].

Early researchers have proposed some iterative algorithms such as matching pursuit [7], orthogonal
matching pursuit (OMP) [8,9], iterative hard thresholding [11], iterative soft thresholding [12] and
approximate message passing (AMP) [13,19]. However, these iterative algorithms are usually very
slow to converge. To alleviate such difficulty, block-based CS methods have been proposed [20,21],
although they still need expensive computation. Inspired by the great success of deep neural
networks for computer vision tasks [22,23], learning-based CS reconstruction methods have been
developed [15-18,24]. However, compared with the traditional CS methods, deep learning-based
methods require additional training process, which brings the need for a training set. However,
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deep learning-based methods have faster reconstruction speed via a simple forward computing.
Especially, the reconstruction performance and time complexity of existing learning-based methods
are still not satisfying and can be further improved. In some learning-based methods such as SDA [15],
DR2-Net [17], ConvCSNet [24] and ASRNet [25], especially, SDA and ConvCSNet directly obtain the CS
measurements based on the whole image. This easily leads to an increase in computational complexity
as the input image size increases. DR?-Net and ASRNet extract image patches from data set, while they
need to build deeper models (enormous computation) to recover the original image. We have analysed
this phenomenon: in the DR2-Net with single channel four residual blocks [17], authors compare
the performance of fcjogo-Resy, fcipg9-Resy, feiggo-Ress, feipgg-Ress. We can easily find that fcqggg-Resp
and fcjpg9-Resy have similar performance at MRs = 0.01, 0.10, while the performance of fcggo-Resy has
not been greatly improved compared with fcjgg9-Res,. Especially, dense blocks [22] can strengthen
feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Therefore, we use one dense block to replace the two residual blocks of the fciggo-Ress. What is more,
the connection mode is not a cascade but parallel, which can alleviate the vanishing-gradient problem
to some extent. So we use dual-channel shallower network (less computation) of two residual blocks
and one dense block to build the dual-channel reconstruction module. which can further improve the
image reconstruction quality. Especially, a residual block channel can capture rich image features and
improve the reconstruction performance. The dense block channel can expedite calculation because of
its fewer parameters.

In this paper, we propose a novel dual-channel reconstruction module (DC-Net module) based
on two residual blocks and one dense block, and we use this module to build two CS reconstruction
networks: RDC-Net and FDC-Net. The first layer of the RDC-Net senses an input image by traditional
Gaussian random matrix, while the first layer of the FDC-Net senses an input image by fully connected
measurement matrix. The second layer of RDC-Net and FDC-Net is a fully connected layer to recover
a preliminary reconstructed image. Then, DC-Net module is used to further improve the preliminary
reconstructed image quality.

Extensive experiments show that the proposed networks can obtain better performance than the
state-of-the-art CS reconstruction algorithms in terms of PSNR and visual effects. Our contributions
can be summarized as follows:

e  Unlike the deep-learning network with a very deep single-channel, we propose a novel shallow
dual-channel reconstruction module for image compressive sensing reconstruction, in which each
channel can extract different level features. It brings the better reconstruction quality.

e  The proposed DC-Net module has two residual blocks and one dense block. Because the dense
block has fewer parameters than residual block, the time complexity of the proposed method is
lower than DR?-Net with four residual blocks.

e  In our method, two residual blocks in one channel can obtain high level features and one dense
block in another channel can obtain the low level features. Experiment results show both RDC-Net
and FDC-Net have better robustness than DR?-Net.

2. Related Work

There are many traditional optimization algorithms [7-10,20,26,27] which are used to solve the
CS reconstruction problem. AmitSatish Unde et al. proposed a reconstruction algorithm based
on iterative re-weighted /1 norm minimization [20]. A.Metzler et al. proposed a denoising-based
AMP framework (D-AMP), which integrated a wide class of denoiser within its iterations [14].
A. Metzler et al. also developed a novel neural network architecture that mimics the behavior of the
denoising-based approximate message algorithm (LDAMP) [19]. Jin Tan et al. employed an adaptive
Wiener filter as the image denoiser into AMP framework, called “AMP-Wiener”. They extended
AMP-Wiener to three-dimension, called “AMP-3D-Wiener” for compressive hyperspectral imaging
reconstruction problem [28]. Philip Schniter et al. integrated the D-AMP into auto-tuning method
to form the D-VAMP [29]. E Tipping et al. presented an accelerated training algorithm for sparse
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bayesian models. They exploited a recent result concerning the properties of the marginal likelihood
function to derive a ‘constructive’ method for maximisation thereof [30]. Jiao Wu et al. proposed
a stage-wise fast [)-sparse Bayesian learning algorithm through integrating with a fast sequential
learning scheme and a stage-wise strategy for CS reconstruction [31]. Thomas et al. proposed an
iterative hard thresholding for compressed sensing [11]. Xiangming Meng et al. presented a unified
Bayesian inference framework for generalized linear models (GLM), which iteratively reduced the
GLM problem to a sequence of standard linear model (SLM) problems [32]. Jiang Zhu et al.proposed
an approximate message passing-based generalized sparse Bayesian learning (AMP-Gr-SBL) algorithm
to reduce the computation complexity of Gr-SBL algorithm [33]. Jun Fang et al. proposed a 2D
pattern-coupled hierarchical Gaussian prior model to exploit the underlying block-sparse structure.
This pattern-coupled hierarchical Gaussian prior model imposed a soft coupling mechanism among
neighboring coefficients through their shared hyperparameters [34]. Mohammad Shekaramiz et al.
proposed a new sparse Bayesian learning (SBL) method that incorporated a total variation-like
prior as a measure of the overall clustering pattern in the solution [35]. Saman et al.presented an
generative iterative thresholding algorithm for linear inverse problems with multi-constraints and
its applications [26]. Bin Kang et al. proposed an efficient image fusion framework for multi-focus
images based on compressed sensing. The new fusion framework consisted of three parts: image
sampling, measurement fusion and image reconstruction. This novel fusion framework was capable
of saving computational resource and enhancing the fusion result and was easy to implement [36].
Kezhi Li et al. proposed a new class of orthogonal circulant matrices built from deterministic sequences
for convolution-based compressed sensing [37]. Nam Yul Yu et al. proposed to construct a filter with
real-valued coefficients by taking the discrete Fourier transform of a decimated binary Sidelnikov
sequence [38]. Weisheng Dong and Guangming Shi et al. presented a learning method for compressive
image recovery. PAR models were first learned from training set and then used to regularize
the compressive image recovery process [39]. However, the above algorithms suffer from serious
time-consuming, which has become the bottleneck for the application of image compressive sensing.

In recent years, deep learning-based methods have shown promising performance in compressive
image recovery [15-18,40]. Yu Simiao et al. proposed a conditional Generative Adversarial
Networks-based deep learning framework for de-aliasing and reconstructing MRI images from highly
undersampled data with great promise to accelerate the data acquisition process [41]. Guang Yang et al.
provided a deep learning-based strategy for reconstruction of CS-MRI, and bridged a substantial gap
between conventional non-learning methods working only on data from a single image, and prior
knowledge from large training data sets [40]. Seitzer, Maximilian et al. proposed a hybrid method,
in which a visual refinement component was learnt on top of an MSE loss-based reconstruction
network [42]. Schlemper, Jo et al. proposed a novel cascaded convolution neural networks based on
compressive sensing technique and explore its applicability to improve DT-CMR acquisitions [43].
The stacked denoising autoencoder (SDA) [15] considered the mapping from original signal to its
measurement vector as one layer of the SDA. This kind of measurement method made SDA adapt its
structure to the training set. However, it enhanced computational complexity along with the size of
input image increased. Kulkarni et al. [16] proposed a block-based Network to realize the non-iterative
image recovery. It took CS measurements of image block as input and output its corresponding
reconstruction image block. DR2-Net [17] contained a linear mapping to recover a preliminary
reconstructed image, in which residual blocks [23] could further improve the reconstruction quality.
Xiaotong Lu and Weisheng Dong et al. [24] proposed a novel convolutional compressive sensing
framework (ConvCSNet) based on deep convolutional neural network, which captured the image
measurements by a convolutional operation.

Deep Residual Network: Lately, the deep residual network (ResNet) [23] had achieved promising
performance on many computer vision tasks such as Image Recognition [23] and Image Denoising [44].
The ResNet introduces identity shortcut connections that directly pass the data flow to later layers
compared with the traditional convolutional network. Therefore, we use the ResNet to avoid
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the loss attenuation caused by multiple non-linear transformations and ResNet consists of many
residual blocks.

Densely Connected Network: Recently, the densely connected network (DensNet) [22] also
obtained an enormous success in image detection, classification and semantic segmentation. Compared
with the deep Residual Network [23], the DensNet introduces identity shortcuts to all layers,
which makes a better use information of all features. Especially in reconstruction tasks, the architecture
of DensNet can make comprehensive utilization of shallow detailed features to recover original image
and DensNet consists of many dense blocks.

To further improve reconstruction quality and reduce runtime in CS reconstruction, in this paper,
we use two residual blocks and one dense block to build a dual-channel reconstruction network module.
This module can improve the image reconstruction quality and reduce time complexity simultaneously,
which is used to build two CS reconstruction networks: the first one recovers original image from
its CS measurements acquired by random Gaussian under-sampling measurements (RDC-Net) and
the second one recovers original image from its CS measurements acquired by the fully connected
measurement matrix (FDC-Net).

The remainder of this paper is organized as follows: In Section 3, we introduce dual-channel
reconstruction network module and two kinds of reconstruction networks. In Section 4, we design
extensive experiments to evaluate our proposed reconstruction networks. Finally, we conclude the
paper in Section 5.

3. Network Architecture

As shown in Figure 1. we propose two kinds of reconstruction networks: RDC-Net and FDC-Net.
Firstly we introduce traditional random under-sampling, fully connected under-sampling approaches
and preliminary reconstructed module. Then we discuss dual-channel reconstruction network module.

Gaussian
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¥
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Figure 1. (a) The architecture of dual-channel reconstruction network with random measurement
matrix (RDC-Net). (b) The architecture of dual-channel reconstruction network with fully connected
measurement matrix (FDC-Net). (c) The structure of residual block. (d) The structure of dense block.
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3.1. Under-Sampling and Preliminary Reconstruction

In the compressive sensing theory [1], there are some under-sampling approaches such as
random Gaussian measurement [45], random Fourier measurement [46] and random Bernoulli
measurement [47]. Random Gaussian measurement matrix is mostly used in CS theory and we
also use Gaussian measurement matrix in RDC-Net.

3]
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In the FDC-Net, we use a fully connected layer (Figure 2b) as the measurement matrix to imitate
the traditional under-sampling method in Figure 2a. In particular, such fully connected layer has
no bias and activation function, and it learns a linear transformation from the original image to CS
measurements. Both random Gaussian measurement matrix and learning measurement matrix have
the similar mathematical formula as Equation (1). We expect that the learning measurement matrix
(Equation (4)) is well adapted to the distribution of original image and denote this layer as y/ = W; - x,
and the traditional Gaussian measurement method can also be expressed by y" = W, - x, where
Wi, Wy € RM*N (M < N) and W, conforms to the Gaussian distribution. Especially, x is the original
image and y", y/ are the corresponding CS measurements of RDC-Net and FDC-Net, respectively.
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(a) (b)

Figure 2. (a) Random Gaussian matrix is used as measurement matrix ®. (b) The fully connected
matrix is used as measurement matrix and the parameters are learned from training set.

Afterwards, we use a fully connected layer to recover a preliminary reconstructed image x;.
We denote the preliminary reconstructed module and the corresponding parameters as f (.) and Qf
respectively, where ¢ € {RDC-Net, FDC-Net}, p represents the preliminary reconstructed module.
The preliminary reconstructed image can be expressed by:

xi=f (v 0f) @

and mean squared error (MSE) is used as the loss function for the training set:

L((ol) =+ i s, ) — x| ©)

Wy = argwmin % i Hf (Wl - Xis QJ@) T 2
i=

(4)
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where M, Wj represent the number of training samples and learning measurement matrix respectively.
Back propagation [48] algorithm is used to minimize the loss function defined in Equation (3).

3.2. Dual-Channel Network Module

In Section 3.1, we only obtain a preliminary reconstructed image for the reason that it is not easy
to get an exact solution in preliminary reconstructed module. Then, the dual-channel network module
is used to further improve the reconstruction quality. In this paper, two residual blocks and one dense
block are used as one channel separately, and they are fused to build a dual-channel network module.
We firstly make a brief introduction to residual block and dense block.

Compared with the traditional convolutional network, the main difference of the residual network
is that it introduces identity connections that directly pass the data flow to later layers. Given an input
X, we expect the output of a few stacked layers in network as T (). However, it takes great expense
to optimize T (.) in traditional convolutional network. In [23], K. He et al. proposed to approximate
the residual value between T (x) and x with the stacked layers. The residual block (Figure 1c) can be
expressed by

F(x)=T(x)—x (5)

In [22], Gao Huang et al. proposed the Dense Convolutional Network (DensNet) for many
computer vision tasks. The traditional convolutional networks with L layers have L connections. While
the DensNet has % direct connections, which strengthens feature propagation, encourages feature
reuse and enormously reduces the number of parameters. This kind of network is very useful in the
compressive sensing field. In dense block (Figure 1d), for each layer, all preceding feature maps are
used as its inputs, and its own feature maps are also used as inputs into all subsequent layers. In other
words, it means the mth layer can connect the feature maps of all preceding layers xo, X1, -.-» Xm—1
as inputs:

Xm = rm([)(O/Xll"'/mel]) (6)

where [xo, X1, --» Xm—1] denotes the concatenate operation of the feature maps in layers 0,1, ..., m — 1.
I'y () can be regarded as a composite function of four consecutive operations: batch normalization
(BN), scale layer, rectified linear unit (ReLU) and convolution (Conv).

We denote the dual-channel network module as H() that contains two residual blocks and one
dense block, which can be expressed by

H(x) =2®F(x) ®1®T(x) @)

where the symbol ® represents cascaded operation and @ represents parallel operation between one
dense block and two residual blocks.

In this paper, H(x) takes x} as input and outputs final reconstruction result, which can be
represented as:

fo = Hc(x¢, Q?) 8
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where d represents the dual-channel network module and the Qf represents the parameters of
dual-channel network module. The loss function of the proposed networks can be expressed by
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3.3. Architecture

The architectures of proposed networks are shown in Figure 1. In the RDC-Net (Figure 1a),
we take the 33 x 33 sized image block as input and acquire CS measurements by traditional random
measurement matrix. In the FDC-Net (Figure 1b), we take the same sized image block as input
and acquire CS measurements by fully connected measurement matrix. With the CS measurements,
the preliminary reconstructed image can be realized via a fully connected layer. Then, the dual-channel
reconstruction network module H() takes the preliminary reconstructed image as input and outputs
the corresponding higher quality image. Finally, the BM3D [49] is used to remove the artifacts caused
by block-wise processing.

4. Experiments

In this section, we perform a multitude of experiments to test the performance of the proposed
networks on the Caffe [50] platform. Our computer is equipped with intel core i7-6700 with frequency
of 3.4 GHz and Nvidia GeForce GTX 1080Ti, and the network framework runs on the ubuntu system.

4.1. Training Data

For a fair comparison, the same dataset [16] is used to generate the training data and test data.
We use the luminance component of the images and extract 33 x 33 sized image patches with stride 14
from 91 images [16] as training set. We also use the luminance component of the images and extract
33 x 33 sized image patches with stride 14 from 5 images [16] as test images. Both RDC-Net and
FDC-Net use the same dataset and are trained with different MRs = 0.01, 0.04, 0.10 and 0.25. Especially,
we take about 8 h to train the proposed networks.

4.2. Training Strategy

The training procedure of RDC-Net and FDC-Net consists of two steps. In the first step,
we train preliminary reconstructed module with a slightly big learning rate to obtain the preliminary
reconstructed image and parameters of O)f. The maximum number of iterations, the learning rate,
the step size, the batch size and the gamma are set as 800,000, 0.001, 200,000, 128 and 0.5, respectively.
The second step is to optimize preliminary reconstruction module and DC-Net module with a gradually
decline learning rate and updates parameters of Qf and Qf. Especially, the maximum number of
iterations, the learning rate, the decay rate, the decay steps and the batch size are set as 200,000, 0.0001,
0.98, 1000 and 64.

4.3. Comparison with Other Methods

In this part, we compare two proposed networks with existing methods such as NLR-CS [51],
D-AMP [14], TVAL3 [10], ReconNet [16], SDA [15], DR?-Net [17] and ConvCSNet [24]. In particular,
NLR-CS, TVAL3, D-AMP, ReconNet, DR2-Net, CSRNet and RDC-Net obtain the CS measurements by
traditional random measurement matrix. SDA [15], ConvCSNet [24], ASRNet and FDC-Net obtain
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CS measurements by learning-based approaches. The results of TVAL3, NLR-CS, D-AMP, ReconNet
and DR?-Net are from the code presented by the respective authors on their websites. Especially,
the results of SDA are from our own reproduction. The results of CSRNet and ASRNet refer to the
paper [25]. In the training stage, we use the default parameters to train these networks many times
to get the many test models. Then we use these test models to obtain reconstruction results. In this
paper, we choose PSNR and SSIM as the evaluation criterions. The related experiment results are

summarized in Tables 1 and 2, where the best results are highlighted in bold.

Table 1. Reconstruction results for test images through different algorithms at different measurement

rates. “Mean” is the mean value among all test images.

PSNR (without Using BM3D/with Using BM3D)

Image Name Methods
MR =0.01 MR = 0.04 MR =0.10 MR =0.25
TVAL3 1194 1196 1897 1899 21.85 2223 2421 2426
NLR-CS 550 586 11.08 1156 14.80 14.84 28.01 28.00
D-AMP 548 551 1637 1637 2123 2124 25.08 25.96
Barbara ReconNet 18.61 19.07 20.38 21.20 2190 2251 2320 2355
DR?-Net 18.65 19.10 20.69 21.31 22.69 22.84 2577 2599
CSRNet  19.10 19.21 21.27 2149 2294 2295 2617 2634
RDC-Net 19.13 19.22 21.07 21.18 23.17 2321 25.80 2591
TVAL3 1035 1037 16.03 16.07 18.68 1871 2271 22.68
NLR-CS 4.85 5.19 9.67 10.10 1280 12.84 23,51 23.52
D-AMP 466 474 1383 1400 1713 17.14 2518 24.15
Fingerprint  ReconNet 14.82 14.88 1691 1696 20.75 20.96 2557 25.14
DR?-Net 1473 1495 17.38 1747 22.02 2244 27.65 27.76
CSRNet  15.11 1518 17.59 17.68 21.64 2191 2722 2749
RDC-Net 15.03 15.05 1743 1745 21.87 21.89 2738 2791
TVAL3 9.75 9.78 14.87 1491 1889 1893 24.06 24.08
NLR-CS 4.45 476 898 926 1215 1224 2241 22.66
D-AMP 433 435 1294 13.07 1694 16.86 25.02 24.46
Flinstones ReconNet 1396 14.07 1631 1656 1892 19.20 2246 22.60
DR?>-Net 14.00 1418 1694 17.06 21.08 2145 26.19 26.79
CSRNet 1432 1439 1729 1741 2052 2082 2546 2547
RDC-Net 14.29 1451 1715 17.38 21.00 21.88 2594 26.08
TVAL3 11.87 1191 1947 1953 2417 2421 28.68 28.72
NLR-CS 5.96 6.26 11.62 1198 1531 1534 29.39 29.67
D-AMP 573 596 1653 16.87 2253 2254 28.00 27.46
Lena ReconNet 17.87 18.07 21.28 21.83 23.83 2451 2652 26.55
DR?>-Net 1797 1843 2213 2273 2538 2577 2942 29.64
CSRNet  19.11 19.20 2289 23.17 2572 2597 2955 29.70
RDC-Net 18.69 1896 23.17 23.37 26.19 26.57 29.78 29.97
TVAL3 11.09 1112 16.74 16.75 21.16 21.16 2775 27.77
NLR-CS 6.38 6.76 11.62 1198 14.60 14.67 2591 26.10
D-AMP 6.21 621 1457 1457 19.00 19.00 26.39 26.56
Monarch ReconNet 1539 1547 1818 1833 21.10 2251 2432 25.05
DR?>-Net 1533 1550 1893 19.23 23.10 2354 2794 2830
CSRNet 1542 1546 1941 19.60 2299 2325 2798 28.37
RDC-Net 15.73 1597 19.03 19.31 2347 23.61 28.10 29.52
TVAL3 1144 1146 1888 1891 2313 23.15 2718 27.24
NLR-CS 512 544 1060 1092 14.14 14.18 26.53 26.72
D-AMP 508 508 1578 1578 21.63 21.63 26.88 26.99
Parrot ReconNet 17.61 1831 20.27 21.06 22.63 2325 2559 2622
DR?>-Net 18.01 1841 21.16 21.86 2395 24.32 2872 29.10
CSRNet  19.50 19.61 2216 22.31 24.79 25.01 2886 29.05
RDC-Net 1927 19.71 2186 2198 2445 2498 28.94 29.01
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Table 1. Cont.

PSNR (without Using BM3D/with Using BM3D)

Image Name Methods
MR = 0.01 MR = 0.04 MR =0.10 MR = 0.25
TVAL3 11.86 11.87 1921 1921 23.85 23.86 28.81 28.81
NLR-CS 5.38 5.73 10.77 1122 1483 1486 29.11 29.25
D-AMP 5.34 535 16.01 16.01 2195 2195 29.26 29.26
Boats ReconNet 1849 18.87 2138 21.62 2415 2421 2730 27.35
DR%-Net 18.67 1896 2211 2250 2558 2591 30.09 30.30
CSRNet 1899 19.09 22.38 22,55 2565 2580 30.14 30.36
RDC-Net 19.16 19.32 2220 2235 2591 26.08 30.18 30.35
TVAL3 11.97 1198 1830 1833 2191 2192 2569 25.70
NLR-CS 5.98 6.36 11.04 1146 1418 1422 2488 24.97
D-AMP 5.64 5.65 1512 15.12 20.35 20.35 2442 24.56
Cameraman ReconNet 17.11 1749 1928 19.73 21.29 21.67 23.16 23.61
DR2-Net 17.08 1734 19.84 2031 2246 2276 2561 2591
CSRNet 1775 1790 20.23 20.38 2229 2253 2585 26.15
RDC-Net 1795 18.21 20.38 20.61 2293 23.11 2596 26.17
TVAL3 1098 11.02 20.64 20.65 28.69 28.74 3541 3555
NLR-CS 3.92 4.26 9.08 946 1353 13.54 35.73 3591
D-AMP 3.84 3.84 1627 1631 2550 2553 3545 35.06
Foreman ReconNet 20.04 20.33 2372 2461 2710 2858 2947 30.79
DR2-Net 2059 21.08 2534 2632 2920 30.18 3353 34.28
CSRNet 23.12 23.32 27.78 2818 3096 31.35 3489 35.10
RDC-Net 2298 23.07 2727 2729 3129 31.61 35.11 3531
TVAL3 11.86 1190 2094 2096 26.29 2633 32.09 3214
NLR-CS 4.96 526 10.66 11.08 14.77 14.80 34.20 34.21
D-AMP 5.00 5.01 1691 1637 24.83 2473 33.64 3296
House ReconNet 19.31 19.52 2257 2320 26.69 26.70 2847 29.20
DR%-Net 19.61 19.99 2391 2470 2752 2842 31.82 3252
CSRNet  20.67 20.79 2455 2485 2824 28.68 3246 33.05
RDC-Net 20.68 20.87 24.89 2492 28.57 28.81 32.87 33.07
TVAL3 11.35 1137 1821 1823 22.64 22,65 29.61 29.65
NLR-CS 5.76 6.11 1138 11.81 1494 1499 28.89 29.24
D-AMP 5.79 5.84 16.17 1646 2133 21.38 29.88 28.96
Peppers ReconNet 16.83 1698 19.57 20.00 22.15 22.68 24.77 25.15
DRZ-Net 1690 17.11 2032 20.75 23.72 2426 2848 29.11
CSRNet 1761 17.67 21.18 21.51 2435 24.65 2858 29.19
RDC-Net 17.69 17.71 21.03 2121 2439 2464 29.27 29.97
TVAL3 11.31 1134 1839 1841 22.84 2290 2784 27.87
NLR-CS 5.30 5.64 1059 1098 14.19 1423 28.05 28.20
D-AMP 5.19 523 1550 15,54 21.13 21.12 28.11 27.85
Mean ReconNet 17.28 1755 1999 2046 22.77 2334 2553 2593
DR2-Net 17.41 1773 20.80 2129 2425 2472 2866 29.06
CSRNet 18.25 1835 21.52 21.74 2455 2481 28.83 29.11
RDC-Net 1824 1842 2141 2155 24.84 2513 29.03 29.39
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Table 2. Reconstruction results for test images through different algorithms at different measurement

rates. “Mean” is the mean value among all test images.

PSNR (without Using BM3D/with Using BM3D)

Image Name  Methods
MR = 0.01 MR = 0.04 MR =0.10 MR =0.25
SDA 1859 1876 2049 20.86 2217 2239 2319 2321
Barbara ConvCSNet 1814 1835 20.85 21.00 2295 2301 2585 25.98
ASRNet 21.40 2152 2348 2354 2434 2435 2630 2643
FDC-Net 21.65 21.71 23.56 23.71 2425 24.52 2791 28.00
SDA 14.81 14.82 16.85 16.87 2029 2032 2429 2421
Fingerprint ConvCSNet 1454 14.82 1844 1871 1976 20.11 28.00 28.11
ASRNet 1620 16.21 2098 21.45 26.25 26.83 2882 29.23
FDC-Net 16.47 16.52 21.07 21.11 2593 26.11 3091 31.08
SDA 1391 1396 1621 16.10 1840 1821 20.88 20.21
Flinstones ConvCSNet 15.04 1532 1722 1758 1949 19.82 2642 26.53
ASRNet 1630 16.39 19.78 20.08 24.01 24.56 2693 27.40
FDC-Net 16.43 1649 20.29 20.54 2442 2455 2881 28.91
SDA 17.84 1795 2117 2156 23.81 2416 2587 25.70
Lena ConvCSNet 1797 18.16 21.78 22.08 2527 2561 2711 2732
ASRNet 21.74 2193 2574 2593 2854 2878 30.65 30.89
FDC-Net 21.67 2171 26.25 2638 28.85 2893 32.69 3291
SDA 1531 1538 1811 18.19 2095 21.04 2354 23.32
Monarch ConvCSNet 1631 1681 1892 1918 21.76 22.01 2659 26.71
ASRNet 1774 17.85 2323 2349 2717 2750 2929 29.60
FDC-Net 18.03 1846 23.53 23.52 27.51 27.83 31.79 3197
SDA 1771 17.89 2037 20.67 2214 2235 2448 2437
Parrot ConvCSNet 17.86 18.15 20.55 21.18 2441 2485 2626 2638
ASRNet 21.87 22.01 24.52 2467 2768 27.85 29.61 29.80
FDC-Net 22.09 2225 2450 2474 27.68 2784 3176 31.94
SDA 1855 18.68 2129 21.54 24.01 2418 2656 26.24
Boats ConvCSNet 1811 1839 21.81 22.08 24.82 2531 27.86 27.98
ASRNet 21.53 21.69 2552 2572 2886 29.17 3128 31.64
FDC-Net 21.39 2150 25.77 26.00 29.08 29.18 33.95 33.97
SDA 17.06 1719 1931 1956 2115 2130 2277 22.64
Cameraman ConvCSNet 17.61 1792 1940 20.01 2231 2269 2515 2526
ASRNet 19.77 19.89 2274 2288 25.00 2513 2646 26.66
FDC-Net 20.13 20.21 2294 23.08 2528 2531 28.97 29.04
SDA 20.08 2024 2362 24.09 2643 2716 2840 2891
Foreman ConvCSNet 19.09 1954 2246 2281 2597 2611 3039 30.81
ASRNet 2577 2614 3056 30.78 33.79 3409 3585 36.19
FDC-Net 25.87 2592 31.08 3118 3451 34.71 3825 38.39
SDA 1945 1959 2251 2294 2541 2607 27.65 27.86
House ConvCSNet 1840 18.82 2222 2271 2646 2651 26.76 26.98
ASRNet 23.13 2331 27.82 2821 3147 31.87 3344 33.84
FDC-Net 23.08 2314 28.03 2821 31.67 3179 3575 3598
SDA 1693 17.04 19.63 19.89 2210 2235 2431 2415
Peppers ConvCSNet 17.69 18.01 20.76 21.08 2312 23.66 2626 26.51
ASRNet 20.17 2033 24.03 2432 27.03 2737 29.72 30.18
FDC-Net 20.21 20.56 24.41 2472 27.10 2721 32.81 3292
SDA 1729 1741 1996 2021 2243 2268 2472 2455
Mean ConvCSNet 1734 17.66 2040 20.77 2330 2361 2697 2714
ASRNet 20.51 20.66 2440 2465 2765 2796 29.85 30.17
FDC-Net 20.64 20.77 24.68 24.83 27.84 28.00 3215 32.28
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DR - Net

RDC-Net

FDC-Net

PSNR:21.65dB 5SIM:0.4782 PSMNR:23.56dB 55IM:0.6391 PSNR:24.25dB SSIM:0.7112 PSNR:27.01dB S5IM:0.8657

Figure 3. Barbara image reconstruction results from different networks. We can obviously find that

two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR?-Net.

MR=0.01 MR=0.04 MR=0.10 MR=0.25

PSNR:14.73dB S51M:0.1737 PSNR:17.38dB S51M:0.4702

FDC-Net

Figure 4. Fingerprint image reconstruction results from different networks. We can obviously find that

two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR2-Net.
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MR=0.01 MR=0.04 MR=0.10 MR=0.25

FDC-Net

PSNR:18.03dB 5SIM:0.4966 PSMNR:23.53dB 55IM:0.7652 PSNR:27.51dB SSIM:0.8803 PSNR:31.79dB S5IM:0.9587

Figure 5. Monarch image reconstruction results from different networks. We can obviously find that
two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR?-Net.

As shown in Table 1, RDC-Net obtains the higher mean PSNR values than other methods at
MRs = 0.10, 0.25. However, in some test images (e.g., barbara, Fingerprint, Flinstones), other reconstruction
methods (NLR-CS or DR?-Net) obtain slightly higher reconstruction quality, and we also compare
the reconstruction performance of FDC-Net, SDA, ConvCS-Net and ASRNet in Table 2. It is obvious
that FDC-Net outperforms other methods at measurement rates 0.01, 0.04, 0.10 and 0.25. Especially
at MR = 0.25. FDC-Net obtains 2.3 dB improvement than the second highest value. In Figures 3-5,
we compare the visual reconstruction results among FDC-Net, RDC-Net and DR?-Net. We can easily
find that our reconstruction results have better visual effects. For example, Figure 4 is a fingerprint
image. Our visual reconstruction results have a clearer texture, clean areas and sharp edges than
DR?-Net in the enlarged patches at four MRs , while the visual reconstruction results of DR?>-Net have
blurred textures and confusing areas.

4.4. Evaluation on Different Network Architectures

In order to evaluate the effectiveness of our main model, FDC-Net, we design other different
network architectures such as single channel networks (One-densblock and Two-resblocks)and
dual-channel networks (one-resblock + one-densblock, two-resblocks + two-densblock, three-resblocks
+ one-densblock). “One-densblock” means that we use the dense block channel (Figure 1b) to recover
the image from CS measurements. “Two-resblocks” means that we use the residual block channel
(Figure 1b) to recover the image. “one-resblock + one-densblock”, “two-resblocks + two-densblock”
and “three-resblocks + one-densblock” represent that we use one residual block and one dense block,
two residual blocks and two dense blocks, three residual blocks and one dense block to improve the
preliminary reconstructed image quality respectively. The relevant results are summarized in Table 3,
where the best results are highlighted in bold.
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Table 3. Performance comparison among different network architectures.

PSNR (without Using BM3D/with Using BM3D)

Models
MR =0.01 MR = 0.04 MR =0.10 MR =0.25
One-densblock 2041 2052 2417 2482 2729 2755 3029 30.85
Two-resblocks 20.37 2050 2441 2472 2752 2783 3057 30.99

one-resblock+one-densblock 2043 2048 2443 2475 2750 2778 3047 30.98
two-resblocks+two-densblock  20.60 20.78 2457 2480 2754 2776 31.64 32.06
three-resblocks+one-densblock  20.66 20.83 24.60 24.89 2749 27.68 3155 31.81
FDC-Net 20.64 20.82 24.68 2497 27.84 28.27 3215 3242

As shown in Table 3, it is obvious that FDC-Net outperforms other networks at MRs = 0.04,
0.10, 0.25. When we only use one channel module (one-densblock or two-resblocks) to recover the
original image from its CS measurements, the reconstruction results are good. But we combine two
channel modules, FDC-Net obtains obviously outstanding performances, which is probably because
the residual block channel can improve reconstruction quality and dense block channel can expedite
calculation. One-resblock + one-densblock, three-resblocks + one-densblock and two-resblocks +
two-densblocks all obtain outstanding performance. Although the three-resblocks + one-densblocks
obtains higher PSNR than FDC-Net at MR = (.01, it increases the time complexity and has lower PSNR
than FDC-Net at MRs = 0.04, 0.10, 0.25. Therefore, we use the two residual blocks and one dense block
to build the dual-channel reconstruction module.

MR=0.01 MR=0.04
22 T 26 T —
~-DR2-Net ==DR2-Net
-+ FDC-Net s ~FDCNet
20F | RDC-Net| | “RDC-Net |

PSNR(dB)
> ®»
PSNR(dB)

-
>

12~ 1
12} 1
10-

0 0.01 0.05 0.10 0.25 0.5 0 0.01 0.05 0.10 0.25 0.5
Standard Variance of Noise Standard Variance of Noise
MR=0.10 MR=0.25
30 ‘ ‘ 35 ‘ —
-+-DR2-Net ==DR2-Net
~-FDC-Net “~FDC-Net
RDC-Net 30 Net 1
2. | RDC-Net
25
m20[ )
el 2
['4 20
2 15¢ o
151
10 10+
0 0.01 0.05 0.10 0.25 0.5 0 0.01 0.05 0.10 0.25 0.5
Standard Variance of Noise Standard Variance of Noise

Figure 6. Robustness comparison to different Gaussian noise among the different networks.
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4.5. Robustness to Noise

To show the robustness of proposed networks to noise, we perform reconstruction experiments
under the presence of measurement noise. The standard Gaussian noise is added to CS measurements
of test set. We add five levels of noise corresponding to 6 = 0.01, 0.05, 0.10, 0.25 and 0.5, where J is
the standard variance for the Gaussian noise. Then, two proposed networks trained on the noiseless
CS measurements take the noisy CS measurements as input and output the reconstruction images.
Here, we mainly compare the three algorithms: DR2-Net, RDC-Net, FDC-Net. The related results are
summarized in Figure 6.

From Figure 6, it is obvious that two proposed networks mostly outperform the DR2-Net for

= 0.01, 0.05, 0.10, 0.25 and 0.5 at four MRs. Especially, the decay of FDC-Net’s performance is slower
than DR2-Net’s at MRs = 0.01, 0.04, which indicates that our FDC-Net have outstanding robustness at
low measurement rates.

4.6. Evaluation on ImageNet Val Dataset

To testify the scalability of proposed networks, we also perform reconstruction experiments
between two proposed networks with DR2-Net on the large-scale ImageNet val dataset [52] and it
includes 50,000 images of 1000 classes. The experimental results are shown in Table 4, where the best
results are highlighted in bold.

As shown in Table 4, the two proposed networks obtain better performances than DR?-Net at four
MRs. Especially at MR = 0.25, RDC-Net, FDC-Net achieves nearly 3 dB and 5 dB improvement over
DR?-Net, respectively, which indicates that our proposed networks have better generalization ability
than DR2-Net.

Table 4. The PSNR value of different networks on ImageNet Val dataset.

Models MR=0.01 MR=0.04 MR=010 MR=0.25

DR?-Net 23.27 25.90 27.78 29.10
RDC-Net 23.87 26.92 29.76 32.07
FDC-Net 25.76 29.11 31.32 34.05

4.7. Time Complexity and Network Convergence

In this paper, we also perform the time complexity experiments between two proposed algorithms
and DR2-Net. The related results are shown in Table 5, where the best results are highlighted in bold.

From Table 5, we can observe that two proposed networks have slightly less runtime than DR?-Net,
and FDC-Net gains best results, which is helpful for CS real-time applications.

Table 5. Time (s) for reconstructing a single 512 x 512 image.

Models MR=0.01 MR=0.04 MR=010 MR=0.25

DR2-Net 0.0686 0.0676 0.0680 0.0678
RDC-Net 0.0590 0.0591 0.0595 0.0591
FDC-Net 0.0570 0.0566 0.0579 0.0571

In order to further demostrate that our proposed networks have better convergence performance
than DR?-Net, we perform a convergence experiment between FDC-Net and DR2-Net at MR = 0.04.
Figure 7 shows that training error and test error of FDC-Net are smaller than DR?-Net,
which demonstrates that our network is easier to converge than DR2-Net.
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Convergence comparison

12 —FDC_test
—DR2_test
FDC_train
§ e —DR2_train
o
e
)

0 10 20 30 40 50 60 70 80 90 100
iter. (1e4)

Figure 7. Convergence comparison between FDC-Net and DR2-Net. It is obvious that our FDC-Net
has smaller training error and test error than DR?>-Net.

5. Conclusions

Inspired by the fact that deep learning-based methods can improve reconstruction performance
and enormously reduce computation compared to traditional iterative reconstruction algorithms,
we propose a novel dual-channel reconstruction network module (DC-Net module) to build two CS
reconstruction networks: the first one recovers an image from its traditional random under-sampling
measurements (RDC-Net); the second one recovers an image from its CS measurements acquired by a
fully connected measurement matrix (FDC-Net). Especially, DC-Net module consists of one dense
block and two residual blocks. We use a fully connected layer to obtain a preliminary reconstructed
image, and DC-Net module is used to further improve the preliminary reconstructed image quality.
Extensive experiments show that our networks outperform the state-of-the-art CS algorithms in
both PSNR and visual quality. Moreover, our networks also have outstanding robustness and lower
time complexity.
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