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Abstract: The existing compressive sensing (CS) reconstruction algorithms require enormous
computation and reconstruction quality that is not satisfying. In this paper, we propose a novel
Dual-Channel Reconstruction Network (DC-Net) module to build two CS reconstruction networks:
the first one recovers an image from its traditional random under-sampling measurements (RDC-Net);
the second one recovers an image from its CS measurements acquired by a fully connected
measurement matrix (FDC-Net). Especially, the fully connected under-sampling method makes
CS measurements represent original images more effectively. For the two proposed networks, we use
a fully connected layer to recover a preliminary reconstructed image, which is a linear mapping
from CS measurements to the preliminary reconstructed image. The DC-Net module is used to
further improve the preliminary reconstructed image quality. In the DC-Net module, a residual block
channel can improve reconstruction quality and dense block channel can expedite calculation, whose
fusion can improve the reconstruction performance and reduce runtime simultaneously. Extensive
experiments manifest that the two proposed networks outperform state-of-the-art CS reconstruction
methods in PSNR and have excellent visual reconstruction effects.
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1. Introduction

In the past decade, compressive sensing [1] theory has achieved great success in signal sampling
paradigm because it can obtain high-quality recovery from CS measurements. Based on CS, several new
imaging systems have been developed, such as single-pixel camera [2], compressive spectral imaging
system [3], Hyperspectral imaging [4], high-speed video camera [5] and fast Magnetic Resonance
Imaging (MRI) system [6].

For a given image x ∈ RN, the CS linear measurements y = Φx ∈ RM, where Φ is an M× N
measurement matrix and M � N. The original image has a sparse representation x = Ψs where Ψ
is an N × N basis matrix. Compressive sensing is mainly concerned with the problem of recovering
original image x from CS measurements y, which contains two kinds of methods: conventional iterative
optimization strategies [7–14] and deep learning-based methods [15–18].

Early researchers have proposed some iterative algorithms such as matching pursuit [7], orthogonal
matching pursuit (OMP) [8,9], iterative hard thresholding [11], iterative soft thresholding [12] and
approximate message passing (AMP) [13,19]. However, these iterative algorithms are usually very
slow to converge. To alleviate such difficulty, block-based CS methods have been proposed [20,21],
although they still need expensive computation. Inspired by the great success of deep neural
networks for computer vision tasks [22,23], learning-based CS reconstruction methods have been
developed [15–18,24]. However, compared with the traditional CS methods, deep learning-based
methods require additional training process, which brings the need for a training set. However,
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deep learning-based methods have faster reconstruction speed via a simple forward computing.
Especially, the reconstruction performance and time complexity of existing learning-based methods
are still not satisfying and can be further improved. In some learning-based methods such as SDA [15],
DR2-Net [17], ConvCSNet [24] and ASRNet [25], especially, SDA and ConvCSNet directly obtain the CS
measurements based on the whole image. This easily leads to an increase in computational complexity
as the input image size increases. DR2-Net and ASRNet extract image patches from data set, while they
need to build deeper models (enormous computation) to recover the original image. We have analysed
this phenomenon: in the DR2-Net with single channel four residual blocks [17], authors compare
the performance of fc1089-Res1, fc1089-Res2, fc1089-Res3, fc1089-Res4. We can easily find that fc1089-Res2

and fc1089-Res4 have similar performance at MRs = 0.01, 0.10, while the performance of fc1089-Res4 has
not been greatly improved compared with fc1089-Res2. Especially, dense blocks [22] can strengthen
feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Therefore, we use one dense block to replace the two residual blocks of the fc1089-Res4. What is more,
the connection mode is not a cascade but parallel, which can alleviate the vanishing-gradient problem
to some extent. So we use dual-channel shallower network (less computation) of two residual blocks
and one dense block to build the dual-channel reconstruction module. which can further improve the
image reconstruction quality. Especially, a residual block channel can capture rich image features and
improve the reconstruction performance. The dense block channel can expedite calculation because of
its fewer parameters.

In this paper, we propose a novel dual-channel reconstruction module (DC-Net module) based
on two residual blocks and one dense block, and we use this module to build two CS reconstruction
networks: RDC-Net and FDC-Net. The first layer of the RDC-Net senses an input image by traditional
Gaussian random matrix, while the first layer of the FDC-Net senses an input image by fully connected
measurement matrix. The second layer of RDC-Net and FDC-Net is a fully connected layer to recover
a preliminary reconstructed image. Then, DC-Net module is used to further improve the preliminary
reconstructed image quality.

Extensive experiments show that the proposed networks can obtain better performance than the
state-of-the-art CS reconstruction algorithms in terms of PSNR and visual effects. Our contributions
can be summarized as follows:

• Unlike the deep-learning network with a very deep single-channel, we propose a novel shallow
dual-channel reconstruction module for image compressive sensing reconstruction, in which each
channel can extract different level features. It brings the better reconstruction quality.

• The proposed DC-Net module has two residual blocks and one dense block. Because the dense
block has fewer parameters than residual block, the time complexity of the proposed method is
lower than DR2-Net with four residual blocks.

• In our method, two residual blocks in one channel can obtain high level features and one dense
block in another channel can obtain the low level features. Experiment results show both RDC-Net
and FDC-Net have better robustness than DR2-Net.

2. Related Work

There are many traditional optimization algorithms [7–10,20,26,27] which are used to solve the
CS reconstruction problem. AmitSatish Unde et al. proposed a reconstruction algorithm based
on iterative re-weighted l1 norm minimization [20]. A.Metzler et al. proposed a denoising-based
AMP framework (D-AMP), which integrated a wide class of denoiser within its iterations [14].
A. Metzler et al. also developed a novel neural network architecture that mimics the behavior of the
denoising-based approximate message algorithm (LDAMP) [19]. Jin Tan et al. employed an adaptive
Wiener filter as the image denoiser into AMP framework, called “AMP-Wiener”. They extended
AMP-Wiener to three-dimension, called “AMP-3D-Wiener” for compressive hyperspectral imaging
reconstruction problem [28]. Philip Schniter et al. integrated the D-AMP into auto-tuning method
to form the D-VAMP [29]. E Tipping et al. presented an accelerated training algorithm for sparse
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bayesian models. They exploited a recent result concerning the properties of the marginal likelihood
function to derive a ’constructive’ method for maximisation thereof [30]. Jiao Wu et al. proposed
a stage-wise fast lp-sparse Bayesian learning algorithm through integrating with a fast sequential
learning scheme and a stage-wise strategy for CS reconstruction [31]. Thomas et al. proposed an
iterative hard thresholding for compressed sensing [11]. Xiangming Meng et al. presented a unified
Bayesian inference framework for generalized linear models (GLM), which iteratively reduced the
GLM problem to a sequence of standard linear model (SLM) problems [32]. Jiang Zhu et al.proposed
an approximate message passing-based generalized sparse Bayesian learning (AMP-Gr-SBL) algorithm
to reduce the computation complexity of Gr-SBL algorithm [33]. Jun Fang et al. proposed a 2D
pattern-coupled hierarchical Gaussian prior model to exploit the underlying block-sparse structure.
This pattern-coupled hierarchical Gaussian prior model imposed a soft coupling mechanism among
neighboring coefficients through their shared hyperparameters [34]. Mohammad Shekaramiz et al.
proposed a new sparse Bayesian learning (SBL) method that incorporated a total variation-like
prior as a measure of the overall clustering pattern in the solution [35]. Saman et al.presented an
generative iterative thresholding algorithm for linear inverse problems with multi-constraints and
its applications [26]. Bin Kang et al. proposed an efficient image fusion framework for multi-focus
images based on compressed sensing. The new fusion framework consisted of three parts: image
sampling, measurement fusion and image reconstruction. This novel fusion framework was capable
of saving computational resource and enhancing the fusion result and was easy to implement [36].
Kezhi Li et al. proposed a new class of orthogonal circulant matrices built from deterministic sequences
for convolution-based compressed sensing [37]. Nam Yul Yu et al. proposed to construct a filter with
real-valued coefficients by taking the discrete Fourier transform of a decimated binary Sidelnikov
sequence [38]. Weisheng Dong and Guangming Shi et al. presented a learning method for compressive
image recovery. PAR models were first learned from training set and then used to regularize
the compressive image recovery process [39]. However, the above algorithms suffer from serious
time-consuming, which has become the bottleneck for the application of image compressive sensing.

In recent years, deep learning-based methods have shown promising performance in compressive
image recovery [15–18,40]. Yu Simiao et al. proposed a conditional Generative Adversarial
Networks-based deep learning framework for de-aliasing and reconstructing MRI images from highly
undersampled data with great promise to accelerate the data acquisition process [41]. Guang Yang et al.
provided a deep learning-based strategy for reconstruction of CS-MRI, and bridged a substantial gap
between conventional non-learning methods working only on data from a single image, and prior
knowledge from large training data sets [40]. Seitzer, Maximilian et al. proposed a hybrid method,
in which a visual refinement component was learnt on top of an MSE loss-based reconstruction
network [42]. Schlemper, Jo et al. proposed a novel cascaded convolution neural networks based on
compressive sensing technique and explore its applicability to improve DT-CMR acquisitions [43].
The stacked denoising autoencoder (SDA) [15] considered the mapping from original signal to its
measurement vector as one layer of the SDA. This kind of measurement method made SDA adapt its
structure to the training set. However, it enhanced computational complexity along with the size of
input image increased. Kulkarni et al. [16] proposed a block-based Network to realize the non-iterative
image recovery. It took CS measurements of image block as input and output its corresponding
reconstruction image block. DR2-Net [17] contained a linear mapping to recover a preliminary
reconstructed image, in which residual blocks [23] could further improve the reconstruction quality.
Xiaotong Lu and Weisheng Dong et al. [24] proposed a novel convolutional compressive sensing
framework (ConvCSNet) based on deep convolutional neural network, which captured the image
measurements by a convolutional operation.

Deep Residual Network: Lately, the deep residual network (ResNet) [23] had achieved promising
performance on many computer vision tasks such as Image Recognition [23] and Image Denoising [44].
The ResNet introduces identity shortcut connections that directly pass the data flow to later layers
compared with the traditional convolutional network. Therefore, we use the ResNet to avoid
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the loss attenuation caused by multiple non-linear transformations and ResNet consists of many
residual blocks.

Densely Connected Network: Recently, the densely connected network (DensNet) [22] also
obtained an enormous success in image detection, classification and semantic segmentation. Compared
with the deep Residual Network [23], the DensNet introduces identity shortcuts to all layers,
which makes a better use information of all features. Especially in reconstruction tasks, the architecture
of DensNet can make comprehensive utilization of shallow detailed features to recover original image
and DensNet consists of many dense blocks.

To further improve reconstruction quality and reduce runtime in CS reconstruction, in this paper,
we use two residual blocks and one dense block to build a dual-channel reconstruction network module.
This module can improve the image reconstruction quality and reduce time complexity simultaneously,
which is used to build two CS reconstruction networks: the first one recovers original image from
its CS measurements acquired by random Gaussian under-sampling measurements (RDC-Net) and
the second one recovers original image from its CS measurements acquired by the fully connected
measurement matrix (FDC-Net).

The remainder of this paper is organized as follows: In Section 3, we introduce dual-channel
reconstruction network module and two kinds of reconstruction networks. In Section 4, we design
extensive experiments to evaluate our proposed reconstruction networks. Finally, we conclude the
paper in Section 5.

3. Network Architecture

As shown in Figure 1. we propose two kinds of reconstruction networks: RDC-Net and FDC-Net.
Firstly we introduce traditional random under-sampling, fully connected under-sampling approaches
and preliminary reconstructed module. Then we discuss dual-channel reconstruction network module.

(a) RDC-Net

(b) FDC-Net

(c) Residual block (d) Dense block

Figure 1. (a) The architecture of dual-channel reconstruction network with random measurement
matrix (RDC-Net). (b) The architecture of dual-channel reconstruction network with fully connected
measurement matrix (FDC-Net). (c) The structure of residual block. (d) The structure of dense block.
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3.1. Under-Sampling and Preliminary Reconstruction

In the compressive sensing theory [1], there are some under-sampling approaches such as
random Gaussian measurement [45], random Fourier measurement [46] and random Bernoulli
measurement [47]. Random Gaussian measurement matrix is mostly used in CS theory and we
also use Gaussian measurement matrix in RDC-Net.
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In the FDC-Net, we use a fully connected layer (Figure 2b) as the measurement matrix to imitate
the traditional under-sampling method in Figure 2a. In particular, such fully connected layer has
no bias and activation function, and it learns a linear transformation from the original image to CS
measurements. Both random Gaussian measurement matrix and learning measurement matrix have
the similar mathematical formula as Equation (1). We expect that the learning measurement matrix
(Equation (4)) is well adapted to the distribution of original image and denote this layer as y f = W1 · x,
and the traditional Gaussian measurement method can also be expressed by yr = W2 · x, where
W1, W2 ∈ RM×N (M� N) and W2 conforms to the Gaussian distribution. Especially, x is the original
image and yr, y f are the corresponding CS measurements of RDC-Net and FDC-Net, respectively.

(a) (b)

Figure 2. (a) Random Gaussian matrix is used as measurement matrix Φ. (b) The fully connected
matrix is used as measurement matrix and the parameters are learned from training set.

Afterwards, we use a fully connected layer to recover a preliminary reconstructed image x∗c .
We denote the preliminary reconstructed module and the corresponding parameters as f (�) and Ωp

c
respectively, where c ∈ {RDC-Net, FDC-Net}, p represents the preliminary reconstructed module.
The preliminary reconstructed image can be expressed by:

x∗c = f
(

yc, Ωp
c

)
(2)

and mean squared error (MSE) is used as the loss function for the training set:

L
(
{Ωp

c }
)
=

1
M

M

∑
i=1

∥∥∥ f (yc
i , Ωp

c )− xi

∥∥∥2

2
(3)

W1 = arg min
w1

1
M

M

∑
i=1

∥∥∥ f
(

W1 � xi, Ωp
f

)
− xi

∥∥∥2

2
(4)



Sensors 2019, 19, 2549 6 of 18

where M, W1 represent the number of training samples and learning measurement matrix respectively.
Back propagation [48] algorithm is used to minimize the loss function defined in Equation (3).

3.2. Dual-Channel Network Module

In Section 3.1, we only obtain a preliminary reconstructed image for the reason that it is not easy
to get an exact solution in preliminary reconstructed module. Then, the dual-channel network module
is used to further improve the reconstruction quality. In this paper, two residual blocks and one dense
block are used as one channel separately, and they are fused to build a dual-channel network module.
We firstly make a brief introduction to residual block and dense block.

Compared with the traditional convolutional network, the main difference of the residual network
is that it introduces identity connections that directly pass the data flow to later layers. Given an input
χ, we expect the output of a few stacked layers in network as T (χ). However, it takes great expense
to optimize T (�) in traditional convolutional network. In [23], K. He et al. proposed to approximate
the residual value between T (χ) and χ with the stacked layers. The residual block (Figure 1c) can be
expressed by

F(χ) = T (χ)− χ (5)

In [22], Gao Huang et al. proposed the Dense Convolutional Network (DensNet) for many
computer vision tasks. The traditional convolutional networks with L layers have L connections. While
the DensNet has L(L+1)

2 direct connections, which strengthens feature propagation, encourages feature
reuse and enormously reduces the number of parameters. This kind of network is very useful in the
compressive sensing field. In dense block (Figure 1d), for each layer, all preceding feature maps are
used as its inputs, and its own feature maps are also used as inputs into all subsequent layers. In other
words, it means the mth layer can connect the feature maps of all preceding layers χ0, χ1, ..., χm−1

as inputs:

χm = Γm([χ0, χ1, ..., χm−1]) (6)

where [χ0, χ1, ..., χm−1] denotes the concatenate operation of the feature maps in layers 0, 1, ..., m− 1.
Γm (.) can be regarded as a composite function of four consecutive operations: batch normalization
(BN), scale layer, rectified linear unit (ReLU) and convolution (Conv).

We denote the dual-channel network module as H(χ) that contains two residual blocks and one
dense block, which can be expressed by

H(χ) = 2⊗ F(χ)⊕ 1⊗ Γ(χ) (7)

where the symbol ⊗ represents cascaded operation and ⊕ represents parallel operation between one
dense block and two residual blocks.

In this paper, H(χ) takes x∗c as input and outputs final reconstruction result, which can be
represented as:

x̂c
i = Hc(x∗c , Ωd

c ) (8)
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where d represents the dual-channel network module and the Ωd
c represents the parameters of

dual-channel network module. The loss function of the proposed networks can be expressed by

L
(
{Ωp

c , Ωd
c

}
) =

1
M

M

∑
i=1

∥∥∥∥x̂c
i − xi

∥∥∥∥2

2

=
1
M

M

∑
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∥∥∥Hc

(
x∗c , Ωd

c

)
− xi

∥∥∥2

2

=
1
M

M

∑
i=1

∥∥∥Hc

(
f
(

yc
i , Ωp

c

)
, Ωd

c

)
− xi

∥∥∥2

2

(9)

3.3. Architecture

The architectures of proposed networks are shown in Figure 1. In the RDC-Net (Figure 1a),
we take the 33 × 33 sized image block as input and acquire CS measurements by traditional random
measurement matrix. In the FDC-Net (Figure 1b), we take the same sized image block as input
and acquire CS measurements by fully connected measurement matrix. With the CS measurements,
the preliminary reconstructed image can be realized via a fully connected layer. Then, the dual-channel
reconstruction network module H(χ) takes the preliminary reconstructed image as input and outputs
the corresponding higher quality image. Finally, the BM3D [49] is used to remove the artifacts caused
by block-wise processing.

4. Experiments

In this section, we perform a multitude of experiments to test the performance of the proposed
networks on the Caffe [50] platform. Our computer is equipped with intel core i7-6700 with frequency
of 3.4 GHz and Nvidia GeForce GTX 1080Ti, and the network framework runs on the ubuntu system.

4.1. Training Data

For a fair comparison, the same dataset [16] is used to generate the training data and test data.
We use the luminance component of the images and extract 33 × 33 sized image patches with stride 14
from 91 images [16] as training set. We also use the luminance component of the images and extract
33 × 33 sized image patches with stride 14 from 5 images [16] as test images. Both RDC-Net and
FDC-Net use the same dataset and are trained with different MRs = 0.01, 0.04, 0.10 and 0.25. Especially,
we take about 8 h to train the proposed networks.

4.2. Training Strategy

The training procedure of RDC-Net and FDC-Net consists of two steps. In the first step,
we train preliminary reconstructed module with a slightly big learning rate to obtain the preliminary
reconstructed image and parameters of Ωp

c . The maximum number of iterations, the learning rate,
the step size, the batch size and the gamma are set as 800,000, 0.001, 200,000, 128 and 0.5, respectively.
The second step is to optimize preliminary reconstruction module and DC-Net module with a gradually
decline learning rate and updates parameters of Ωp

c and Ωd
c . Especially, the maximum number of

iterations, the learning rate, the decay rate, the decay steps and the batch size are set as 200,000, 0.0001,
0.98, 1000 and 64.

4.3. Comparison with Other Methods

In this part, we compare two proposed networks with existing methods such as NLR-CS [51],
D-AMP [14], TVAL3 [10], ReconNet [16], SDA [15], DR2-Net [17] and ConvCSNet [24]. In particular,
NLR-CS, TVAL3, D-AMP, ReconNet, DR2-Net, CSRNet and RDC-Net obtain the CS measurements by
traditional random measurement matrix. SDA [15], ConvCSNet [24], ASRNet and FDC-Net obtain
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CS measurements by learning-based approaches. The results of TVAL3, NLR-CS, D-AMP, ReconNet
and DR2-Net are from the code presented by the respective authors on their websites. Especially,
the results of SDA are from our own reproduction. The results of CSRNet and ASRNet refer to the
paper [25]. In the training stage, we use the default parameters to train these networks many times
to get the many test models. Then we use these test models to obtain reconstruction results. In this
paper, we choose PSNR and SSIM as the evaluation criterions. The related experiment results are
summarized in Tables 1 and 2, where the best results are highlighted in bold.

Table 1. Reconstruction results for test images through different algorithms at different measurement
rates. “Mean” is the mean value among all test images.

Image Name Methods
PSNR (without Using BM3D/with Using BM3D)

MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

Barbara

TVAL3 11.94 11.96 18.97 18.99 21.85 22.23 24.21 24.26
NLR-CS 5.50 5.86 11.08 11.56 14.80 14.84 28.01 28.00
D-AMP 5.48 5.51 16.37 16.37 21.23 21.24 25.08 25.96

ReconNet 18.61 19.07 20.38 21.20 21.90 22.51 23.20 23.55
DR2-Net 18.65 19.10 20.69 21.31 22.69 22.84 25.77 25.99
CSRNet 19.10 19.21 21.27 21.49 22.94 22.95 26.17 26.34

RDC-Net 19.13 19.22 21.07 21.18 23.17 23.21 25.80 25.91

Fingerprint

TVAL3 10.35 10.37 16.03 16.07 18.68 18.71 22.71 22.68
NLR-CS 4.85 5.19 9.67 10.10 12.80 12.84 23.51 23.52
D-AMP 4.66 4.74 13.83 14.00 17.13 17.14 25.18 24.15

ReconNet 14.82 14.88 16.91 16.96 20.75 20.96 25.57 25.14
DR2-Net 14.73 14.95 17.38 17.47 22.02 22.44 27.65 27.76
CSRNet 15.11 15.18 17.59 17.68 21.64 21.91 27.22 27.49

RDC-Net 15.03 15.05 17.43 17.45 21.87 21.89 27.38 27.91

Flinstones

TVAL3 9.75 9.78 14.87 14.91 18.89 18.93 24.06 24.08
NLR-CS 4.45 4.76 8.98 9.26 12.15 12.24 22.41 22.66
D-AMP 4.33 4.35 12.94 13.07 16.94 16.86 25.02 24.46

ReconNet 13.96 14.07 16.31 16.56 18.92 19.20 22.46 22.60
DR2-Net 14.00 14.18 16.94 17.06 21.08 21.45 26.19 26.79
CSRNet 14.32 14.39 17.29 17.41 20.52 20.82 25.46 25.47

RDC-Net 14.29 14.51 17.15 17.38 21.00 21.88 25.94 26.08

Lena

TVAL3 11.87 11.91 19.47 19.53 24.17 24.21 28.68 28.72
NLR-CS 5.96 6.26 11.62 11.98 15.31 15.34 29.39 29.67
D-AMP 5.73 5.96 16.53 16.87 22.53 22.54 28.00 27.46

ReconNet 17.87 18.07 21.28 21.83 23.83 24.51 26.52 26.55
DR2-Net 17.97 18.43 22.13 22.73 25.38 25.77 29.42 29.64
CSRNet 19.11 19.20 22.89 23.17 25.72 25.97 29.55 29.70

RDC-Net 18.69 18.96 23.17 23.37 26.19 26.57 29.78 29.97

Monarch

TVAL3 11.09 11.12 16.74 16.75 21.16 21.16 27.75 27.77
NLR-CS 6.38 6.76 11.62 11.98 14.60 14.67 25.91 26.10
D-AMP 6.21 6.21 14.57 14.57 19.00 19.00 26.39 26.56

ReconNet 15.39 15.47 18.18 18.33 21.10 22.51 24.32 25.05
DR2-Net 15.33 15.50 18.93 19.23 23.10 23.54 27.94 28.30
CSRNet 15.42 15.46 19.41 19.60 22.99 23.25 27.98 28.37

RDC-Net 15.73 15.97 19.03 19.31 23.47 23.61 28.10 29.52

Parrot

TVAL3 11.44 11.46 18.88 18.91 23.13 23.15 27.18 27.24
NLR-CS 5.12 5.44 10.60 10.92 14.14 14.18 26.53 26.72
D-AMP 5.08 5.08 15.78 15.78 21.63 21.63 26.88 26.99

ReconNet 17.61 18.31 20.27 21.06 22.63 23.25 25.59 26.22
DR2-Net 18.01 18.41 21.16 21.86 23.95 24.32 28.72 29.10
CSRNet 19.50 19.61 22.16 22.31 24.79 25.01 28.86 29.05

RDC-Net 19.27 19.71 21.86 21.98 24.45 24.98 28.94 29.01
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Table 1. Cont.

Image Name Methods
PSNR (without Using BM3D/with Using BM3D)

MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

Boats

TVAL3 11.86 11.87 19.21 19.21 23.85 23.86 28.81 28.81
NLR-CS 5.38 5.73 10.77 11.22 14.83 14.86 29.11 29.25
D-AMP 5.34 5.35 16.01 16.01 21.95 21.95 29.26 29.26

ReconNet 18.49 18.87 21.38 21.62 24.15 24.21 27.30 27.35
DR2-Net 18.67 18.96 22.11 22.50 25.58 25.91 30.09 30.30
CSRNet 18.99 19.09 22.38 22.55 25.65 25.80 30.14 30.36

RDC-Net 19.16 19.32 22.20 22.35 25.91 26.08 30.18 30.35

Cameraman

TVAL3 11.97 11.98 18.30 18.33 21.91 21.92 25.69 25.70
NLR-CS 5.98 6.36 11.04 11.46 14.18 14.22 24.88 24.97
D-AMP 5.64 5.65 15.12 15.12 20.35 20.35 24.42 24.56

ReconNet 17.11 17.49 19.28 19.73 21.29 21.67 23.16 23.61
DR2-Net 17.08 17.34 19.84 20.31 22.46 22.76 25.61 25.91
CSRNet 17.75 17.90 20.23 20.38 22.29 22.53 25.85 26.15

RDC-Net 17.95 18.21 20.38 20.61 22.93 23.11 25.96 26.17

Foreman

TVAL3 10.98 11.02 20.64 20.65 28.69 28.74 35.41 35.55
NLR-CS 3.92 4.26 9.08 9.46 13.53 13.54 35.73 35.91
D-AMP 3.84 3.84 16.27 16.31 25.50 25.53 35.45 35.06

ReconNet 20.04 20.33 23.72 24.61 27.10 28.58 29.47 30.79
DR2-Net 20.59 21.08 25.34 26.32 29.20 30.18 33.53 34.28
CSRNet 23.12 23.32 27.78 28.18 30.96 31.35 34.89 35.10

RDC-Net 22.98 23.07 27.27 27.29 31.29 31.61 35.11 35.31

House

TVAL3 11.86 11.90 20.94 20.96 26.29 26.33 32.09 32.14
NLR-CS 4.96 5.26 10.66 11.08 14.77 14.80 34.20 34.21
D-AMP 5.00 5.01 16.91 16.37 24.83 24.73 33.64 32.96

ReconNet 19.31 19.52 22.57 23.20 26.69 26.70 28.47 29.20
DR2-Net 19.61 19.99 23.91 24.70 27.52 28.42 31.82 32.52
CSRNet 20.67 20.79 24.55 24.85 28.24 28.68 32.46 33.05

RDC-Net 20.68 20.87 24.89 24.92 28.57 28.81 32.87 33.07

Peppers

TVAL3 11.35 11.37 18.21 18.23 22.64 22.65 29.61 29.65
NLR-CS 5.76 6.11 11.38 11.81 14.94 14.99 28.89 29.24
D-AMP 5.79 5.84 16.17 16.46 21.33 21.38 29.88 28.96

ReconNet 16.83 16.98 19.57 20.00 22.15 22.68 24.77 25.15
DR2-Net 16.90 17.11 20.32 20.75 23.72 24.26 28.48 29.11
CSRNet 17.61 17.67 21.18 21.51 24.35 24.65 28.58 29.19

RDC-Net 17.69 17.71 21.03 21.21 24.39 24.64 29.27 29.97

Mean

TVAL3 11.31 11.34 18.39 18.41 22.84 22.90 27.84 27.87
NLR-CS 5.30 5.64 10.59 10.98 14.19 14.23 28.05 28.20
D-AMP 5.19 5.23 15.50 15.54 21.13 21.12 28.11 27.85

ReconNet 17.28 17.55 19.99 20.46 22.77 23.34 25.53 25.93
DR2-Net 17.41 17.73 20.80 21.29 24.25 24.72 28.66 29.06
CSRNet 18.25 18.35 21.52 21.74 24.55 24.81 28.83 29.11

RDC-Net 18.24 18.42 21.41 21.55 24.84 25.13 29.03 29.39
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Table 2. Reconstruction results for test images through different algorithms at different measurement
rates. “Mean” is the mean value among all test images.

Image Name Methods
PSNR (without Using BM3D/with Using BM3D)

MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

Barbara

SDA 18.59 18.76 20.49 20.86 22.17 22.39 23.19 23.21
ConvCSNet 18.14 18.35 20.85 21.00 22.95 23.01 25.85 25.98

ASRNet 21.40 21.52 23.48 23.54 24.34 24.35 26.30 26.43
FDC-Net 21.65 21.71 23.56 23.71 24.25 24.52 27.91 28.00

Fingerprint

SDA 14.81 14.82 16.85 16.87 20.29 20.32 24.29 24.21
ConvCSNet 14.54 14.82 18.44 18.71 19.76 20.11 28.00 28.11

ASRNet 16.20 16.21 20.98 21.45 26.25 26.83 28.82 29.23
FDC-Net 16.47 16.52 21.07 21.11 25.93 26.11 30.91 31.08

Flinstones

SDA 13.91 13.96 16.21 16.10 18.40 18.21 20.88 20.21
ConvCSNet 15.04 15.32 17.22 17.58 19.49 19.82 26.42 26.53

ASRNet 16.30 16.39 19.78 20.08 24.01 24.56 26.93 27.40
FDC-Net 16.43 16.49 20.29 20.54 24.42 24.55 28.81 28.91

Lena

SDA 17.84 17.95 21.17 21.56 23.81 24.16 25.87 25.70
ConvCSNet 17.97 18.16 21.78 22.08 25.27 25.61 27.11 27.32

ASRNet 21.74 21.93 25.74 25.93 28.54 28.78 30.65 30.89
FDC-Net 21.67 21.71 26.25 26.38 28.85 28.93 32.69 32.91

Monarch

SDA 15.31 15.38 18.11 18.19 20.95 21.04 23.54 23.32
ConvCSNet 16.31 16.81 18.92 19.18 21.76 22.01 26.59 26.71

ASRNet 17.74 17.85 23.23 23.49 27.17 27.50 29.29 29.60
FDC-Net 18.03 18.46 23.53 23.52 27.51 27.83 31.79 31.97

Parrot

SDA 17.71 17.89 20.37 20.67 22.14 22.35 24.48 24.37
ConvCSNet 17.86 18.15 20.55 21.18 24.41 24.85 26.26 26.38

ASRNet 21.87 22.01 24.52 24.67 27.68 27.85 29.61 29.80
FDC-Net 22.09 22.25 24.50 24.74 27.68 27.84 31.76 31.94

Boats

SDA 18.55 18.68 21.29 21.54 24.01 24.18 26.56 26.24
ConvCSNet 18.11 18.39 21.81 22.08 24.82 25.31 27.86 27.98

ASRNet 21.53 21.69 25.52 25.72 28.86 29.17 31.28 31.64
FDC-Net 21.39 21.50 25.77 26.00 29.08 29.18 33.95 33.97

Cameraman

SDA 17.06 17.19 19.31 19.56 21.15 21.30 22.77 22.64
ConvCSNet 17.61 17.92 19.40 20.01 22.31 22.69 25.15 25.26

ASRNet 19.77 19.89 22.74 22.88 25.00 25.13 26.46 26.66
FDC-Net 20.13 20.21 22.94 23.08 25.28 25.31 28.97 29.04

Foreman

SDA 20.08 20.24 23.62 24.09 26.43 27.16 28.40 28.91
ConvCSNet 19.09 19.54 22.46 22.81 25.97 26.11 30.39 30.81

ASRNet 25.77 26.14 30.56 30.78 33.79 34.09 35.85 36.19
FDC-Net 25.87 25.92 31.08 31.18 34.51 34.71 38.25 38.39

House

SDA 19.45 19.59 22.51 22.94 25.41 26.07 27.65 27.86
ConvCSNet 18.40 18.82 22.22 22.71 26.46 26.51 26.76 26.98

ASRNet 23.13 23.31 27.82 28.21 31.47 31.87 33.44 33.84
FDC-Net 23.08 23.14 28.03 28.21 31.67 31.79 35.75 35.98

Peppers

SDA 16.93 17.04 19.63 19.89 22.10 22.35 24.31 24.15
ConvCSNet 17.69 18.01 20.76 21.08 23.12 23.66 26.26 26.51

ASRNet 20.17 20.33 24.03 24.32 27.03 27.37 29.72 30.18
FDC-Net 20.21 20.56 24.41 24.72 27.10 27.21 32.81 32.92

Mean

SDA 17.29 17.41 19.96 20.21 22.43 22.68 24.72 24.55
ConvCSNet 17.34 17.66 20.40 20.77 23.30 23.61 26.97 27.14

ASRNet 20.51 20.66 24.40 24.65 27.65 27.96 29.85 30.17
FDC-Net 20.64 20.77 24.68 24.83 27.84 28.00 32.15 32.28
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Figure 3. Barbara image reconstruction results from different networks. We can obviously find that
two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR2-Net.

Figure 4. Fingerprint image reconstruction results from different networks. We can obviously find that
two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR2-Net.
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Figure 5. Monarch image reconstruction results from different networks. We can obviously find that
two proposed networks obtain the excellent reconstruction performance and FDC-Net has better visual
effects than RDC-Net, DR2-Net.

As shown in Table 1, RDC-Net obtains the higher mean PSNR values than other methods at
MRs = 0.10, 0.25. However, in some test images (e.g., barbara, Fingerprint, Flinstones), other reconstruction
methods (NLR-CS or DR2-Net) obtain slightly higher reconstruction quality, and we also compare
the reconstruction performance of FDC-Net, SDA, ConvCS-Net and ASRNet in Table 2. It is obvious
that FDC-Net outperforms other methods at measurement rates 0.01, 0.04, 0.10 and 0.25. Especially
at MR = 0.25. FDC-Net obtains 2.3 dB improvement than the second highest value. In Figures 3–5,
we compare the visual reconstruction results among FDC-Net, RDC-Net and DR2-Net. We can easily
find that our reconstruction results have better visual effects. For example, Figure 4 is a fingerprint
image. Our visual reconstruction results have a clearer texture, clean areas and sharp edges than
DR2-Net in the enlarged patches at four MRs , while the visual reconstruction results of DR2-Net have
blurred textures and confusing areas.

4.4. Evaluation on Different Network Architectures

In order to evaluate the effectiveness of our main model, FDC-Net, we design other different
network architectures such as single channel networks (One-densblock and Two-resblocks)and
dual-channel networks (one-resblock + one-densblock, two-resblocks + two-densblock, three-resblocks
+ one-densblock). “One-densblock” means that we use the dense block channel (Figure 1b) to recover
the image from CS measurements. “Two-resblocks” means that we use the residual block channel
(Figure 1b) to recover the image. “one-resblock + one-densblock”, “two-resblocks + two-densblock”
and “three-resblocks + one-densblock” represent that we use one residual block and one dense block,
two residual blocks and two dense blocks, three residual blocks and one dense block to improve the
preliminary reconstructed image quality respectively. The relevant results are summarized in Table 3,
where the best results are highlighted in bold.
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Table 3. Performance comparison among different network architectures.

Models
PSNR (without Using BM3D/with Using BM3D)

MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

One-densblock 20.41 20.52 24.17 24.82 27.29 27.55 30.29 30.85
Two-resblocks 20.37 20.50 24.41 24.72 27.52 27.83 30.57 30.99

one-resblock+one-densblock 20.43 20.48 24.43 24.75 27.50 27.78 30.47 30.98
two-resblocks+two-densblock 20.60 20.78 24.57 24.80 27.54 27.76 31.64 32.06
three-resblocks+one-densblock 20.66 20.83 24.60 24.89 27.49 27.68 31.55 31.81

FDC-Net 20.64 20.82 24.68 24.97 27.84 28.27 32.15 32.42

As shown in Table 3, it is obvious that FDC-Net outperforms other networks at MRs = 0.04,
0.10, 0.25. When we only use one channel module (one-densblock or two-resblocks) to recover the
original image from its CS measurements, the reconstruction results are good. But we combine two
channel modules, FDC-Net obtains obviously outstanding performances, which is probably because
the residual block channel can improve reconstruction quality and dense block channel can expedite
calculation. One-resblock + one-densblock, three-resblocks + one-densblock and two-resblocks +
two-densblocks all obtain outstanding performance. Although the three-resblocks + one-densblocks
obtains higher PSNR than FDC-Net at MR = 0.01, it increases the time complexity and has lower PSNR
than FDC-Net at MRs = 0.04, 0.10, 0.25. Therefore, we use the two residual blocks and one dense block
to build the dual-channel reconstruction module.

Figure 6. Robustness comparison to different Gaussian noise among the different networks.
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4.5. Robustness to Noise

To show the robustness of proposed networks to noise, we perform reconstruction experiments
under the presence of measurement noise. The standard Gaussian noise is added to CS measurements
of test set. We add five levels of noise corresponding to δ = 0.01, 0.05, 0.10, 0.25 and 0.5, where δ is
the standard variance for the Gaussian noise. Then, two proposed networks trained on the noiseless
CS measurements take the noisy CS measurements as input and output the reconstruction images.
Here, we mainly compare the three algorithms: DR2-Net, RDC-Net, FDC-Net. The related results are
summarized in Figure 6.

From Figure 6, it is obvious that two proposed networks mostly outperform the DR2-Net for
δ = 0.01, 0.05, 0.10, 0.25 and 0.5 at four MRs. Especially, the decay of FDC-Net’s performance is slower
than DR2-Net’s at MRs = 0.01, 0.04, which indicates that our FDC-Net have outstanding robustness at
low measurement rates.

4.6. Evaluation on ImageNet Val Dataset

To testify the scalability of proposed networks, we also perform reconstruction experiments
between two proposed networks with DR2-Net on the large-scale ImageNet val dataset [52] and it
includes 50,000 images of 1000 classes. The experimental results are shown in Table 4, where the best
results are highlighted in bold.

As shown in Table 4, the two proposed networks obtain better performances than DR2-Net at four
MRs. Especially at MR = 0.25, RDC-Net, FDC-Net achieves nearly 3 dB and 5 dB improvement over
DR2-Net, respectively, which indicates that our proposed networks have better generalization ability
than DR2-Net.

Table 4. The PSNR value of different networks on ImageNet Val dataset.

Models MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

DR2-Net 23.27 25.90 27.78 29.10
RDC-Net 23.87 26.92 29.76 32.07
FDC-Net 25.76 29.11 31.32 34.05

4.7. Time Complexity and Network Convergence

In this paper, we also perform the time complexity experiments between two proposed algorithms
and DR2-Net. The related results are shown in Table 5, where the best results are highlighted in bold.

From Table 5, we can observe that two proposed networks have slightly less runtime than DR2-Net,
and FDC-Net gains best results, which is helpful for CS real-time applications.

Table 5. Time (s) for reconstructing a single 512 × 512 image.

Models MR = 0.01 MR = 0.04 MR = 0.10 MR = 0.25

DR2-Net 0.0686 0.0676 0.0680 0.0678
RDC-Net 0.0590 0.0591 0.0595 0.0591
FDC-Net 0.0570 0.0566 0.0579 0.0571

In order to further demostrate that our proposed networks have better convergence performance
than DR2-Net, we perform a convergence experiment between FDC-Net and DR2-Net at MR = 0.04.
Figure 7 shows that training error and test error of FDC-Net are smaller than DR2-Net,
which demonstrates that our network is easier to converge than DR2-Net.
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Figure 7. Convergence comparison between FDC-Net and DR2-Net. It is obvious that our FDC-Net
has smaller training error and test error than DR2-Net.

5. Conclusions

Inspired by the fact that deep learning-based methods can improve reconstruction performance
and enormously reduce computation compared to traditional iterative reconstruction algorithms,
we propose a novel dual-channel reconstruction network module (DC-Net module) to build two CS
reconstruction networks: the first one recovers an image from its traditional random under-sampling
measurements (RDC-Net); the second one recovers an image from its CS measurements acquired by a
fully connected measurement matrix (FDC-Net). Especially, DC-Net module consists of one dense
block and two residual blocks. We use a fully connected layer to obtain a preliminary reconstructed
image, and DC-Net module is used to further improve the preliminary reconstructed image quality.
Extensive experiments show that our networks outperform the state-of-the-art CS algorithms in
both PSNR and visual quality. Moreover, our networks also have outstanding robustness and lower
time complexity.
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