
sensors

Article

Improving the Classification Effectiveness of
Intrusion Detection by Using Improved Conditional
Variational AutoEncoder and Deep Neural Network

Yanqing Yang 1,2 , Kangfeng Zheng 1,* , Chunhua Wu 1 and Yixian Yang 1,3

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
qing0991@163.com (Y.Y.); wuchunhua@bupt.edu.cn (C.W.); yxyang@bupt.edu.cn (Y.Y.)

2 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
3 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
* Correspondence: zkf_bupt@163.com

Received: 18 March 2019; Accepted: 30 May 2019; Published: 2 June 2019
����������
�������

Abstract: Intrusion detection systems play an important role in preventing security threats and
protecting networks from attacks. However, with the emergence of unknown attacks and imbalanced
samples, traditional machine learning methods suffer from lower detection rates and higher false
positive rates. We propose a novel intrusion detection model that combines an improved conditional
variational AutoEncoder (ICVAE) with a deep neural network (DNN), namely ICVAE-DNN.
ICVAE is used to learn and explore potential sparse representations between network data features
and classes. The trained ICVAE decoder generates new attack samples according to the specified
intrusion categories to balance the training data and increase the diversity of training samples,
thereby improving the detection rate of the imbalanced attacks. The trained ICVAE encoder is not
only used to automatically reduce data dimension, but also to initialize the weight of DNN hidden
layers, so that DNN can easily achieve global optimization through back propagation and fine tuning.
The NSL-KDD and UNSW-NB15 datasets are used to evaluate the performance of the ICVAE-DNN.
The ICVAE-DNN is superior to the three well-known oversampling methods in data augmentation.
Moreover, the ICVAE-DNN outperforms six well-known models in detection performance, and is
more effective in detecting minority attacks and unknown attacks. In addition, the ICVAE-DNN
also shows better overall accuracy, detection rate and false positive rate than the nine state-of-the-art
intrusion detection methods.

Keywords: intrusion detection; variational inference; improved conditional variational autoencoder;
generator network; deep neural network

1. Introduction

In recent years, with the rapid development of cloud computing, LoRa, NB-IoT, 5G communication
and artificial intelligence technologies, the internet of things (IoT) technology has also ushered in a
boom-like development, and hundreds of millions of devices are connected to the Internet of Things.
However, because many IoT nodes collect and store large amounts of user privacy data, IoT systems
have become an ideal target for cyber attackers, and attacks on the Internet of Things are increasing [1,2].
Gemalto’s IoT security report shows that more than half of companies still can’t find out whether they
have suffered IoT vulnerability attacks. In addition, the report surveyed 950 IT and business decision
makers and found that only 59% of companies encrypted all IoT-related data [3]. The popularity of IoT
technology and the intelligence of devices have brought great convenience to people, but the use of
new technologies and intelligent devices has also brought new security and privacy risks. For example,

Sensors 2019, 19, 2528; doi:10.3390/s19112528 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9993-7757
https://orcid.org/0000-0002-1160-5596
https://orcid.org/0000-0001-5082-2422
http://www.mdpi.com/1424-8220/19/11/2528?type=check_update&version=1
http://dx.doi.org/10.3390/s19112528
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2528 2 of 20

on 29 January 2018, the top three banks (ABN AMRO, ING Bank, Rabobank) in the Netherlands were
attacked by distributed denial of service (DDoS), blocking access to websites and internet banking
services [4]. In February 2018, the Pyeongchang Winter Olympics in South Korea suffered a cyber
attack, which caused the live broadcast to be interrupted [5]. Therefore, maintaining the security of
the IoT system is becoming the focus of successful deployment of the IoT network, and detecting
intruders is an important step to ensure the security of the IoT network. Intrusion detection is one
of several security mechanisms to manage security intrusions [6]. It monitors network traffic for
abnormal or suspicious activity and issues alerts when such activity is discovered. Intrusion detection
system (IDS) can be classified into host-based intrusion detection systems (HIDS) and network-based
intrusion detection system (NIDS). In this paper, we study a network-based intrusion detection system.
We studied the use of generation models and deep learning techniques to build intrusion detection
classifiers to detect a great variety of attacks, such as DoS (denial of service), probe, U2R (user to root),
R2L (remote to local), worms, shellcode, backdoor, reconnaissance, generic attacks, etc.

Many researchers have introduced more and more innovative approaches to detect intrusions in
recent years, including anomaly detection methods, shallow learning methods, deep learning methods,
and ensemble methods. The anomaly detection methods calculate the distribution of normal network
data and define any data that deviates from the normal distribution as an anomaly, such as Bayesian
models [7,8], the Cluster algorithms (K-Means, spectral clustering, DBSCAN, etc.) [7], self-organizing
map (SOM) [9], Gaussian mixture model (GMM) [10], and one-class SVM [11]. Shallow learning
methods use the selected features to build a classifier to detect intrusions, such as support vector
machines (SVM) [12], decision tree (DT) [13], and k-nearest neighbor (KNN) [14]. Deep learning
methods can automatically extract features and perform classification, such as AutoEncoder [15,16],
deep neural network (DNN) [17], deep belief network (DBN) [18–21], and recurrent neural network
(RNN) [22]. The last category uses various ensemble and hybrid techniques to improve detection
performance, including bagging [23], boosting [24], stacking [25], and combined classifier methods [26].

Deep learning is a data representation and learning method based on machine learning,
which has become a hot research topic. It can automatically extract high-level latent features
without manual intervention [27]. Deep learning is widely applied in many fields of artificial
intelligence, including speech processing, computer vision, natural language processing and so on.
Moreover, deep learning has been applied to network security detection [28,29]. However, there are
still many problems with intrusion detection systems. First, different types of network traffic in a real
network environment are imbalanced, and network intrusion records are less than normal records.
The classifier is biased towards the more frequently occurring records, which reduces the detection
rate of minority attacks such as R2L and worms attacks. Second, because of the high dimension of
network traffic, the feature selection method in many intrusion models is first considered as one of
the pre-processing steps [30], such as principal component analysis (PCA) and chi-square feature
selection. However, these feature selection methods rely heavily on manual feature extraction, mainly
through experience and luck, and these algorithms are not effective enough. Third, due to the large
network traffic and complex structure, the traditional classifier algorithm is difficult to achieve high
detection rate. Fourth, the network operating environment and structure in the real world are changing,
for example, the Internet of Things and cloud services are widely used and various new attacks are
emerging. Since many unknown attacks do not appear in the training dataset, traditional intrusion
detection methods usually perform poorly in detecting unknown attacks.

Taking into account the above factors, we propose a novel intrusion detection method called
ICVAE-DNN, which combines improved conditional variational AutoEncoder (ICVAE) with DNN.
The variational AutoEncoder (VAE) is an important generation model consisting of an encoder
(a recognition network) and a decoder (a generator network) that use deep neural networks to
characterize the distribution of data and latent variables, which was proposed by Kingma et al. [31]
in 2013. VAE can generate samples, but it is not possible to generate some specific samples based on
the labels. Therefore, CVAE was developed by Kingma et al. [32] in 2014. The CVAE is an extension

Sensors 2019, 19, 2528 3 of 20

of VAE [33]. It embeds a one-hot encoded label vector in the encoder and decoder, and converts
unsupervised training mode into supervised training mode. CVAE not only automatically extracts
high-level features and reduces the dimensions of network features, but also generate new attack
samples of the specified categories. In order to initialize the weight of the DNN hidden layers using
the CVAE encoder, we have improved CVAE by embedding intrusion tags only in the decoder, but not
in the encoder, named ICVAE.

This paper has the following main contributions. First, we use ICVAE to learn the distribution of
complex traffic and classes through supervised learning. The network parameters of ICVAE encoder
are used to initialize the weight of DNN hidden layers. Second, latent variables with Gaussian noise
and specified labels are fed into the trained ICVAE decoder (generating network) to generate specific
new attack records, so as to balance the training data and increase the diversity of training samples,
thus improving the detection rate of minority attacks and unknown attacks. Third, DNN is used
to automatically extract high-level features, and adjust network weights by back propagation and
fine-tuning to better address the classification problem of complex, large-scale and non-linear network
traffic. Finally, the proposed model is evaluated on the NSL-KDD [34,35] and UNSW-NB15 [36–38]
datasets. Compared with the well-known classification methods, the proposed model not only reaches
better overall accuracy, recall, and false positive rate, but also achieves higher detection rate in minority
attacks and unknown attacks.

The remainder of this paper is organized as follows. The related works are introduced in Section 2.
Section 3 describes the ICVAE and DNN algorithms. Section 4 proposes a novel intrusion detection
model and shows in detail how the model works. Section 5 demonstrates the experimental details and
results. Finally, Section 6 provides some conclusions and further work.

2. Related Works

Although there are CVAE-related work in other fields, there is no report on the combination
of ICVAE and DNN for intrusion detection. Kawachi et al. [39] employed a VAE for supervised
anomaly detection. Sun et al. [40] used a VAE to learn sparse representations for anomaly detection.
Chandy et al. [41] used VAE as a deep generation model to simulate network attack detection problems.
Osada et al. [42] employed VAE as a semi-supervised learning for intrusion detection. They use VAE
to detect intrusions, not CVAE. Lopez–Martin et al. [16] used conditional VAE (CVAE) to build an
ID-CVAE classifier to perform classification and feature recovery. The ID-CVAE uses the reconstructed
test data and the nearest neighbor method based on the Euclidean distance to classify the test samples.
However, our proposed model not only generates data according to categories, but also uses DNN
classifier to perform classification.

The deep learning method integrates high-level feature extraction and classification tasks,
overcomes some limitations of shallow learning, and further promotes the progress of intrusion
detection systems. Recently, deep learning models have been widely used in the field of intrusion
detection. Stacked AutoEncoders are used to detect attacks in IEEE 802.11 networks with an overall
accuracy of 98.60% [43]. Ma et al. [44] presented a hybrid method combining spectral clustering and
deep neural networks to detect attacks with an overall accuracy of 72.64% on the NSL-KDD dataset.
The gated recurrent unit recurrent neural network (GRU-RNN) was used to build an intrusion detection
system in an software defined network (SDN) with an accuracy of 89% [45]. Shone et al. [15] employed
a stacked non-symmetric AutoEncoder and random forest (RF) to detect attacks. Muna et al. [46]
proposed an anomaly detection technique for internet industrial control systems (IICSs) based on the
deep learning model, which used deep auto-encoder for feature extraction and deep feedforward
neural network for classification. Tamer et al. [20] employed the restricted Boltzmann machine
(RBM) to classify normal and abnormal network traffic. Imamverdiyev [18] used the multilayer
deep Gaussian–Bernoulli RBM method to detect DoS attacks with an accuracy of 73.23% on the
NSL-KDD dataset.

Sensors 2019, 19, 2528 4 of 20

The above intrusion detection evaluation results are very encouraging, but these classification
techniques still have detection defects, low detection rate for unknown attacks and high false
positive rate for minority attacks. In order to overcome these classification problems, this paper
uses ICVAE decoder to generate new attack samples according to the specified intrusion categories,
thereby improving the detection rate of unknown attacks and minority attacks. ICVAE encoder
automatically learns the potential representation of input data and reduces the dimensions of
features. Furthermore, the ICVAE encoder is used to initialize the weight of DNN hidden layers.
Finally, it is easier for DNN to achieve global optimization by back propagation and fine tuning
network parameters.

3. Background

3.1. Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE) is an important generation model consisting of an encoder
network Qφ(Z|X) and a decoder network Pθ(X|Z), as shown in Figure 1. VAE can learn approximate
inference and can be trained using gradient descent method. The encoder network with parameters
φ learns an efficient compression of the data into this lower-dimensional space, which maps data X
into a continuous latent variable Z. The decoder network with parameters θ uses the latent variable
to generate data, which maps Z to a reconstructed data X̂. Here we use deep neural networks to
construct the encoder and decoder with parameters θ and φ, respectively.

ZX

Input Output
Latent

variablesRecognition Reconstruction

Encoder

network

Probability

distribution

(|)Q Z X

Probability

distribution
Decoder

network
XX̂

Minimize

difference

(|)P X Z

Figure 1. Variational AutoEncoder (VAE) architecture.

The core idea of VAE is to use the probability distribution P(X) to sample data points that match
this distribution, where X represents a random variable of the data. The goal of VAE is to reconstruct
the input data as much as possible, that is, to maximize the log likelihood probability of P(X) [31,47],
as follows:

log P(X) = E[log P(X|Z)]− DKL[Q(Z|X)|P(Z)] + DKL[Q(Z|X)||P(Z|X)]

≥ E[log P(X|Z)]− DKL[Q(Z|X)||P(Z)].
(1)

Here the variational lower bound objective [31,47] is defined as follows:

L (θ, φ; X) = E[log P(X|Z)]− DKL[Q(Z|X)||P(Z)]. (2)

L is defined as the variation lower bound, which is called the VAE objective function. The first
term in Equation (2) represents the reconstruction loss. It encourages the decoder to learn to reconstruct
the input data. The second item in Equation (2) uses KL (Kullback–Leibler) divergence to minimize the
difference between the encoder’s distribution Q(Z|X) and the prior distribution P(Z), that is to say,
the learned distribution Q(Z|X) is similar to the prior distribution P(Z). Therefore, the goal of training
VAE is to maximize the data generation probability logP(X|Z) and minimize the difference between

Sensors 2019, 19, 2528 5 of 20

the learned distribution Q(Z|X) and the true prior distribution P(Z). In other words, the goal of
training VAE is to maximize the variational lower bound L.

3.2. Improved Conditional Variational AutoEncoder (ICAVE)

Conditional Variational AutoEncoder (CVAE) is an extension of VAE [33], modeled by
conditioning the encoder and decoder to class Y, as shown in Figure 2. The encoder Q(Z|X, Y)
is now conditional on two variables X and Y, and the decoder P(X|Z, Y) is now conditioned on two
variables Z and Y.

ZX

Input Output
Latent

variablesRecognition Reconstruction

Encoder

network

Probability

distribution

Probability

distribution
Decoder

network
XX̂

Minimize

difference

Y Y

 | ,Q Z X Y | ,P X Z Y

Figure 2. Conditional variational AutoEncoder (CVAE) architecture.

Hence, the variational lower bound objective of CVAE [32,33] is defined as follows:

log P(X|Y)− DKL[Q(Z|X, Y)‖P(Z|X, Y)] = E[log P(X|Z, Y)]− DKL[Q(Z|X, Y)‖P(Z|Y)] (3)

The conditional probability distributions of CVAE encoder and decoder are related to class label Y.
In order to use the encoder network of CVAE to initialize the network parameters of DNN, we improve
the CVAE structure to embed class label Y only in the decoder network. The architecture of ICVAE is
shown in Figure 3. The decoder is now conditioned to two variables Z and Y whereas the encoder is
now conditioned to one variable X.

ZX

Input Output
Latent

variablesRecognition Reconstruction

Encoder

network

Probability

distribution

Probability

distribution
Decoder

network
XX̂

Minimize

difference
Y

 | ,P X Z Y |Q Z X

Figure 3. Improved conditional variational AutoEncoder (ICVAE) architecture.

ICVAE is composed of encoder network Qφ(Z|X) and decoder network Pθ(X|Z, Y). In the
decoder, class labels are used as an extra input, so that the decoder probability distribution is
conditional on the latent variable Z and class label Y, while the encoder does not contain the class
label Y. When decoding, the latent variable Z and the label Y are connected and fed to the decoder,

Sensors 2019, 19, 2528 6 of 20

thus new attack samples of the specified class are generated. Hence, the variational lower bound of
ICVAE is defined as follows:

log P(X|Y)− DKL[Q(Z|X)‖P(Z|X, Y)] = E[log P(X|Z, Y)]− DKL[Q(Z|X)‖P(Z|Y)]. (4)

Here the variational lower bound objective of ICVAE is rewritten as:

L (θ, φ; X, Y) = E[log P(X|Z, Y)]− DKL[Q(Z|X)‖P(Z|Y)]. (5)

L (θ, φ; X, Y) in Equation (5) consists of two parts: a log reconstruction likelihood E[log P(X|Z, Y)]
and a KL divergence DKL[Q(Z|X)‖P(Z|Y)]. The first term is to reconstruct X by using the conditional
probability distribution P(X|Z, Y) and the second term uses the KL divergence metric to characterize
the encoder distribution Q(Z|X) approximating the prior distribution P(Z|Y). In ICVAE, we try to
maximize the the variational lower bound objective L (θ, φ; X, Y). In this model, We use the class label
as our conditional variable Y. Obviously we could sample Z from a multivariate standard normal
distribution N(0, I). By changing the value of Y, such as the attack class in the NSL-KDD dataset,
ICVAE’s decoder P(X|Z, Y) can generate new attack samples of the specified category.

4. The Proposed Intrusion Detection Framework

The framework of the proposed ICVAE-DNN is shown in Figure 4. ICVAE-DNN consists of three
main phases: (1) training ICVAE, where the training samples are used to train the ICVAE, and the
reconstruction loss for each training data sample is stored according to the attack class; (2) generating
new attacks, where the ICVAE decoder generates new attack samples based on specified classes,
and each newly generated attack sample is merged into the original training data set under the
condition that the class reconstruction loss is satisfied; (3) detecting attacks, where the ICVAE decoder
is used to initialize the weight of the DNN hidden layers, the merged training data set is used to train
the DNN classifier, and the trained DNN classifier is used to detect attacks on the testing data set.

4.1. Training ICVAE

The input value of ICVAE must be a real vector, so each symbol feature in the intrusion detection
dataset is first converted to a numerical feature. For example, the NSL-KDD [34,35] dataset contains 3
symbol features and 38 numerical features, and the UNSW-NB15 [36–38] dataset contains 3 symbol
features and 39 numerical features. All symbol features are transformed to a binary one-hot encoding.
The NSL-KDD and UNSW-NB15 datasets are converted into 122-dimensional and 196-dimensional
features, respectively. The structure of ICVAE is composed of an encoder and a decoder, as shown
in Figure 4. For the encoder Q(Z|X), we use a multivariate Gaussian distribution as the Q(Z|X)

distribution. For the decoder P(X|Z, Y), we use a multivariate Bernoulli distribution to fit P(X|Z, Y).
The output of the decoder network is reconstructed data, which is the predicted probability.

We use the min–max normalization method to scale all data X to [0,1]. After preprocessing all the
data in the intrusion detection dataset, we train the ICVAE to optimize the loss of the encoder θ and
the decoder φ by using the balanced sampling via label shuffling [48] and Adam [49] optimization
algorithm. The ICVAE loss is composed of a reconstruction loss and a KL loss. The KL loss uses the
variational inference method to approximate the distribution P(Z|Y) with the deep neural network
Q(Z|X), so the ICVAE may have a KL-vanishing problem. ICVAE directly compares the difference
between the reconstructed attack and the original attack through the encoding and decoding steps.
However, the new attack samples generated by ICVAE decoder may differ greatly, and the newly
generated samples may deviate from the original attack space distribution. In order to better select the
newly generated attack samples, we calculate the reconstruction loss of each training sample based on
the class and then use the maximum reconstruction loss for each class as the screening criteria.

Sensors 2019, 19, 2528 7 of 20

1W 2W

(2) Generating New Attacks

(1) Training ICVAE

1W

Fine

Tune

(3) Detecting Attacks

Softmax

 ,X Y

 ˆ ˆ,X Y

New Training

Dataset

Merge

Testing
Dataset

Minimize
difference

Loss

In
tr

u
siv

e a
ctiv

ities
N

o
rm

a
l flo

w

DNN Classifier

Mean

Variance

Z

Y

Output

Latent

Variables

Latent

Variables

2W
3W

Fine

Tune

Fine

Tune

BP

 | ,P X Z Y

 |Q Z X

 |Q Z X

 | ,P X Z Y

X X̂ X

X̂

Input

Loss

Ŷ

3W

Output

 |P Z Y

 |P Z Y

Input

4W

Z

4W

Fine

Tune

Figure 4. The proposed intrusion detection framework.

We assume that the decoder P(xi|z, y), (where i = 1, · · · , n) obeys the Bernoulli distribution, i.e.,

P(x = 1|z, y) = αz,y, (6)

P(x = 0|z, y) = 1− αz,y. (7)

For an observation, the likelihood is:

L = αx
z,y · (1− αz,y)

1−x. (8)

The decoder output is a parameter of Bernoulli distribution, that is, αz,y = Decoder(z, y) = x̂.
Then the negative log likelihood is:

− log L = −[x · log(x̂) + (1− x) · log(1− x̂)]. (9)

It is obvious that the negative log likelihood in Equation (9) is the cross entropy. We use this cross
entropy as the reconstruction loss of the decoder. After each training sample (xi, yi) is fed into the
trained ICVAE, the reconstruction loss li(xi, yi) can be calculated as follows:

li(xi, yi) = −[xi · log(x̂i) + (1− xi) log(1− x̂i)]. (10)

The maximum reconstruction loss maxLj of the j-th class is written as follows:

maxLj = k ∗max{li(xi, yi)}, f or each yi ∈ class j , (11)

Sensors 2019, 19, 2528 8 of 20

where k represents the maximum reconstruction loss scaling factor, typically k is 1.0.

4.2. Generating New Attacks

For the encoder Q(Z|X), we use a multivariate Gaussian distribution as the Q(Z|X) distribution.
For the decoder P(X|Z, Y), we define the multivariate standard normal distribution N(0, I) as the
prior distribution P(Z|Y), that is, Z ∼ N(0, I). We can sample a latent variable z from N(0, I)
under a specified label ŷ and feed it into the trained decoder to generate a new attack sample (x̂, ŷ).
Assuming that the new attack sample belongs to class j, i.e., ŷ ∈ class j, the generated sample (x̂, ŷ) is
fed into the trained ICVAE and the reconstruction loss l(x̂, ŷ) is calculated according to Equation (10).
Then, we compare the reconstruction loss l(x̂, ŷ) with the maximum loss maxLj of the corresponding
class j. If l(x̂, ŷ) < maxLj, the newly generated sample is merged into the original training set S,
otherwise the sample is discarded. The newly generated attack samples are merged into the original
training set according to the following criteria:

if ŷ ∈ class j and l(x̂, ŷ) ≤ maxLj, then S = S ∪ {x̂, ŷ}, else S = S. (12)

4.3. Detecting Attacks

We employ DNN to detect attacks. DNN is a six-layer feedforward deep neural network.
The activation function of all hidden layers in DNN is ReLU6 [50], and the activation function of the
output layer in DNN is softmax. The network structure of DNN hidden layers is exactly the same as
that of ICVAE encoder. ICVAE encoder can automatically extract high-level features, so the weight of
the trained ICVAE encoder is used to initialize the weight of DNN hidden layers, then the merged
training data set is used to fine tune DNN classifier, and the DNN classifier is optimized by Adam [49]
algorithm. Finally, test samples are fed into the trained DNN classifier to detect attacks.

The proposed intrusion detection model is detailed in Algorithm 1.

Algorithm 1 Improved conditional variational AutoEncoder (ICVAE)-deep neural network (DNN).

Input: Training dataset S, latent variable Z, learning rate lr, L2 regularization β and the maximum

reconstruction loss scaling factor k.
Output: the final classification results.

1: Data preprocessing: feature mapping and data normalization, all data is scaled to [0, 1].
2: The network structures of ICVAE on NSL-KDD and UNSW-NB15 datasets are

122-80-40-20-10-20-40-80-122 and 196-140-80-40-20-40-80-140-196, respectively. Weights are

randomly initialized with scaling variance and biases are initialized to 0.
3: Train the ICVAE using the training data set and calculate the maximum reconstruction loss maxL

for each category in the training data set according to Equation (11).
4: Sample z from the multivariate standard Normal N(0, I), specify the attack class ŷ, and feed them

into the trained ICVAE decoder to generate a new attack sample x̂. According to Equation (12),

the newly generated sample (x̂, ŷ) is merged into the training data set S.
5: The weights of the trained ICVAE encoder are used to initialize the weight of the DNN hidden

layers. First, all hidden layers are frozen, the parameters of output layer are adjusted by back

propagation, then all hidden layers are unfrozen, and the merged training data set is used to fine

tune DNN classifier.
6: Test samples are fed into the trained DNN classifier to detect attacks.
7: return the classification result.

Sensors 2019, 19, 2528 9 of 20

5. Experimental Results and Analysis

5.1. Performance Evaluation

We use six commonly metrics to evaluate intrusion detection performance, including accuracy,
detection rate (DR), precision, recall, false positive rate (FPR), and F1-score. Table 1 shows the confusion
matrix consisting of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). TP and TN indicate that the attack and normal records are correctly classified, respectively;
FP represents a normal record that is incorrectly predicted as an attack; FN represents an attack record
that is incorrectly classified as a normal record.

Table 1. The confusion matrix.

Predicted Attack Predicted Normal

Actual attack TP FN
Actual normal FP TN

The accuracy, DR, precision, recall and FPR are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

DR =
TP

TP + FN
, (14)

Precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
, (16)

FPR =
FP

FP + TN
. (17)

The F1-score is a measure of recall and precision using harmonic mean. Compared with the
accuracy, F1-score is more suitable for evaluating the detection performance of imbalanced samples.
It can be defined:

F1-score =
2(Precision ∗ Recall)

Precision + Recall
=

2TP
2TP + FP + FN

. (18)

5.2. Datasets

Currently, the most common data sets used to evaluate the performance of network intrusion
detection systems in the literature are the NSL-KDD [34,35] and UNSW-NB15 [36–38] data sets.
Therefore, we selected the NSL-KDD and UNSW-NB15 data sets to validate the proposed model.

5.2.1. NSL-KDD Dataset

The NSL-KDD is derived from the raw KDD Cup 99 [51,52] dataset presented by
Tavallaee et al. [52]. The NSD-KDD dataset removes duplicate and redundant records in the KDD
Cup 99 dataset and is more suitable for evaluating the performance of intrusion detection systems.
There are five classes in the NSL-KDD data set, one normal and four attacks, namely, Probe, denial of
service (DoS), user to root (U2R), and remote to local (R2L).

The NSL-KDD dataset is imbalanced, with fewer U2R and R2L records. We used two data
sets in the NSL-KDD dataset to evaluate intrusion detection performance: KDDTrain+_20Percent.txt
(A 20% subset of the full training set), KDDTest+.txt, and KDDTest-21.txt (A subset of the full test
set, excluding records of difficulty level 21). In our experiments, KDDTrain+_20Percent is used as a
training set, and KDDTest+ and KDDTest-21 are used as test sets. Table 2 shows the number of records

Sensors 2019, 19, 2528 10 of 20

for each category on the NSL-KDD dataset. As can be seen from Table 2, approximately 50% of the
unknown attacks in the testing dataset did not appear in the training dataset.

Table 2. The class distribution of the NSL-KDD dataset.

Category
Training Dataset Testing Dataset

KDDTrain+_20Percent KDDTest+ KDDTest-21

Attack Count Attack Count Attack Count

Normal normal 13,449 normal 9711 normal 2152

Subtotal 13,449 9711 2152

Probe ipsweep 710 ipsweep 141 ipsweep 141
satan 691 satan 735 satan 727
portsweep 587 portsweep 157 portsweep 156
nmap 301 nmap 73 nmap 73

saint 319 saint 309
mscan 996 mscan 996

Subtotal 2289 2421 2402

DoS neptune 8282 neptune 4657 neptune 1579
smurf 529 smurf 665 smurf 627
back 196 back 359 back 359
teardrop 188 teardrop 12 teardrop 12
pod 38 pod 41 pod 41
land 1 land 7 land 7

apache2 737 apache2 737
mailbomb 293 mailbomb 293
processtable 685 processtable 685
udpstorm 2 udpstorm 2

Subtotal 9234 7458 4342

U2R buffer_overflow 6 buffer_overflow 20 buffer_overflow 20
rootkit 4 rootkit 13 rootkit 13
loadmodule 1 loadmodule 2 loadmodule 2

perl 2 perl 2
httptunnel 133 httptunnel 133
ps 15 ps 15
sqlattack 2 sqlattack 2
xterm 13 xterm 13

Subtotal 11 200 200

R2L guess_passwd 10 guess_passwd 1231 guess_passwd 1231
warezmaster 7 warezmaster 944 warezmaster 944
imap 5 imap 1 imap 1
multihop 2 multihop 18 multihop 18
phf 2 phf 2 phf 2
ftp_write 1 ftp_write 3 ftp_write 3
spy 1 named 17 named 17
warezclient 181 sendmail 14 sendmail 14

xlock 9 xlock 9
xsnoop 4 xsnoop 4
worm 2 worm 2
snmpgetattack 178 snmpgetattack 178
snmpguess 331 snmpguess 331

Subtotal 209 2754 2754

Total 25,192 22,544 11,850

Sensors 2019, 19, 2528 11 of 20

5.2.2. UNSW-NB15 Dataset

The UNSW-NB15 [36–38] is a new data set that reflects real modern normal activities and contains
synthetic contemporary attacks. This data set is completely different from NSL-KDD, which reflects a
more modern and complex threat environment. The raw network packet of the UNSW-NB15 data set
was created by the Tcpdump tool, then 49 features with the class label are generated by Argus, Bro-IDS
tool and 12 algorithms [38]. The full dataset contains a total of 25,400,443 records. The partition of the
full dataset are divided into a training set and a test set according to the hierarchical sampling method,
namely, UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv. The training dataset consists
of 175,341 records whereas the testing dataset contains 82,332 records. The number of features in the
partitioned dataset [37] is different from the number of features in the full dataset [36]. The partitioned
data set has only 43 features with the class label, removing 6 features (i.e., dstip, srcip, sport, dsport,
Ltime and Stime) from the full dataset. The partitioned dataset contains ten categories, one normal
and nine attacks, namely, generic, exploits, fuzzers, DoS, reconnaissance, analysis, backdoor, shellcode
and worms. Table 3 shows in detail the class distribution of the UNSW-NB15 dataset.

Table 3. The class distribution of the UNSW-NB15 dataset.

Category Training Dataset Testing Dataset

UNSW_NB15_Training-Set UNSW_NB15_Testing-Set

Normal 56,000 37,000
Generic 40,000 18,871
Exploits 33,393 11,132
Fuzzers 18,184 6062
DoS 12,264 4089
Reconnaissance 10,491 3496
Analysis 2000 677
Backdoor 1746 583
Shellcode 1133 378
Worms 130 44

Total 175,341 82,332

5.3. Experimental Setup

Our experiments were carried out to evaluate the performance of the proposed model. We used
three different datasets from NSL-KDD, and UNSW-NB15 datasets. We compared the results of the
proposed model with other well-known detection methods. The proposed system was implemented
in the TensorFlow environment on the ThinkStation with 64 GB RAM, Intel E5-2620 CPU and 64-bit
Windows 10 operating system. An appropriate number of hidden layers can improve the generalization
performance of the DNN classifier. Since the number of input units is less than 200, according to
empirical experience, the candidate number of hidden layers is {3, 4}. DNN has the function of
automatically extracting features, so the number of hidden units is set in a decreasing manner with
the value of {two times the number of categories, four times the number of categories, eight times
the number of categories, more than 8 times the number of categories}. When the learning rate is
too large, the network will oscillate during training, resulting in no convergence. In TensorFlow, the
default learning rate of the Adam optimizer is 0.001, which I reduced by 50%, so my candidate learning
rate is {1× 10−3, 5× 10−4, 1× 10−4}. L2 is used to avoid over-fitting issue. Here, if L2 is zero then
we get back the original model. However, if L2 is very large, it will add too much weight and will
lead to under-fitting, so my candidate L2 is {1× 10−4, 1× 10−5}. In order to overcome the vanishing
gradient problem caused by Sigmoid or the explosion gradient problem caused by ReLU, we consider
ReLU6 [50] as the activation function of hidden Layers. The parameters of the ICVAE-DNN network
configuration are searched according to the following principles, as follows:

Sensors 2019, 19, 2528 12 of 20

• Number of hidden layers = {3,4}
• Number of hidden units = {two times the number of categories, four times the number of

categories, eight times the number of categories, more than eight times the number of categories}
• Learning rate = {1× 10−3, 5× 10−4, 1× 10−4}
• L2 = {1× 10−4, 1× 10−5}
• Activation function of hidden Layers = {ReLU6}

Grid search and three-fold cross-validation experiments are performed to find the optimal
hyperparameters of a model which results in the most accurate predictions. The grid search
traverses each group of hyperparameters in the search hyperparameter space. For each group of
hyperparameters, three-fold cross-validation is used to evaluate. Three-fold cross-validation divides
the original training dataset into three subsets, each of which shares the same proportion of each class
of data. In each run of the model, two subsets are used to train the model and the remaining subset is
used for test the model. By running the model three times, each subset of data has an equal chance
to be used in testing part, and then the score of accuracy is computed by taking the average of the
accuracy of the model on the testing subsets. Finally, the parameters that get the best cross-validation
score are taken as the optimal parameter. The optimal network structures of the proposed model on
the NSL-KDD and UNSW-NB15 data sets are 122-80-40-20-10-5 and 196-140-80-40-20-10, respectively.
In the ICVAE encoder, the activation function of all hidden layers is ReLU6 [50], and the activation
function of the output layer is linear. In the ICVAE decoder, the activation function of all hidden
layers is ReLU6 [50], and the activation function of the output layer is Sigmoid. In the DNN, the
activation function of all hidden layers is ReLU6 [50], and the activation function of the output layer is
Softmax. The learning rate of ICVAE is 5× 10−4, the learning rate of DNN is 1× 10−4, the value of
L2 regularization is 1× 10−4, and the optimization algorithm is Adam [49]. Based on these optimal
parameters, the training charts of ICVAE-DNN are shown in Figures 5 and 6. As can be seen from
Figures 5b and 6b, the initial loss of DNN was relatively low, which implies that after initializing the
weight of DNN hidden layers with ICVAE encoder, DNN was close to global optimum. From the
average loss of ICVAE and DNN and the accuracy of the training data, it can be seen that the network
is basically convergent.

We performed performance comparisons from two aspects: oversampling method and
classification method. Tables 4–8 show the comparison results for different oversampling methods.
Tables 9–11 show the performance comparison between the ICVAE-DNN and six well-known
models. In addition, the detection performance of the ICVAE-DNN is further compared with
other state-of-the-art models. Table 12 depicts the comparison results on the NSL-KDD (KDDTest+),
NSL-KDD (KDDTest-21), and UNSW-NB15 datasets.

0 50,000 100,000 150,000 200,000 250,000
Number of iterations

10

20

30

40

50

60

70

80

Av
er

ag
e

lo
ss

 p
er

 b
at

ch

ICVAE

(a) ICVAE average loss

0 50,000 100,000 150,000 200,000 250,000
Number of iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

lo
ss

 p
er

 b
at

ch

DNN

(b) DNN average loss

0 50,000 100,000 150,000 200,000 250,000
Number of iterations

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

KDDTrain+

(c) Accuracy of training set

Figure 5. Training charts on the NSL-KDD dataset.

Sensors 2019, 19, 2528 13 of 20

0 500,000 1,000,000 1,500,000 2,000,000
Number of iterations

0

20

40

60

80

100

120

140

Av
er

ag
e

lo
ss

 p
er

 b
at

ch

ICVAE

(a) ICVAE average loss

0 500,000 1,000,000 1,500,000 2,000,000
Number of iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

lo
ss

 p
er

 b
at

ch

DNN

(b) DNN average loss

0 500,000 1,000,000 1,500,000 2,000,000
Number of iterations

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

UNSW_NB15_training-set

(c) Accuracy of training set

Figure 6. Training charts on the UNSW-NB15 dataset.

5.4. Results and Discussion

5.4.1. The Detection Performance

As is evident from Tables 2 and 3, the training samples are imbalanced on the NSL-KDD and
UNSW-NB15 datasets. The U2R and R2L have minority records on the NSL-KDD dataset, and the
worms and shellcode have minority records on the UNSW-NB15 dataset. We use ICVAE decoder
to generate several records of the specified category to balance the training data, and the results are
shown in Tables 4 and 5.

Table 4. Number of samples generated on the NSL-KDD training dataset.

Category Number of Original Records Number of Newly Generated Records Total

Normal 13,449 0 13,449
Probe 2289 11,160 13,449
DoS 9234 4215 13,449
U2R 11 13,438 13,449
R2L 209 13,240 13,449

Total 25,192 42,053 67,245

Table 5. Number of samples generated on the UNSW-NB15 training dataset.

Category Number of Original Records Number of Newly Generated Records Total

Normal 56,000 0 56,000
Generic 40,000 16,000 56,000
Exploits 33,393 22,607 56,000
Fuzzers 18,184 37,816 56,000
DoS 12,264 43,736 56,000
Reconnaissance 10,491 45,509 56,000
Analysis 2000 54,000 56,000
Backdoor 1746 54,254 56,000
Shellcode 1133 54,867 56,000
Worms 130 55,870 56,000

Total 175,341 384,659 560,000

The proposed ICVAE-DNN used the ICVAE decoder to synthesize minority attack samples.
The most popular oversampling methods used to synthesize minority attack samples are random
over sampler (ROS) [53], SMOTE [54], and ADASYN [55]. In order to demonstrate the superiority of
ICVAE-DNN in oversampling technology, three classification models are constructed based on three
oversampling methods, namely ROS-DNN, SMOTE-DNN and ADASYN-DNN. Tables 6–8 show the
comparison results.

Sensors 2019, 19, 2528 14 of 20

Table 6. Comparison of detection performance for different oversampling methods on the NSL-KDD
(KDDTest+) data set (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

ROS-DNN 92.61 56.26 80.32 6.00 12.75 78.26 67.41 92.34 77.93 7.39
SMOTE-DNN 96.59 56.75 82.19 11.00 10.93 81.16 69.48 96.42 80.76 3.41
ADASYN-DNN 96.43 59.81 83.28 8.00 9.84 80.10 67.74 96.16 79.49 3.57
ICVAE-DNN 97.26 74.97 85.65 11.00 44.41 85.97 77.43 97.39 86.27 2.74

Table 7. Comparison of detection performance for different oversampling methods on the NSL-KDD
(KDDTest-21) data set (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

ROS-DNN 85.83 65.36 74.14 5.50 10.02 63.43 58.46 94.89 72.35 14.17
SMOTE-DNN 86.76 60.99 66.86 12.00 14.45 65.34 60.59 95.37 74.10 13.24
ADASYN-DNN 67.98 54.29 67.94 8.00 11.58 57.76 55.50 88.65 68.26 32.02
ICVAE-DNN 87.04 79.89 77.87 11.50 23.17 75.43 72.86 96.20 82.92 12.96

Table 8. Comparison of detection performance for different oversampling methods on the UNSW-NB15
dataset (%).

Class ROS-DNN SMOTE-DNN ADASYN-DNN ICVAE-DNN

Normal 57.26 57.66 57.29 80.99
Generic 95.94 95.38 96.22 96.31
Exploits 49.69 50.59 44.36 71.02
Fuzzers 56.88 58.99 59.07 35.35
DoS 10.00 22.65 2.52 7.92
Reconnaissance 48.17 83.81 47.63 80.29
Analysis 13.44 15.36 86.56 15.21
Backdoor 49.40 42.20 0.86 20.58
Shellcode 90.74 84.39 80.69 91.80
Worms 34.09 52.27 47.73 79.55

Accuracy 80.52 80.92 80.72 89.08
Recall (DR) 99.50 99.90 99.85 95.68
Precision 74.04 74.30 74.12 86.05
F1-score 84.90 85.22 85.08 90.61
FPR 42.74 42.34 42.71 19.01

As can be seen from Tables 6 and 7, the proposed ICVAE-DNN achieved the best detection
performance on the NSL-KDD (KDDTest+) and NSL-KDD (KDDTest-21) data sets. Table 8 shows
that the proposed ICVAE-DNN has a higher detection rate compared to all over-sampling methods
except for ROS-DNN (only in backdoor attack), SMOTE-DNN (in DoS and reconnaissance attacks)
and ADASYN-DNN (in fuzzers and analysis attacks) on the UNSW-NB15 dataset. ROS-DNN has
a better detection rate in backdoor class compared to ICVAE-DNN (28.82% more), SMOTE-DNN
shows a comparable detection rate to ICVAE-DNN in classes DoS and reconnaissance (14.73% and
3.52% more, respectively), and the detection rate of ADASYN-DNN in fuzzers and analysis attacks
is 23.72% and 71.35% higher than that of our model, respectively. However, compared to three
well-known oversampling methods, ICVAE-DNN has higher overall accuracy, precision, F1-score
and FPR. These reasons may be due to defects in the three oversampling techniques of ROS, SMOTE
and ADASYN. ROS-DNN is a simple copy of the training sample, which easily leads to model
overfitting problems and reduces the generalization performance of the classifier. SMOTE-DNN uses
the nearest neighbor method to generate new samples for each minority sample, which is prone to
over-generalization. ADASYN-DNN uses the Γ distribution to automatically determine the number of
samples that need to be synthesized for each minority sample, which are susceptible to outliers and
cause changes in the spatial distribution of the original samples. ICVAE uses the spatial distribution of
latent variables to generate samples under the guidance of class labels, and uses the reconstruction

Sensors 2019, 19, 2528 15 of 20

error to filter the generated samples to ensure that the generated samples are more consistent with
the spatial distribution of the original samples. In addition, the trained ICVAE encoder was used to
initialize the weight of the hidden layers of the DNN classifier, which made it easier for the DNN
classifier to achieve global optimization, thereby improving classification performance. It was also
demonstrated from Tables 6–8 that the proposed ICVAE is more suitable for solving the classification
problem of imbalanced samples.

We compared the results of ICVAE-DNN with some well-known classification methods such as
KNN (K-Nearest Neighbor), MultinomialNB (multinomial naive Bayes), SVM, RF, DNN, and DBN.
We perform performance evaluation based on the five metrics introduced in Section 5.1. The results
compared with some well-known classifiers are depicted in Tables 9–11.

Table 9. Comparison of detection performance for different classification methods on the NSL-KDD
(KDDTest+) dataset (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

KNN 92.78 59.4 82.25 3.50 3.56 76.51 64.19 92.16 75.68 7.22
MultinomialNB 96.03 82.61 37.1 0.50 22.22 78.73 65.64 95.62 77.85 3.97
RF 97.37 58.53 80.24 0.50 7.55 76.49 60.69 96.84 74.62 2.63
SVM 92.82 61.71 74.85 0.00 0.00 72.28 56.73 91.26 69.97 7.18
DNN 96.10 65.30 85.40 2.50 14.56 80.22 68.21 95.85 79.70 3.90
DBN 97.04 69.85 83.11 5.50 12.56 80.82 68.53 96.84 80.26 2.96
ICVAE-DNN 97.26 74.97 85.65 11.00 44.41 85.97 77.43 97.39 86.27 2.74

As can be seen from Table 9, ICVAE-DNN had the highest overall accuracy, recall, precision and
F1-score on NSL-KDD (KDDTest+) data set than all well-known classifiers, except RF (with 0.11%
higher in FPR). Moreover, compared with other classifiers, ICVAE-DNN has a higher detection rate in
DOS, U2R and R2L classes. RF has a slightly higher detection rate in the normal class compared to
ICVAE-DNN (0.11% more), and MultinomialNB has a 7.64% higher detection rate in Probe class than
ICVAE-DNN. However, ICVAE-DNN has the highest overall detection rate. In addition, ICVAE-DNN
achieves the highest detection rates in two important minority U2R and R2L attacks, indicating that
ICVAE-DNN is more effective in detecting minority attacks and unknown attacks.

Table 10. Comparison of detection performance for different classification methods on the NSL-KDD
(KDDTest-21) dataset (%).

Model Normal Probe DoS U2R R2L Accuracy Recall Precision F1-Score FPR

KNN 68.49 59.08 69.81 3.50 3.56 55.50 52.62 88.27 65.93 31.51
MultinomialNB 83.32 82.81 38.12 0.50 22.22 60.08 54.93 93.69 69.25 16.68
RF 88.38 60.45 66.08 0.50 10.42 56.84 49.84 95.08 65.39 11.62
SVM 68.26 61.41 56.79 0.00 0.00 47.38 42.74 85.85 57.07 31.74
DNN 86.29 67.86 64.30 4.50 13.94 60.96 55.34 94.79 69.88 13.71
DBN 71.75 58.33 71.72 0.50 13.25 57.45 54.28 89.65 67.62 28.25
ICVAE-DNN 87.04 79.89 77.87 11.50 23.17 75.43 72.86 96.20 82.92 12.96

Table 10 shows that ICVAE-DNN achieves the best overall performance, except for RF (only with
1.34% difference in the overall FPR). The detection rate of RF in the Normal class is 1.34% higher than
that of ICVAE-DNN. In the probe attack, MultinomialNB achieved a 2.92% higher detection rate than
ICVAE-DNN. However, RF and MultinomialNB were poor in other performances. ICVAE-DNN had
the highest detection rates in minority classes U2R and R2L. Tables 9 and 10 show that all classifiers
have very low detection rates in the U2R and R2L attacks. The main reason was that there were too
few U2R and R2L attacks in the training data set (with 11 and 209 samples, respectively). As can be
seen from Table 2, almost half of the U2R and R2L attacks in the testing data set never appeared in
the training data set, such as httptunnel, snmpgetattack, snmpguess, etc. As a result, all classifiers are
not fully trained. Moreover, some attacks in the R2L class, such as sendmail and snmpguess attacks,

Sensors 2019, 19, 2528 16 of 20

exhibit features that were highly similar to normal records, which can cause the classifier to misclassify
them as normal records.

Table 11 shows that ICVAE-DNN achieves the best overall performance compared to the other
six well-known models, except for DBN in the overall recall (slightly higher by 3.22%). ICVAE-DNN
reaches the highest detection rate in classes normal, reconnaissance, analysis, backdoor, shellcode and
worms. MultinomialNB achieves the highest detection rate of 70.11% in the DoS class, which implies
that the DoS attack features conform to the polynomial distribution. KNN achieved the highest
detection rate of 96.63% in the generic class, but the overall DR of KNN was 1.67% lower than that
of ICVAE-DNN. In fuzzers attacks, SVM achieved a 39.66% higher detection rate than ICVAE-DNN.
The detection rate of DBN in exploits attack was 16.4% higher than that of our model, and the overall
detection rate was also 3.22% higher, but its overall F1-score was 2.16% lower. However, ICVAE-DNN
achieved the highest detection rates in minority and important attacks: analysis, backdoor, shellcode
and worms. For example, the detection rate of ICVAE-DNN in the worms class was 68.44% and 79.55%
higher than that of KNN and SVM, respectively. In addition, we can see that all classifiers have low
detection rate in classes analysis and backdoor, mainly because the analysis and backdoor attack
features are highly similar to exploits attack features. As a result, classifiers misclassify most of the
analysis and backdoor attacks as exploits attacks.

Table 11. Comparison of detection performance for different classification methods on the UNSW-NB15
dataset (%).

Class KNN MultinomialNB RF SVM DNN DBN ICVAE-DNN

Normal 74.56 57.78 76.42 57.64 74.31 69.68 80.99
Generic 96.63 96.29 96.73 96.24 96.41 96.34 96.31
Exploits 74.48 42.05 76.24 74.51 86.20 87.42 71.02
Fuzzers 42.33 42.48 53.33 75.01 45.53 55.10 35.35
DoS 19.44 70.11 10.37 0.00 7.65 8.24 7.92
Reconnaissance 58.94 36.76 78.52 0.57 77.46 79.81 80.29
Analysis 1.48 0.00 5.17 0.00 0.59 0.00 15.21
Backdoor 2.56 0.00 11.49 0.00 8.06 0.34 20.58
Shellcode 14.47 0.00 60.85 0.00 60.32 59.26 91.80
Worms 11.11 0.00 4.55 0.00 36.36 0.00 79.55

Accuracy 85.38 76.14 87.45 78.91 86.95 85.77 89.08
Recall (DR) 94.01 91.12 96.46 96.27 97.28 98.90 95.68
Precision 82.05 72.56 83.36 73.58 82.26 79.99 86.05
F1-score 87.63 80.79 89.44 83.41 89.14 88.45 90.61
FPR 25.19 42.22 23.58 42.36 25.69 30.32 19.01

5.5. Additional Comparison

To better demonstrate the performance of ICVAE-DNN, we compare its performance with nine
state-of-the-art intrusion detection methods, namely, SCDNN (spectral clustering and deep neural
network) [44], STL (self-taught learning) [56], DNN [57], Gaussian–Bernoulli RBM [18], RNN-IDS [58],
CASCADE-ANN (a multiclass cascade of artificial neural network) [59], ID-CVAE (intrusion detection
CVAE) [16], EM Clustering and DT [38]. Table 12 demonstrates the comparison results of ICVAE-DNN
proposed on three datasets with other models in terms of accuracy, DR and FPR. Compared with
other methods on the NSL-KDD (KDDTest+) and NSL-KDD (KDDTest-21) datasets, the proposed
method achieved the best performance in terms of accuracy, DR and FPR. As shown in Table 12,
ICVAE-DNN achieved the highest accuracy of 89.08% and DR of 95.68% on the UNSW-NB15 data set,
but its FPR is slightly worse. The CASCADE-ANN proposed by Baig et al. [59] achieved a lower FPR
(with 5.91% less) than ICVAE-DNN, but its accuracy and DR were worse. The experimental results
show that ICVAE-DNN had higher accuracy, DR and FPR than other state-of-the-art intrusion detection
methods except CASCADE-ANN (FPR on UNSW-NB15 dataset). Based on the experimental results,
we concluded that ICVAE-DNN has better detection performance for network intrusion detection.

Sensors 2019, 19, 2528 17 of 20

Table 12. Comparison results based on NSL-KDD and UNSW-NB15 datasets (N/A means no
available results, * Ranked first, ** Ranked second).

Method Dataset Accuracy (%) DR (%) FPR (%)

SCDNN [44] NSL-KDD (KDDTest+) 72.64 57.48 N/A
STL [56] NSL-KDD (KDDTest+) 74.38 62.99 ** 7.21 **
DNN [57] NSL-KDD (KDDTest+) 75.75 N/A N/A
Gaussian–Bernoulli RBM [18] NSL-KDD (KDDTest+) 73.23 N/A N/A
RNN-IDS [58] NSL-KDD (KDDTest+) 81.29 ** N/A N/A
ID-CVAE [16] NSL-KDD (KDDTest+) 80.10 N/A N/A
ICVAE-DNN NSL-KDD (KDDTest+) 85.97 * 77.43 * 2.74 *

SCDNN [44] NSL-KDD (KDDTest-21) 44.55 37.85 N/A
STL [56] NSL-KDD (KDDTest-21) 57.34 52.73 ** 15.06 **
RNN-IDS [58] NSL-KDD (KDDTest-21) 64.67 ** N/A N/A
ICVAE-DNN NSL-KDD (KDDTest-21) 75.43 * 72.86 * 12.96 *

CASCADE-ANN [59] UNSW-NB15 86.40 ** 86.74 ** 13.10 *
EM Clustering [38] UNSW-NB15 78.47 N/A N/A
DT [38] UNSW-NB15 85.56 N/A N/A
ICVAE-DNN UNSW-NB15 89.08 * 95.68 * 19.01 **

6. Conclusions

In this paper, we propose a novel intrusion detection approach called ICVAE-DNN that combines
the ICVAE with DNN. For large data sets, ICVAE can learn and explore the potential sparse
representations between network data features and categories. The trained ICVAE encoder is used
to initialize the weight of DNN hidden layers. DNN can learn faster and easier than traditional
multi-layer perceptron networks, thus avoiding stopping in the local minima. The ICVAE decoder
is able to generate various unknown attack samples according to the specified intrusion categories,
which not only balances the training data set, but also increases the diversity of training samples,
so ICVAE-DNN can improve the detection rate of minority attacks and unknown attacks. DNN can
automatically extract high-level abstract features from the training data, thus it can reduce data
dimension to avoid dimension curse. DNN integrates feature extraction and classification methods
into a system that automatically extracts features and performs classification without a lot of heuristic
rules and manual experience. The classification performance of ICVAE-DNN is evaluated on the
NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and UNSW-NB15 datasets and compared with six
well-known classifiers. Moreover, the experimental results show that the proposed ICVAE-DNN
provides higher detection rates in minority attacks (i.e., U2R, R2L, shellcode and worms) than the six
well-known classification algorithms: KNN, MultinomialNB, RF, SVM, DNN and DBN. In addition,
compared with the state-of-the-art classifiers (such as SCDNN, STL, DNN, Gaussian–Bernoulli RBM,
RNN-IDS, ID-CVAE, CASCADE-ANN, EM Clustering and DT), the proposed ICVAE-DNN achieves
higher accuracy, detection rate and false positive rate. These experiments prove that ICVAE-DNN is
more suitable for detecting network intrusion, especially for minority attacks and unknown attacks.

Considering future work, we plan to study an effective way to improve the detection performance
of minority attacks and unknown attacks. We plan to use the adversarial learning method to explore
the spatial distribution of ICVAE latent variables to better reconstruct input samples. Through the
adversarial learning method, similar minority attacks can be synthesized, and the diversity of
training samples can be increased. As a result, the detection performance of the ICVAE-DNN can be
further improved.

Author Contributions: conceptualization, Y.Y. (Yanqing Yang), K.Z. and C.W.; methodology, Y.Y. (Yanqing Yang),
K.Z., C.W. and Y.Y. (Yixian Yang); software, Y.Y. (Yanqing Yang); validation, Y.Y. (Yanqing Yang), K.Z. and C.W.;
formal analysis, K.Z. and Y.Y. (Yixian Yang); investigation, Y.Y. (Yanqing Yang) and K.Z.; writing—original draft
preparation, Y.Y. (Yanqing Yang); writing—review and editing, Y.Y. (Yanqing Yang) and K.Z.; visualization, Y.Y.
(Yanqing Yang); supervision, K.Z. and C.W. and Y.Y. (Yanqing Yang); project administration, K.Z. and C.W.

Sensors 2019, 19, 2528 18 of 20

Funding: This research was supported by the National Key R&D Program of China (2017YFB0802703) and
National Natural Science Foundation of China (61602052).

Acknowledgments: The authors would like to thank the anonymous reviewers for their contribution to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, J.C.W.; Wu, J.M.T.; Fournier-Viger, P.; Djenouri, Y.; Chen, C.H.; Zhang, Y. A Sanitization Approach to
Secure Shared Data in an IoT Environment. IEEE Access 2019, 7, 25359–25368.

2. Zhang, Y.; Li, P.; Wang, X. Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep
Belief Network. IEEE Access 2019, 7, 31711–31722.

3. Background to IoT Security. Available online: https://safenet.gemalto.com/iot-2018/iot-security
(accessed on 14 May 2019).

4. SecurityWeek. Available online: https://www.securityweek.com/top-dutch-banks-hit-cyber-attacks
(accessed on 14 May 2019).

5. Winter Olympics Hit by Cyber-Attack. Available online: https://www.bbc.com/news/technology-43030673
(accessed on 14 May 2019).

6. Ali, M.H.; Al Mohammed, B.A.D.; Ismail, A.; Zolkipli, M.F. A new intrusion detection system based on fast
learning network and particle swarm optimization. IEEE Access 2018, 6, 20255–20261.

7. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature
selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160.

8. Kabir, E.; Hu, J.; Wang, H.; Zhuo, G. A novel statistical technique for intrusion detection systems. Fut. Gener.
Comput. Syst. 2018, 79, 303–318.

9. Karami, A. An anomaly-based intrusion detection system in presence of benign outliers with visualization
capabilities. Expert Syst. Appl. 2018, 108, 36–60.

10. Moustafa, N.; Creech, G.; Slay, J. Anomaly Detection System Using Beta Mixture Models and Outlier
Detection. In Progress in Computing, Analytics and Networking; Springer: Berlin, Germany, 2018; pp. 125–135.

11. Tian, Y.; Mirzabagheri, M.; Bamakan, S.M.H.; Wang, H.; Qu, Q. Ramp loss one-class support vector machine;
A robust and effective approach to anomaly detection problems. Neurocomputing 2018, 310, 223–235.

12. Vijayanand, R.; Devaraj, D.; Kannapiran, B. Intrusion detection system for wireless mesh network using
multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur.
2018, 77, 304–314.

13. Ganeshan, R.; Paul Rodrigues, S. I-AHSDT: Intrusion detection using adaptive dynamic directive operative
fractional lion clustering and hyperbolic secant-based decision tree classifier. J. Exp. Theor. Artif. Intell.
2018, 30, 887–910.

14. Serpen, G.; Aghaei, E. Host-based misuse intrusion detection using PCA feature extraction and kNN
classification algorithms. Intell. Data Anal. 2018, 22, 1101–1114.

15. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection.
IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50.

16. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Conditional variational autoencoder for
prediction and feature recovery applied to intrusion detection in iot. Sensors 2017, 17, 1967.

17. Malaiya, R.K.; Kwon, D.; Kim, J.; Suh, S.C.; Kim, H.; Kim, I. An Empirical Evaluation of Deep Learning
for Network Anomaly Detection. In Proceedings of the 2018 International Conference on Computing,
Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 893–898.

18. Imamverdiyev, Y.; Abdullayeva, F. Deep Learning Method for Denial of Service Attack Detection Based on
Restricted Boltzmann Machine. Big Data 2018, 6, 159–169.

19. Huda, S.; Miah, S.; Yearwood, J.; Alyahya, S.; Al-Dossari, H.; Doss, R. A malicious threat detection model
for cloud assisted internet of things (CoT) based industrial control system (ICS) networks using deep belief
network. J. Parallel Distrib. Comput. 2018, 120, 23–31.

20. Tamer Aldwairi, D.P.; Novotny, M.A. An evaluation of the performance of Restricted Boltzmann Machines
as a model for anomaly network intrusion detection. Comput. Netw. 2018, 144, 111–119.

21. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an Effective Intrusion Detection System Using the
Modified Density Peak Clustering Algorithm and Deep Belief Networks. Appl. Sci. 2019, 9, 238.

https://safenet.gemalto.com/iot-2018/iot-security
https://www.securityweek.com/top-dutch-banks-hit-cyber-attacks
https://www.bbc.com/news/technology-43030673

Sensors 2019, 19, 2528 19 of 20

22. Li, C.; Wang, J.; Ye, X. Using a Recurrent Neural Network and Restricted Boltzmann Machines for Malicious
Traffic Detection. NeuroQuantology 2018, 16, doi:10.14704/nq.2018.16.5.1391.

23. Resende, P.A.A.; Drummond, A.C. A Survey of Random Forest Based Methods for Intrusion Detection
Systems. ACM Comput. Surv. 2018, 51, 48.

24. Yadahalli, S.; Nighot, M.K. Adaboost based parameterized methods for wireless sensor networks.
In Proceedings of the 2017 International Conference On Smart Technologies For Smart Nation
(SmartTechCon), Bangalore, India, 17–19 August 2017; pp. 1370–1374.

25. Roy, S.S.; Krishna, P.V.; Yenduri, S. Analyzing Intrusion Detection System: An ensemble based stacking
approach. In Proceedings of the 2014 IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), Noida, India, 15–17 December 2015; pp. 000307–000309.

26. Aburomman, A.A.; Reaz, M.B.I. A survey of intrusion detection systems based on ensemble and hybrid
classifiers. Comput. Secur. 2017, 65, 135–152.

27. Wongsuphasawat, K.; Smilkov, D.; Wexler, J.; Wilson, J.; Mané, D.; Fritz, D.; Krishnan, D.; Viégas, F.B.;
Wattenberg, M. Visualizing dataflow graphs of deep learning models in TensorFlow. IEEE Trans. Vis.
Comput. Graph. 2018, 24, 1–12.

28. Wang, Z. Deep Learning-Based Intrusion Detection With Adversaries. IEEE Access 2018, 6, 38367–38384.
29. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine Learning and Deep

Learning Methods for Cybersecurity. IEEE Access 2018, 6, 35365–35381.
30. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based

feature selection algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998.
31. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
32. Kingma, D.P.; Mohamed, S.; Rezende, D.J.; Welling, M. Semi-supervised learning with deep generative

models. In Proceedings of the 27th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 3581–3589.

33. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative
models. In Proceedings of the 28th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 3483–3491.

34. UNB. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 20
January 2019).

35. Dhanabal, L.; Shantharajah, S. A study on NSL-KDD dataset for intrusion detection system based on
classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

36. ACCS. UNSW-NB15 Dataset. Available online: https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
cybersecurity/ADFA-NB15-Datasets/ (accessed on 20 January 2019).

37. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information
Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; pp. 1–6.

38. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of
the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. A Glob. Perspect.
2016, 25, 18–31.

39. Kawachi, Y.; Koizumi, Y.; Harada, N. Complementary Set Variational Autoencoder for Supervised Anomaly
Detection. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2366–2370.

40. Sun, J.; Wang, X.; Xiong, N.; Shao, J. Learning Sparse Representation With Variational Auto-Encoder for
Anomaly Detection. IEEE Access 2018, 6, 33353–33361.

41. Chandy, S.E.; Rasekh, A.; Barker, Z.A.; Shafiee, M.E. Cyberattack Detection using Deep Generative Models
with Variational Inference. arXiv 2018, arXiv:1805.12511.

42. Osada, G.; Omote, K.; Nishide, T. Network Intrusion Detection Based on Semi-supervised Variational
Auto-Encoder. In European Symposium on Research in Computer Security; Springer: Berlin, Germany, 2017;
pp. 344–361.

43. Thing, V.L. IEEE 802.11 network anomaly detection and attack classification: A deep learning approach.
In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC),
San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

https://www.unb.ca/cic/datasets/nsl.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

Sensors 2019, 19, 2528 20 of 20

44. Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A hybrid spectral clustering and deep neural network ensemble
algorithm for intrusion detection in sensor networks. Sensors 2016, 16, 1701.

45. Tang, T.; Zaidi, S.A.R.; McLernon, D.; Mhamdi, L.; Ghogho, M. Deep Recurrent Neural Network for
Intrusion Detection in SDN-based Networks. In Proceedings of the 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018.

46. Muna, A.H.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things
based on deep learning models. J. Inf. Secur. Appl. 2018, 41, 1–11.

47. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
48. Shen, L.; Lin, Z.; Huang, Q. Relay backpropagation for effective learning of deep convolutional neural

networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Berlin, Germany, 2016; pp. 467–482.

49. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
50. Krizhevsky, A.; Hinton, G. Convolutional Deep Belief Networks on Cifar-10. Unpublished work, 2010; 40p.
51. KDDCup. KDD Cup Dataset. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html (accessed on 19 January 2019).
52. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.

In Computational Intelligence for Security and Defense Applications; IEEE: Ottawa, ON, Canada, 2009; pp. 1–6.
53. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced

datasets in machine learning. J. Mach. Learn. Res. 2017, 18, 559–563.
54. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling

technique. J. Artif. Intell. Res. 2002, 16, 321–357.
55. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.

In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

56. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system.
In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications
Technologies (Formerly BIONETICS), New York, NY, USA, 3–5 December 2016; pp. 21–26.

57. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network
intrusion detection in software defined networking. In Proceedings of the 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263.

58. Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural
networks. IEEE Access 2017, 5, 21954–21961.

59. Baig, M.M.; Awais, M.M.; El-Alfy, E.S.M. A multiclass cascade of artificial neural network for network
intrusion detection. J. Intell. Fuzzy Syst. 2017, 32, 2875–2883.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Background
	Variational AutoEncoder (VAE)
	Improved Conditional Variational AutoEncoder (ICAVE)

	The Proposed Intrusion Detection Framework
	Training ICVAE
	Generating New Attacks
	Detecting Attacks

	Experimental Results and Analysis
	Performance Evaluation
	Datasets
	NSL-KDD Dataset
	UNSW-NB15 Dataset

	Experimental Setup
	Results and Discussion
	The Detection Performance

	Additional Comparison

	Conclusions
	References

