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Abstract: We develop a novel approach improving existing target localization algorithms for distributed
multiple-input multiple-output (MIMO) radars based on bistatic range measurements (BRMs). In the
proposed algorithms, we estimate the target position with auxiliary parameters consisting of both the
target–transmitter distances and the target–receiver distances (hence, “double-sided”) in contrast to the
existing BRM methods. Furthermore, we apply the double-sided approach to multistage BRM methods.
Performance improvements were demonstrated via simulations and a limited theoretical analysis was
attempted for the ideal two-dimensional case.
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1. Introduction

In distributed multiple-input multiple-output (MIMO) radar systems, target localization based on
the time delays between transmitters and receivers is an attractive research topic due to its high accuracy
and simplicity [1–3]. As target-mediated time delays are nonlinear, estimation of target location via
direct analysis of these delays is difficult. Hence, several approaches seeking to linearize the relationship
between the target and the time delays have been proposed [4–15]. Of these, algorithms based on bistatic
range measurements (BRMs), which are the sum of target–transmitter and target–receiver distances, are
introduced in [6–15].

A single stage algorithm based on BRM, introduced first in [6,7], estimates the target position with
the help of auxiliary parameters (distances between the target and transmitters or distances between the
target and receivers). Multistage algorithms, such as those in [8–15], further refine the target position by
re-using the estimates of the first-stage BRM method and exploiting their relationships, and asymptotically
attain the Cramer–Rao lower bound (CRLB) [12] assuming accurate estimates of the first stage. A recent
study [15] shows that the choice of auxiliary parameters (target–transmitter side or target–receiver side)
in BRM methods affects the target estimation accuracy. Therefore, a systematic approach that utilizes all
available auxiliary parameters optimally is desirable.

In this paper, we propose a novel approach that utilizes both target–transmitter distances and
target–receiver distances as the auxiliary parameters, to improve the mean square error (MSE) performance.
Furthermore, the proposed approach can be applied to the second-stage of the multistage BRM algorithms,
such as in those of [8–15]. The existing multistage algorithms can be divided into two types depending on
the way of linearizing the nonlinear relations between target position and auxiliary parameters estimated
in the first stage: the algorithms in [8–12] linearize nonlinear relationships by squaring them and the
algorithms in [13–15] use first-order Taylor expansion to this end. We present two types of double-sided
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two-stage BRM algorithms by applying our approach to the most recent multistage BRM algorithms, i.e.,
two-stage methods using squared Taylor approximated relationships. The improved MSE performances of
the proposed algorithms were demonstrated by simulations and limited theoretical analysis was attempted
for an ideal two-dimensional case.

The remainder of this paper is organized as follows. We briefly review the BRM method with a
distributed MIMO radar system model in Section 2. In Section 3, we develop double-sided, single- and
two-stage BRM algorithms. A theoretical analysis for ideal two-dimensional target/antenna positions
presented in Section 4 shows the improved MSE performance afforded by the double-sided BRM algorithm.
The simulations of practical three-dimensional target/antenna positions presented in Section 5 confirm
that our algorithms improve MSE performance. Our conclusions are presented in Section 6.

Table 1 lists the notations used in this paper.

Table 1. List of notations.

Notations Definition

0i×j i× j matrices, all elements of which are zero

1i×j i× j matrices, all elements of which are unity

Ii i× i identity matrix

diag(·) Diagonal matrix generated from an input vector

blkdiag(·) Block diagonal matrix generated from input vectors (or matrices)

⊗ Kronecker product

� Element-wise product

sgn(·) sign function
√
· element-wise square root of the input vector

2. System Model for BRM Based Target Localization and Problem Formulation

We consider a three-dimensional, widely separated MIMO radar system consisting of a single target
located at an unknown position xo = [xo, yo, zo]T with M transmitting antennae (Tx) and N receiving
antennae (Rx) located at known positions xt(m) = [xt(m), yt(m), zt(m)]T ,m = 1, · · · , M and xr(n) =

[xr(n), yr(n), zr(n)]T , n = 1, · · · , N, respectively, and, we denote the positions of antennae as Xt =

[xt(1), · · · , xt(M)] and Xr = [xr(1), · · · , xr(N)], together.
The bistatic range (BR) between the mth Tx and the nth Rx, denoted by rmn, is defined as the sum of

the distance from the mth Tx to the target, denoted by dt(m) = ‖xo − xt(m)‖, and the distance from the
target to the nth Rx, denoted by dr(n) = ‖xo − xr(n)‖ ([16]):

rmn = dt(m) + dr(n). (1)

Each BR is measured by converting the estimated time delay between a Tx and an Rx to a distance.
Any BR measurement (BRM) between the mth Tx and the nth Rx, denoted by r̂mn, is often corrupted
by measurement error, denoted by ωmn and modeled as an i.i.d., zero-mean white Gaussian noise with
variance σ2

ω ([4]):

r̂mn = rmn + ωmn. (2)

The goal of BRM based target localization is to estimate the target location xo from the BRMs
{r̂mn}m=1,··· ,M, n=1,··· ,N .
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The BRM method in [6,7] jointly estimates the target location, xo, and the distances from Txs to the
target, denoted by dt = [dt(1), · · · , dt(M)]T , from the BRMs, using the following linear model in the
presence of noise:

bt = [1M×1 ⊗ XT
r − XT

t ⊗ 1N×1,−Rt][xT
o , dT

t ]
T + εt, (3)

where

bt =
1
2

 ‖xr(1)‖2 − r̂2
11 − ‖xt(1)‖2

...
‖xr(N)‖2 − r̂2

MN − ‖xt(M)‖2

 (4)

Rt = blkdiag(r1, · · · , rM), (5)

where rm = [r̂m1, · · · , r̂mN ]
T and εt is a vector reflecting BR measurement error ([7]).

Alternatively, the BRM equation can be constructed using the distances from the target to the Rxs,
denoted by dr = [dr(1), · · · , dr(N)]T , instead of the dt values:

br = [XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r ,−Rr][xT
o , dT

r ]
T + εr, (6)

where

br =
1
2

 ‖xt(1)‖2 − r̂2
11 − ‖xr(1)‖2

...
‖xt(M)‖2 − r̂2

MN − ‖xr(N)‖2

 (7)

Rr = [diag(r1), · · · , diag(rM)]T , (8)

where εr is a vector reflecting BR measurement error [7]. Note that the estimated auxiliary parameters d̂t or
d̂r contain the target information xo. Multistage algorithms further refine the target position by exploiting
this information.

The two-stage BRM method using the squared relationships ([12]) estimates the squared target
position, xo � xo, using x̂o and d̂t yielded by the first-stage BRM method based on the following linear
model (which reflects the relationship between [xT

o , dT
t ]

T and xo � xo):[
x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

]
=

[
I3

1M×3

]
(xo � xo) + εS,t, (9)

where εS,t is the error vector due to the first-stage estimation error ([12]).
Alternatively, we obtain the following linear model reflecting the relationship between [xT

o , dT
r ]

T and
xo � xo: [

x̂o � x̂o

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

]
=

[
I3

1N×3

]
(xo � xo) + εS,r, (10)

where εS,r is the error vector due to the first-stage estimation error [12].
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Let ̂xo � xo denote the xo � xo estimated by the linear model of (9) (or (10)); then, the refined target
location, denoted by x̂o,S, is:

x̂o,S = sgn(x̂o)�
√ ̂xo � xo. (11)

The two-stage BRM method using Taylor approximated relationships [15] considers the first-order
Taylor expansion of dt(m) at x̂o to be

dt(m) = d̂t(m)−4dt(m) = ‖x̂o −4xo − xt(m)‖

' ‖x̂o − xt(m)‖ − x̂T
o − xT

t (m)

‖x̂o − xt(m)‖4xo
for m = 1, · · · , M, (12)

where 4xo,4dt(1), · · · ,4dt(M) are the estimation errors at the x̂o. The linear model reflecting the
relationships of (12) is

03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖

 =


−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖

4xo +


4xo

4dt(1)
...

4dt(M)

 . (13)

Alternatively, we obtain the following linear model using dr instead of dt:
03×1

d̂r(1)− ‖x̂o − xr(1)‖
...

d̂r(N)− ‖x̂o − xr(N)‖

 =


−I3

(x̂T
o − xT

r (1))/‖x̂o − xr(1)‖
...

(x̂T
o − xT

r (N))/‖x̂o − xr(N)‖

4xo +


4xo

4dr(1)
...

4dr(N)

 . (14)

We make an intermediate estimation of the error4xo of the first stage to refine the target position.
Let 4̂xo denote the4xo estimated by the linear model of (13) (or (14)); then, the refined target position,
denoted by x̂o,A, is:

x̂o,A = x̂o − 4̂xo. (15)

In the existing single-sided BRM methods, xo and dt, or xo and dr, are used exclusively. As the
BRMs are the sum of the dt and dr values, target estimation accuracy can be improved by simultaneously
estimating xo, dt and dr in the first stage, and by fully utilizing these values in the second stage. Thus,
the goal of our paper is to develop target estimation schemes that use both the Tx- and Rx-sided linear
models simultaneously.

3. The Double-Sided BRM Approach

3.1. The Double-Sided Single-Stage BRM Algorithm

The target estimation performance of the BRM algorithm depends on the choice of auxiliary
parameters (the transmitter-side parameters dt or the receiver-side parameters dr), as shown in [15].
Such dependency implies that the linear models in (3) and (6) cannot fully exploit the target information
in BRM observations. Thus, by merging the two linear models in (3) and (6) into a single linear model and,
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consequently, simultaneously estimating the target, dt and dr values, we fully utilize all BR information
for the target estimation.

To simultaneously estimate xo, dt and dr, we rewrite the two linear models of (3) and (6) as equivalent
linear models with respect to [xT

o , dT
t , dT

r ]
T , by inserting 0MN×Ndr and 0MN×Mdt:

bt = [1M×1 ⊗ XT
r − XT

t ⊗ 1N×1,−Rt, 0MN×N ][xT
o , dT

t , dT
r ]

T + εt, (16)

br = [XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r , 0MN×M,−Rr][xT
o , dT

t , dT
r ]

T + εr. (17)

Using the above linear equations, we construct a single linear model with respect to [xT
o , dT

t , dT
r ]

T

as follows:

b = H[xT
o , dT

t , dT
r ]

T + ε, (18)

where b = [bT
t , bT

r ]
T , ε = [εT

t , εT
r ]

T , and

H =

[
1M×1 ⊗ XT

r − XT
t ⊗ 1N×1 −Rt 0MN×N

XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r 0MN×M −Rr

]
. (19)

The weighted least squares (WLS) solution of (18), denoted by [x̂T
o , d̂T

t , d̂T
r ]

T , is:

[x̂T
o , d̂T

t , d̂T
r ]

T = (HTWH)−1HTWb, (20)

where the diagonal weighting matrix W is:

W = diag

(
σ2

ω

[
(dr � dr)⊗ 1M×1

1N×1 ⊗ (dt � dt)

])−1

. (21)

In practice, we apply the approximated W using estimated dt and dr via a least square (LS) approach
(substituting an identity matrix for W in (20)) as in previous methods [6–15]. Note that, instead of error
covariance matrix, Cov[ε], we use the diagonal terms of Cov[ε] for W, since Cov[ε] is not invertible here.

The analysis of Section 4 shows that our double-sided BRM method enhances the MSE of target
location estimated by the existing BRM method by a factor of two, given ideal two-dimensional
target/antenna positions. The numerical simulations presented in Section 5 show that our method
affords a better MSE performance than the existing BRM method when dealing with practical
target/antenna positions.

3.2. The Double-Sided Two-Stage BRM Algorithms

In this subsection, we develop two double-sided two-stage BRM algorithms by modifying the
above single-sided two-stage BRM algorithms using the squared relationships [12] and the Taylor
approximation [15] to fully utilize the parameters (x̂o, d̂t, and d̂r) estimated by the first stage double-sided
BRM algorithm.
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3.2.1. Proposed Double-Sided Two-Stage BRM Algorithm Using the Squared Relationships

As for the single-stage algorithm, we construct an extended linear model reflecting the relationships
between dt, dr and xo � xo by merging the two single-sided linear models of (9) and (10) as the following: x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

 =

 I3

1M×3

1N×3

 (xo � xo) + εp, (22)

where εp is error vector due to the estimation error. The method of (22) provides an estimate of the
squared target location, xo� xo, using all [x̂T

o , d̂T
t , d̂T

r ]
T given by the first-stage double-sided BRM algorithm.

Denote [I3, 1T
M×3, 1T

N×3]
T as Hp; then, the WLS solution of (22), denoted by ̂xo � xo, is:

̂xo � xo = (HT
p WpHp)

−1HT
p Wp

 x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

 . (23)

The weighting matrix Wp is:

Wp = (T(HTWH)−1TT)−1, (24)

where

T = 2

[
diag(xo) 03×(M+N)

AT diag([dT
r , dT

r ]
T)

]
(25)

A = [Xt, Xr]. (26)

The final target position estimate, denoted by x̂o,DS, is:

x̂o,DS = sgn(x̂o)�
√ ̂xo � xo. (27)

3.2.2. Proposed Double-Sided Two-Stage BRM Algorithm Using the Taylor Approximated Relationships

To utilize all [x̂T
o , d̂T

t , d̂T
r ]

T values given by the first-stage double-sided BRM algorithm, we construct
the following extended linear model which reflects the Taylor approximated relationships between d̂t, d̂r

and x̂o by merging the linear models in (13) and (14):

03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖
d̂r(1)− ‖x̂o − xr(1)‖

...
d̂r(N)− ‖x̂o − xr(N)‖


=



−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖
(x̂T

o − xT
r (1))/‖x̂o − xr(1)‖

...
(x̂T

o − xT
r (N))/‖x̂o − xr(N)‖


4xo +



4xo

4dt(1)
...

4dt(M)

4dr(1)
...

4dr(N)


, (28)
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where4xo,4dt(1), · · · ,4dt(M),4dr(1), · · · ,4dr(N) are the estimation errors at x̂o. The method of (28)
provides an estimate of4xo. Let us denote

Hp =



−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖
(x̂T

o − xT
r (1))/‖x̂o − xr(1)‖

...
(x̂T

o − xT
r (N))/‖x̂o − xr(N)‖


; (29)

then, the WLS solution of (28), denoted by 4̂xo, is:

4̂Xo = (HT
p WpHp)

−1HT
p Wp



03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖
d̂r(1)− ‖x̂o − xr(1)‖

...
d̂r(N)− ‖x̂o − xr(N)‖


(30)

where the weighting matrix Wp is

Wp = (HTWH)−1. (31)

The final target position estimate, denoted by x̂o,DA, is:

x̂o,DA = x̂o − 4̂xo. (32)

Unfortunately, theoretical performance analysis of (27) and (32) are virtually impossible given their
complexity. However, the simulation results presented in Section 5 support the suggestion that our
double-sided BRM method improves existing algorithms.

Table 2 compares the overall complexity of the double-sided algorithms to that of single-sided
algorithms in terms of the number of multiplications.

Table 2. Complexity table of the target localization algorithms.

Methods Number of Multiplications

Single-sided BRM algorithm [7] (M + 3)3 + (2MN + 2M + 7)MN(M + 3)

Single-sided two-stage BRM algorithms ([12,15])
(M + 3)3 + (2MN + 2M + 7)MN(M + 3)

+33 + 3(M + 3)(2M + 13)

Double-sided BRM algorithm (M + N + 3)3 + 2(4MN + 2M + 2N + 7)MN(M + N + 3)

Double-sided two-stage BRM algorithms
(M + N + 3)3 + 2(4MN + 2M + 2N + 7)MN(M + N + 3)

+33 + 3(M + N + 3)(2M + 2N + 13)
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The extra complexity of the double-sided algorithms is attributable principally to the larger matrix
used for WLS computation. The increased computation cost scales polynomially, but is acceptable given
the performance gain demonstrated by the simulations presented in Section 5.

4. Performance Analysis of Double-Sided BRM Method for Ideal Target/Antennae Positions

Here, we derive target estimation MSEs of our double-sided BRM method and the BRM method
of Noroozi [7] when the two-dimensional target/antenna positions are ideal. Derivation of general,
theoretical MSEs of target estimations is extremely complicated; the existing study in [7] assumes that the
target/antenna distributions in the x-y plane are ideal. Accepting this, let the target be at (without loss of
generality) xo = [0, 0]T , and let the antennae be located uniformly around the target:

xt(m) = d
[

cos
(

θ0 +
2πm

M

)
, sin

(
θ0 +

2πm
M

)]T
,

xr(n) = d
[

cos
(

φ0 +
2πn

N

)
, sin

(
φ0 +

2πn
N

)]T
,

(33)

where d is the common distance between the target and the various antennae, and θ0 and φ0 are
distinct angles.

Assuming small BR errors, the error covariance matrix of the WLS estimator can be derived
from [17,18]:

Cov[[x̂T
o , d̂T

t , d̂T
r ]

T − [xT
o , dT

t , dT
r ]

T ] = (HT
o WHo)

−1HT
o WCov[ε]WHo(HT

o WHo)
−1, (34)

where Ho is the noise-free version of H (derived by substituting rmn for r̂mn in (19)). Accepting the above
assumption, dt and dr simplify to d1M×1 d1N×1, respectively, hence, the weighting matrix W of (21) and
the covariance matrix of ε = [εT

t , εT
r ]

T , Cov[ε], simplify to:

W = 1/(d2σ2
ω)I2MN (35)

Cov[ε] = d2σ2
ω

[
IMN IMN
IMN IMN

]
. (36)

As the antennas are uniformly located on a circle of radius d, the assumption further yields the
following properties (the results for Rxs are the same):

∑M
m=1 xt(m) = ∑M

m=1 yt(m) = 0 (37)

∑M
m=1 x2

t (m) = ∑M
m=1 y2

t (m) = Md2/2. (38)

Using (37) and (38), each term of (34), (HT
o WHo)−1 and HT

o WCov[ε]WHo, can be simplified
as follows:

(HT
o WHo)

−1 =
σ2

ω

MN

[
I2

1
2d A

1
2d AT B

]
(39)

HT
o WCov[ε]WHo =

1
σ2

ω

[
02×2 02×(M+N)

0(M+N)×2 D

]
(40)
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where A is that of (26), and

D =

[
4NIM 41M×N

41N×M 4MIN

]
, (41)

hence,

Cov[[x̂T
o , d̂T

t , d̂T
r ]

T − [xT
o , dT

t , dT
r ]

T ]

= σ2
ω

[
1

4d2 ADAT 1
2d ADB

1
2d BDA BDB

]
.

(42)

As the MSEs of the x and y components are the (1, 1) and (2, 2) elements of Cov[[x̂T
o , d̂T

t , d̂T
r ]

T −
[xT

o , dT
t , dT

r ]
T ], we are interested only in (1/4d2)ADAT . Using (38) once more, (1/4d2)ADAT is:

1
4d2 ADAT =

1
MN

I2. (43)

Thus, we finally obtain

E
{
(x̂o − xo)

2
}
= E

{
(ŷo − yo)

2
}
=

σ2
ω

MN
. (44)

Meanwhile, under the same assumption, the MSEs of the existing BRM method in [7] are:

E
{
(x̂BRM − xo)

2
}
= E

{
(ŷBRM − yo)

2
}
=

2σ2
ω

MN
. (45)

A comparison of (44) and (45) shows that our method improves the MSE performance of the BRM
method by a factor of two, given the assumed two-dimensional target/antenna positioning. As presented
in the following section, simulations highlighted the improvements afforded by our algorithms when
practical target/antenna settings were evaluated.

5. Numerical Simulation for Practical Target/Antennae Positions

Figure 1 presents the MSE performances of the proposed algorithms for the antenna positions
specified in Table 3 and a target located at xo = [0m, 0m, 0m]T . The results in Figure 1a show that our
double-sided BRM method consistently affords better MSE performance than the single-sided BRM method
of Noroozi [7], and the results in Figure 1b,c show that the double-sided two-stage BRM algorithms afford
better MSE performance than the single-sided two-stage BRM methods of Amiri [12] and Wang [15].

Figure 2 presents the MSEs of target estimations when the target moves along the x-axis with the y
and z target positions fixed at yo = 400 m and zo = 100 m, and antennas positioned as specified in Table 4.
Here, the noise variance, σω, was considered to be 5 m2. The simulations shown in Figure 2 revealed that
our algorithms afforded better MSE performance than existing algorithms for all target positions tested.
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Table 3. Transmitters and receiver Positions (m).

k xt(k) yt(k) zt(k) xr(k) yr(k) zr(k)

1 250 300 180 −250 −300 −180
2 300 350 120 −300 −350 −120
3 300 250 160 −300 −250 −160
4 200 320 150 −200 −320 −150
5 250 200 150 −250 −200 −150
6 200 200 200 - - -
7 300 300 300 - - -
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(c)
Figure 1. Target estimation MSE of the double-sided and single-sided algorithms with respect to noise variance:
(a) single-stage; (b) two-stage using squared relations; and (c) two-stage using approximated relations.



Sensors 2019, 19, 2524 11 of 12

Table 4. Transmitters and Receiver Positions (m).

k xt(k) yt(k) zt(k) xr(k) yr(k) zr(k)

1 0 0 15 −450 −450 20
2 −300 −200 15 −450 450 30
3 −300 200 10 450 −450 40
4 −200 −300 20 450 450 10
5 −200 300 10 0 600 20
6 200 −300 10 600 0 10
7 200 300 8 −600 0 15
8 300 −200 12 0 −600 10
9 300 200 16 - - -
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Figure 2. Target estimation MSE of the double-sided and single-sided algorithms with respect to the target
position: (a) single-stage; (b) two-stage using squared relations; and (c) two-stage using approximated relations.

6. Conclusions

Here, we develop a novel target localization approach improving the target estimation accuracy
of existing BRM based algorithms for distributed MIMO radars. The proposed double-sided BRM
method estimates target, target–transmitter, and target–receiver distances simultaneously. We also took
a double-sided approach to two-stage BRM methods. The improvements afforded by the proposed
algorithms were confirmed theoretically for an ideal scenario, and via numerical simulations for
practical scenarios.
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