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Abstract: Spectrum sensing (SS) is an essential part of cognitive radio (CR) technology, and cooperative
spectrum sensing (CSS) could efficiently improve the detection performance in environments with
fading and shadowing effects, solving hidden terminal problems. Hard and Soft decision detection are
usually employed at the fusion center (FC) to detect the presence or absence of the primary user (PU).
However, soft decision detection achieves better sensing performance than hard decision detection at
the expense of the local transmission band. In this paper, we propose a tradeoff scheme between the
sensing performance and band cost. The sensing strategy is designed based on three modules. Firstly,
a local detection module is used to detect the PU signal by energy detection (ED) and send decision
results in terms of 1-bit or 2-bit information. Secondly, and most importantly, the FC estimates the
received decision data through a data reconstruction module based on the statistical distribution such
that the extra thresholds are not needed. Finally, a global decision module is in charge of fusing the
estimated data and making a final decision. The results from a simulation show that the detection
performance of the proposed scheme outperforms that of other algorithms. Moreover, savings on the
transmission band cost can be made compared with soft decision detection.
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1. Introduction

With the rapid development of the Internet of Things (IoT) [1] and wireless applications, especially
for fifth generation (5G) communication systems and beyond [2], spectrum resources are becoming
increasingly strained. Currently, the radio spectrum is used based on a fixed spectrum allocation policy.
According to the Federal Communication Commission (FCC), the utilization of an allocated spectrum
resource is about 15–85% below 3 GHz. In 2015, the FCC released a report that highlighted the urgent
need to improve the spectrum efficiency [3]. Motivated by this, the cognitive radio (CR) technology
was proposed to cope with the spectrum utilization [4].

In CR networks, the primary user (PU) has authority to use the spectrum bands for communication,
but secondary users (SUs) can only opportunistically access the spectrum holes that are not occupied
by the PU. As a result, they have to continuously detect the spectrum bands over a period of time.
Then, the SUs need to instantly evacuate once the PU returns to the bands so that harmful interference
can be reduced. In addition, another model allows the SUs to coexist with the PU in the licensed bands,
but the PU’s predefined interference temperature must be maintained. This means that the SUs always
transmit the information with a lower power to guarantee the PU’s quality-of-service (QoS), thereby
greatly improving the spectrum efficiency. It is worth noting that spectrum sensing plays a vital role
in CR [5–7]. In general, there are various path losses in an actual wireless communication scenario,
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such as multi-path fading effects, shadowing effects, and the near–far effect, which may degrade the
spectrum sensing results. In order to ensure accurate spectrum sensing, cooperative spectrum sensing
(CSS) has emerged as a solution in which multiple SUs collaboratively detect the spectrum bands.
In the end, the SUs send local information to the fusion center (FC), which makes a final decision [8]
through the reporting channel.

In general, there are two types of local information fusion. The first is Hard decision detection [9,10],
in which each SU makes a local decision and reports the results via 1-bit data, where ‘1’ represents
the presence of the PU and ‘0’ represents the PU’s absence. The final decision is made on the basis
of specific fusion rules, such as the ‘OR’ rule, the ‘AND’ rule, and the ‘MAJORITY’ rule. The second
is Soft-decision detection [10,11], in which each SU sends the sensing data to the FC and the final
decision is made by constructing a global test statistic via fusing all of the local sensing information,
which increases the local transmission band cost in contrast to 1-bit hard decision detection. Therefore,
the tradeoff between the sensing performance and the band cost is a challenging issue.

In [12], each SU sends data on its decision to the FC through an unreliable reporting channel,
and the n-out-of-K fusion rule is employed at the FC. The optimal number of cooperative SUs is
analyzed concerning the minimum Bayes risk. A tri-threshold CSS based on weighing is proposed to
improve the detection performance in [13], and obtains better detection performance than single and
double-threshold detection under a low signal-to-noise ratio (SNR).

However, the final decision is made by the FC using a hard-decision rule. Soft decision detection
enjoys a significant competitive advantage in sensing performance over hard-decision detection. Hence,
researchers have been encouraged to investigate soft-decision quantization. Fu et al. [14] present a
multi-bit quantization fusion scheme for CSS in which each SU employs q-bit quantization instead of a
1-bit hard-decision, compares the energy value during a sensing interval with a pair of quantization
thresholds, and then produces multi-bit data. The FC collects quantized multi-bit data from all the SUs
and performs inverse quantization, then softly combines the data. Fan et al. [15] introduce general
log2M-bit local quantization, and jointly consider the diversity and SNR gains, where local sensing
is divided into multiple regions in order to obtain the closed-form expressions for both the local
thresholds and fusion rule. Chen et al. [16] employ M-ary quantized data to achieve spectrum sensing
at the FC, and consider defense against spectrum sensing data falsification (SSDF) attacks. In [17], each
SU does not make any decision, and only forwards the information it obtains via sensing to the FC
through an imperfect reporting channel with a Nakagami-m distribution.

However, the reporting overhead grows as the number of quantization bits increases. In [18],
the authors propose a multi-bit fusion rule where the SUs send their 1-bit sensing results to the FC
instead of sending multi-bit quantization information, which results in multi-bit reporting and an
increase in the energy efficiency. Bhowmick et al. [19] discuss a hybrid fusion scheme for CSS in
presence of fading effects, in which the SUs send a hard-decision if the quality of the reporting channel
is sufficient; otherwise, they send a soft-decision. Received hard and soft-decisions are combined via
the OR rule at the FC to obtain the final decision. In [20], the optimization problem is about maximizing
the network throughput subject to a target detection probability that is constructed. The authors
optimize the number of sensing samples and the number of reporting bits for quantization, thereby
obtaining the optimal quantized reporting bits for a given detection performance. Yucek et al. [21]
propose a semi-soft method that illustrates the tradeoff between the sensing performance and local
overheads. Here, the FC estimates the global test statistics and makes the final decision. However,
the global fusion is not precise due to data estimation based on the mean value.

Motivated by the above discussion, this paper proposes a novel semi-soft decision scheme for CSS
in CR networks in order to achieve a sufficient tradeoff between the sensing performance and band
cost. Each SU performs local sensing by the energy detection (ED) method [22,23] and sends decision
results to the FC. The FC collects all the sensed information and estimates the received decision data
through a data reconstruction module based on a statistical distribution. At last, the global test statistic
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is computed by the FC to decide whether the PU signal is present or not. The major contributions of
this paper can be summarized as follows:

(1) Most prior studies achieve fine sensing performance by means of multi-bit quantization fusion.
The more quantization bits, the better the sensing performance, which ignores other constraints
in CSS, such as the transmission bandwidth. However, in an actual communication system, these
factors must be taken into account together. Through this, the proposed decision scheme designs
a novel strategy through the reconstruction of a global test statistic to achieve a sufficient tradeoff

between the sensing performance and the transmission bandwidth. The closed-form expression
of the average transmission bandwidth is also derived.

(2) In the prior studies, the data estimation at the FC is based on extra thresholds as well as the mean
value, which results in an inaccurate estimation that affects the sensing performance. To address
this issue, our proposed scheme is based on a semi-soft fusion rule in which three thresholds are
required for the local decision. In the range where the data is not easily misjudged, we employ a
method, through a statistical distribution of the local sensing data (truncated normal distribution),
to estimate the measuring data of each SU. In the middle range, the mean value method can be
used to estimate the data under a certain error tolerance.

(3) Via MATLAB simulations, the superiority of the proposed method is further verified compared
with existing algorithms in various situations. Overall, we find that the detection performance
of the proposed scheme is only inferior to soft-decision detection, but makes savings on the
transmission bandwidth. In addition, we provide a detailed analysis of the effects of various
parameters on the performance of the proposed scheme. With an increase in the number of SUs,
the number of samples, and the parameter α, the probability of detection and the average global
test statistics can be improved accordingly.

The rest of this paper is organized as follows. In Section 2, the system model is formulated.
The proposed semi-soft decision scheme is introduced in Section 3. Results from the simulation of
various algorithms are provided in Section 4. Section 5 concludes the paper.

2. The System Model

We consider a CSS network that consists of a PU, an FC, and M SUs as depicted in Figure 1, where
M SUs collaboratively detect whether the PU signal exists or not. Each SU employs the ED method for
local spectrum sensing and determines the transmitted data. Hypothesis 0 (H0) denotes the absence
of the PU; hypothesis 1 (H1) denotes that the PU is active and the channel is busy. The FC collects
all the transmitted data and reconstructs the global test statistics, then makes a final decision by the
decision rule.
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Figure 1. The structure of the cooperative spectrum sensing (CSS) system with the novel semi-soft 
decision rule. 

Figure 1. The structure of the cooperative spectrum sensing (CSS) system with the novel semi-soft
decision rule.
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The local sensing of SUs plays a key role in the above system as the first step to achieve spectrum
sensing. During the local spectrum sensing process, the received signal of each SU can be formulated as

xi(n) = wi(n), H0

xi(n) = his(n) + wi(n), H1
(1)

where xi(n) represents the received signal at the n-th moment by the i-th SU, hi denotes the channel
gain between the PU and the i-th SU, s(n) is the transmitted signal of PU, and wi(n) is a zero-mean
additive white Gaussian noise (AWGN) with a variance σ2

w. Without loss of generality, we also assume
that s(n) and wi(n) are independent of each other. Then, the i-th SU uses the energy of the received
samples as the test statistics for the energy detector, which is given by

X =
N∑

n=1

∣∣∣xi(n)
∣∣∣2 (2)

Thus, X follows a central chi-square distribution with N degrees of freedom under H0, and follows
a non-central chi-square distribution under H1. According to the Central Limit Theorem (CLT) [24],
when the number of samples N is large enough, the distribution of X can be approximated as a Gaussian
distribution [25], that is, {

X ∼ N(Nσ2
w, 2Nσ4

w) H0

X ∼ N(N(1 + γ)σ2
w, 2N(1 + γ)2σ4

w) H1
(3)

where N(µ,σ2
w) denotes Gaussian distribution with mean µ and variance σ2

w γ is the SNR.
Therefore, the probability of a false alarm Pf and the probability of detection Pd are respectively

calculated as:

P f = Pr(X ≥ λ|H0 ) = Q

λ−Nσ2
w√

2Nσ4
w

 (4)

Pd = Pr(X ≥ λ|H1 ) = Q

 λ−N(1 + γ)σ2
w√

2N(1 + γ)2σ4
w

 (5)

where the decision threshold λ can be expressed as

λ = σ2
w

(
Q−1

(
P f

)√
2N + N

)
(6)

Here, Q(x) is given as follows:

Q(x) =
1
√

2π

∫
∞

x
exp(−

t2

2
)dt (7)

3. The Proposed Semi-Soft Decision Scheme

In our proposed scheme, the sensing strategy is designed based on three modules: the local
detection module, the data reconstruction module, and the global decision module. The local detection
module is used to detect the PU signal by ED and send the results of the decision in terms of 1-bit or
2-bit information. The data reconstruction module is responsible for estimating the received decision
data. The global decision module is in charge of fusing the estimated data and making a final decision.
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3.1. Local Detection Module

In order to achieve a better tradeoff between the sensing performance and the local bandwidth
cost, the proposed scheme is based on a semi-soft fusion rule in which three thresholds (i.e., λ, λ1, λ2)
are required for the local decision, as shown in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 5 of 12 
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According to Equation (6), the other two decision thresholds λ1 and λ2 can be obtained via

λ1= (1+α)λ
λ2= (1 − α)λ

(8)

where α is a given parameter. Obviously, λ1 and λ2 are subject to parameters λ and α.
Each SU independently makes the decision according to a comparison between the test statistics

and the thresholds, as shown in Table 1.

Table 1. The transmitted data and data size of the local decision.

The Local Decision Transmitted Data Data Size

Xi < λ2 0 1 bit
Xi > λ1 1 1 bit

λ2 ≤ Xi < λ 00 2 bits
λ < Xi ≤ λ1 11 2 bits

3.2. Data Reconstruction Module

It is well known that the sensing performance is limited by the number of local quantization bits
in CSS. In order to further improve the sensing performance, we reconstruct the transmitted data from
each SU based on the statistical distribution, and the FC estimates the received decision data through
this module. Therefore, the data reconstruction module is an essential part of the proposed scheme.

The received signal of SU follows a Gaussian distribution with mean µ0 and variance σ2 0 under
H0 and follows a Gaussian distribution with mean µ1 and variance σ2 1 when the channel is busy.
By bonding the random variables with the thresholds, the normal distribution can be derived from
the truncated normal distribution, so we can estimate the data in the FC based on the theoretical
distribution of the random variables.

As illustrated in Figure 3, when the local decision is Xi < λ2 or Xi > λ1, the local test statistics
are far away from the threshold λ. The decision results are often accurate; therefore, we can utilize
the corresponding truncated normal distribution to reconstruct the measuring data of each SU. In the
range where the decision is close to the threshold λ, that is λ2 ≤ λ ≤ λ1, the decision results tend to be
misjudged. Under a certain error tolerance, the mean value method can be used to estimate the data.
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Therefore, the data estimation can be fulfilled as

X f c
i =



µ0 − σ0

φ(
λ2 − µ0

σ0
)

Φ(
λ2 − µ0

σ0
)

0

λ2 + λ
2

00
λ+ λ1

2
11

µ1 + σ1

φ(
λ1 − µ1

σ1
)

1−Φ(
λ1 − µ1

σ1
)

1

(9)

where Φ (·) denotes the probability density function (PDF) of the standard normal distribution with
zero mean and unit variance, that is,

φ(x) =
1
√

2π
exp(−

1
2

x2). (10)

Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution, that is,

Φ(x) =
∫ x

−∞

1
√

2π
exp(−

1
2

t2)dt. (11)

3.3. Global Decision Module

After the data estimation, all the reformulated data are fused according to the fusion rule and a
final decision is made. Although the global decision module is easy to implement, it plays a decisive
role in the scheme. The global test statistic Tfc is formulated as follows:

T f c =
M∑

i=1

ωiX
f c
i (12)

where ωi is the given weight to each estimated test statistic, ω1 + ω2 +···+ ωM = 1. The FC employs
the equal gain combining (EGC) diversity technique to calculate the global test statistic. Since the
received signal of SU follows a Gaussian distribution, the sum of M Gaussian distributions can be still
approximated as a Gaussian distribution, that is{

X ∼ N(MNσ2
w, 2MNσ4

w) H0

X ∼ N(MN(1 + γ)σ2
w, 2MN(1 + γ)2σ4

w) H1
. (13)

Subsequently, the expression of the global probability of false alarm Qf and the global probability
of detection Qd can be respectively given as follows:

Q f = Q

λ f c −MNσ2
w√

2MNσ4
w

 (14)

Qd = Q

λ f c −MN(1 + γ)σ2
w√

2MN(1 + γ)2σ4
w

. (15)
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Applying the Neyman–Pearson criterion, we can obtain the expression of the global decision
threshold λfc, that is

λ f c = σ2
w

(
Q−1

(
Q f

)√
2MN + MN

)
. (16)

Then, the final decision is made via comparing the global test statistic Tfc with the threshold λfc.
The decision rule can be expressed as {

T f c ≥ λ f c H1

T f c < λ f c H0
(17)

In summary, the proposed sensing method in the scheme is revealed as Algorithm 1. Each SU
performs local sensing and sends the results to the FC, then the FC collects the information and
estimates the received data so as to make the final decision.

Algorithm 1. The Proposed Semi-Soft Decision Scheme

Local detection module:
1. The PU broadcasts its signal and each SU calculates the test statistic X according to Equation (2). The
decision threshold λ can be obtained according to Equation (6).
2. Each SU performs local sensing according to Table 1 and sends the results (e.g., ”0′”’1′”’00′”’11′’) to the FC.
Data reconstruction module:
3. The FC collects all the sensing information of each SU.
4. When the transmitted data is “0” or “1”, the FC reconstructs data based on the truncated normal
distribution; otherwise, it adopts the uniform distribution to reconstruct data according to Equation (9).
Global decision module:
5. The global test statistic is fused at the FC according to Equation (12). The global decision threshold λfc can be
obtained according to Equation (16).
6. The final decision is made according to Equation (17). If Tfc ≥ λfc, the FC decides the PU signal is present,
or the PU signal is absent.

In order to show the superiority of the proposed scheme, we first analyze the average local
bandwidth cost and then demonstrate the detection performance in Section 4. The bandwidth of the
proposed method is subject to the decision thresholds λ1 and λ2. Let p1

i,d and p1
i, f denote the probability

of detection and false alarm, respectively, of the i-th SU corresponding to the threshold λ1. Similarly,
p2

i,d and p2
i, f denote the probability of detection and false alarm, respectively, corresponding to the

threshold λ2.

P1
i, f = Q

λ1 −Nσ2
w√

2Nσ4
w


P1

i,d = Q

λ1 − (1 + γ)Nσ2
w√

2N(1 + γ)2σ4
w


P2

i, f = Q

λ2 −Nσ2
w√

2Nσ4
w


P2

i,d = Q

λ2 − (1 + γ)Nσ2
w√

2N(1 + γ)2σ4
w



(18)
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In H0 and H1, the probabilities that denote the test statistic of the i-th SU lie between the thresholds
λ1 and λ2, respectively, expressed as follows:

P0 = P2
i, f − P1

i, f
P1 = P2

i,d − P1
i,d

(19)

Therefore, the probability of the i-th SU transmitting 2-bit data can be calculated as

Pi
b = P(H0)P0 + P(H1)P1

= P(H0)(P2
i, f − P1

i, f ) + P(H1)(P2
i,d − P1

i,d)
(20)

Subsequently, the average transmission bandwidth can be given as follows:

B =
1
M

M∑
i=1

2Pi
b + (1− Pi

b) (21)

4. Simulation Results

In this section, the performances of the proposed method are illustrated via 104 Monte Carlo
simulations in MATLAB by comparison with soft-decision, hard-decision (OR rule), and semi-soft
decision in [21]. The PU signal and noise are zero-mean with variance 1. In the following simulations,
we analyze different situations, such as the SNR, the number of SUs, and the number of samples on the
detection performance of the proposed method.

Figure 4 compares the probability of detection Pd against different SNRs for each decision. When
the probability of false alarm Pf is set as 0.01, we find that soft-decision has the best performance,
hard-decision has the worst performance, and the performance of two other decision algorithms lies
between that of soft and hard-decision. It is worth mentioning that the performance of the proposed
method is close to that of soft-decision. Provided that the sensing performance needs to meet the
requirements of the IEEE 802.22 standard [26], when Pd = 0.9, the SNR gain required by the proposed
method is about 0.2 dB higher than that of soft-decision, about 1 dB lower than that of semi-soft
decision, and about 2.4 dB lower than that of hard-decision.
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Figure 5 presents the receiver operating characteristics (ROCs) of each method, which further
demonstrates the advantage of the proposed method. As can be seen in the figure, the sensing
performance of the proposed method is close to that of soft-decision, and is far superior to that of
hard-decision. When the probability of false alarm Pf is set as 0.1, the probability of detection Pd of
soft-decision can achieve 0.82 and the proposed method can achieve 0.78, while the semi-soft decision
scheme in [21] and hard-decision only achieve 0.59 and 0.48, respectively.
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Figure 6a,b show the probability of detection Pd curves of the proposed method for different
numbers of SUs and the number of samples N. The probability of false alarm Pf = 0.01. From Figure 6a,
it can be observed that, as the number of SUs increases from 5 to 30, the probability of detection Pd is
improved accordingly. For a given SNR = −16 dB, the probability of detection Pd could reach about
0.15, 0.3, 0.53, and 0.72, respectively. From Figure 6b, it can be seen that the probability of detection Pd
is also enhanced when the number of samples N takes a value from 500 to 2000. When N = 500 and
SNR = −9 dB, the probability of detection Pd can reach 1. Therefore, the detection performance can be
improved by increasing of the number of SUs or the number of samples when the SNR is low.
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Figure 7 shows the probability of detection Pd curves of the proposed method with a different
given parameter α for fixed Pf = 0.01. We can find that the detection performance can be improved
clearly by increasing α from 0.02 to 0.1. Meanwhile, there is a wider range between the decision
thresholds λ1 and λ2, which means that a higher number of SUs will send 2-bit information data to the
FC, and that more transmission bandwidth may be needed accordingly.
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The reconstruction of the global test statistics of the proposed method is described in Figure 8.
As is shown, the average global test statistics grow with the increase in the number of SUs. Besides
this, the estimated test statistics by the proposed method are close to the average test statistics by
soft-decision and significantly exceed those by semi-soft decision, which demonstrates the accuracy of
the reconstruction of the test statistics by the proposed method.
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5. Conclusions

In this paper, we have proposed a novel semi-soft decision scheme for CSS in CR networks in
order to achieve a fulfilling tradeoff between the sensing performance and band cost. Each SU performs
a local sensing process based on three thresholds and sends the results of its decision in terms of 1-bit
or 2-bit data to the FC. Subsequently, we utilize the statistical distribution of the local sensing data
to estimate the received decision data of each SU in order to obtain an accurate estimation. Finally,
the global test statistic is fused by the FC to decide whether the PU signal is present or not. Results
from a simulation show that the detection performance of the proposed method is only inferior to
that of soft-decision, but makes savings on the transmission bandwidth. In addition, we provide a
detailed analysis of the impact of various parameters on the performance. With an increase in the
number of SUs, the number of samples, and the parameter α, the probability of detection and the
average global test statistics can be improved accordingly. A closed-form expression of the average
transmission bandwidth was also derived.
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