
  

Sensors 2019, 19, 2521; doi:10.3390/s19112521 www.mdpi.com/journal/sensors 

Article 

Principal Component Analysis Method with Space 

and Time Windows for Damage Detection 

Ge Zhang, Liqun Tang, Licheng Zhou *, Zejia Liu *, Yiping Liu and Zhenyu Jiang  

School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South 

China University of Technology, Guangzhou 510640, China; zhangge13756010981@163.com (G.Z.); 

lqtang@scut.edu.cn (L.T.); tcypliu@scut.edu.cn (Y.L.); zhenyujiang@scut.edu.cn (Z.J.) 

* Correspondence: ctlczhou@scut.edu.cn (L.Z.); zjliu@scut.edu.cn (Z.L.); Tel.: 0086-20-87111030-3304 (L.Z.); 

0086-20-87111030-3304 (L.Z.); 

*Received: 8 April 2019; Accepted: 29 May 2019; Published: 2 June 2019 

Abstract: Long-term structural health monitoring (SHM) has become an important tool to ensure 

the safety of infrastructures. However, determining methods to extract valuable information from 

large amounts of data from SHM systems for effective identification of damage still remains a major 

challenge. This paper provides a novel effective method for structural damage detection by 

introduction of space and time windows in the traditional principal component analysis (PCA) 

technique. Numerical results with a planar beam model demonstrate that, due to the presence of 

space and time windows, the proposed double-window PCA method (DWPCA) has a higher 

sensitivity for damage identification than the previous method moving PCA (MPCA), which 

combines only time windows with PCA. Further studies indicate that the developed approach, as 

compared to the MPCA method, has a higher resolution in localizing damage by space windows 

and also in quantitative evaluation of damage severity. Finally, a finite-element model of a practical 

bridge is used to prove that the proposed DWPCA method has greater sensitivity for damage 

detection than traditional methods and potential for applications in practical engineering. 

Keywords: principal component analysis; space window; time window; damage detection 

 

1. Introduction 

The safety of infrastructures such as bridges and high-rise buildings is of the utmost concern to 

the public. During operation, civil structures are subjected to various kinds of external loads, such as 

traffic, wind, temperature, etc. In fact, these evolving loads may be much more complicated than 

those considered in the design phase. Therefore, it is of importance to monitor the structural 

responses, such as strain, displacement, and acceleration with the aim of assessment of their real-time 

states. Nowadays, long-term structural health monitoring (SHM) systems are widely used to acquire 

data of structural responses, as well as external loads to monitor the states of civil structures. 

However, how to process and analyze these data for identifying possible structural changes has been 

a great challenge [1,2]. In general, structural responses may not change evidently when only a small 

amount of damage is imparted. Moreover, response variations may be masked by the uncertainties 

in the structural parameters of practical structures, as well as by the presence of noise. All of these 

factors result in the raw data being uninformative regarding the occurrence of structural changes, 

therefore, resulting in the need for feature extraction of measurement data [3]. In order to detect 

damage effectively, the extracted features are required to be sensitive to damage, while insensitive to 

parametric uncertainties or noise. 

Damage detection methods can be generally classified into two categories, namely  

model-based [4] and model-free methods [5]. Model-based methods require an accurate finite-
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element model as well as a model-updating process for damage identification [6]. They have the 

ability not only to identify the presence and location of damage but also to quantify it in meaningful 

engineering units. However, computational complexity and model updating of these methods, 

especially for large-scale structures, have been a challenge in SHM [5]. As an alternative, model-free 

methods have drawn much attention for the sake that they have been demonstrated applicable to 

damage identification [7]. These methods utilize time series of measurement data for analysis without 

the need for geometrical and material information. Due to this reason, they are more inexpensive and 

efficient compared to model-based methods. 

During the past few decades, various kinds of model-free data-interpretation methods for 

damage detection have been developed, including the autoregressive (AR) model, autoregressive 

moving average (ARMA) model, autoregressive integrated moving average (ARIMA) model, 

correlation analysis (CA), instance-based method (IBM), wavelet-based (WB) methods, neural 

network (NN) model, robust regression algorithm (RRA), principal component analysis (PCA), etc. 

AR establishes a time-series model to predict future values based on the past measured data. Residual 

errors or AR parameters are usually used as sensitive features for damage detection [8,9]. ARMA and 

ARIMA, which are improved methods compared to AR, also take advantage of coefficients as indices 

for identifying damage [10,11]. CA detects damage through variations of correlation coefficients for 

measurement datasets since the correlation coefficients will change when damage occurs. This 

method has been demonstrated to have good performance with regard to identifying and localizing 

damage [12]. However, it fails to identify damage when the measurement noise is at high levels [13]. 

IBM computes the minimum distance of a cluster of sensor data (generally for three or four sensors) 

at each time step [14]. The occurrence of damage is determined if the phase of the minimum distance 

exceeds a threshold [15]. WB methods are also effective tools for on-line and off-line damage 

detection [16]. These methods firstly decompose original signals in different time domains and scales. 

Then, mode shapes, wavelet spectra, wavelet component energy, and the tendency of wavelet 

coefficients are selected as sensitive features to detect damage [17–20]. The NN model has been 

widely utilized to identify anomalous structural behavior by using static and dynamic  

responses [21,22]. The number of hidden layers, the number of neurons in each layer, the neuron 

activation function and error criteria should be carefully considered in the NN method [23]. Some 

investigators also verified that incorporating other methods into a traditional NN model significantly 

enhances the effectiveness of damage detection [24,25]. As for RRA, it is focused on the correlation 

between a pair of sensors and construction of a robust regression relationship for measurement  

data [26]. An anomaly is identified when correlation coefficients exceed threshold bounds. This 

method has demonstrated the ability to identify and localize damage in simple as well as complex  

structures [27]. 

PCA is another popular method used for damage identification in long-term SHM. It exhibits 

reliable and effective performance in modal analysis, reduced-order modelling, feature extraction, 

and structural damage detection [28–32]. In addition, it proves to be an effective tool to improve the 

training efficiency and enhance the classification accuracy for other machine learning algorithms, 

such as unsupervised learning methods [33–37]. Since the total historical dataset including responses 

of both healthy and damaged states is involved in the analysis process, PCA is not sensitive to the 

occurrence of damage in real time in SHM. Moreover, large amounts of historical data may cause 

computational complexity. Posenato et al. then proposed the moving PCA (MPCA) method to 

enhance discrimination features between undamaged and damaged structural responses [13,27,38]. 

This method essentially uses a sliding fixed-size time window for time-series data instead of handling 

the total historical dataset. An eigenvector time series will be obtained as the time window moves 

forward. The components of the most important eigenvector are utilized as sensitive features for 

damage detection. Due to the moving temporal window, MPCA enhances the detection effectiveness 

compared to that of the traditional PCA method through monitoring the evolution of eigenvector 

components between undamaged and damage states. In other words, MPCA is used to monitor the 

components of the eigenvector variance (CEVs) between a healthy state and damaged state for 

damage identification. It was demonstrated that the sensitivity of MPCA for damage identification 
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was significantly improved compared to other methods such as ARIMA, CWT, RRA and  

IBM [12,13,39]. However, in the data-interpretation process of both PCA and MPCA, data from all 

sensors should be used to calculate the eigenvalues and eigenvectors. It makes sense that responses 

located far from the damaged area are insensitive to damage. In other words, part of the data includes 

information insensitive to damage, consequently reducing the sensitivity regarding damage 

detection. If a space window is applied to exclude the data from those sensors located far from the 

damage, it is possible to improve the damage detectability. As a consequence, if both space and time 

windows are applied in the traditional PCA method, this is expected to further improve the damage 

detectability. In fact, Posenato et al. have also proposed a sensor clustering overlapping algorithm for 

MPCA when there exists a large number of sensors [13]. The clustering process is essential to 

implement space windows for the installed sensors. However, the authors aimed to deal with 

measurements from fewer sensors for computational efficiency. They did not carry out further 

investigation on the damage detectability. 

According to the above discussion, both PCA and MPCA methods use all sensors for analysis 

and may decrease the detection performance. This paper will provide a double-window PCA 

(DWPCA) method for structural damage identification. The primary idea is to combine space and 

time windows with the traditional PCA method. It is found that discrimination of the eigenvectors 

between damaged and healthy states is enhanced due to the introduction of space and time windows. 

Numerical results show that the proposed method, in contrast with MPCA, improves the sensitivity 

for damage identification and is also quicker to detect damage after its occurrence. Further 

investigations indicate that the novel approach exhibits a better performance regarding damage 

localization and quantitative evaluation. Finally, the proposed DWPCA is shown to be robust in the 

presence of noise and shows potential for applications in practical engineering. 

This paper is organized as follows: Section 2 describes PCA, MPCA and the proposed DWPCA 

method. Section 3 presents a detailed description of the planar beam model for simulations, as well 

as the methodology to determine the space window. In Section 4, comparative studies with MPCA 

are conducted to verify the advantages of the proposed method. In Section 5, application of the 

proposed DWPCA to a full-scale structure is presented. In Section 6, valuable conclusions are drawn 

according to the numerical results. 

2. The Proposed Double-Window Principal Component Analysis Method 

In the following, the descriptions of PCA, MPCA, and the proposed DWPCA method will be 

presented in sequence. It should be noted that MPCA introduces a moving time window in the 

traditional PCA method, while the proposed DWPCA introduces both space and time windows. 

2.1. PCA 

PCA is a useful tool for reducing data dimensionality while retaining essential information for 

manipulated datasets. The main objective is to transform original data to a smaller set of uncorrelated 

variables [40]. For damage detection, PCA can be used to eliminate noise and simultaneously derive 

damage-sensitive features such as eigenvectors. The data-processing steps of PCA are detailed as 

below. The first step of PCA is the construction of a matrix, ( )tU , that contains the time histories of 

all measured data: 

 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( ) ,

( ) ( ) ( )

M

M

N N M N

u t u t u t

u t u t u t
t

u t u t u t

 
 
 
 
 
  

U  (1) 

where t represents time,  1,  2,  ,  
i

u i M  denotes the response from the i-th sensor installed in 

the monitored structure, M is the total sensor number,  1,  2,  ,  
j

t j N  denotes the j-th time step 

of measurements, and N is the total number of time observations during monitoring. Note that the 

data of each column are the time series of measurement events from each individual sensor. 
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Subsequently, time series of each column or each sensor should be normalized by subtracting 

the mean value given by: 

 
1

1
( ).

N

i i j
j

u u t
N 

   (2) 

The normalized matrix can then be written as: 

 

1 1 1 2 1 2 1

1 2 1 2 2 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( )
( ) .

( ) ( ) ( )

M M

M M

N N M N M

u t u u t u u t u

u t u u t u u t u
t

u t u u t u u t u

   
 

    
 
 

    

U  (3) 

The next step is to construct the M M  covariance matrix, which is defined as: 

 T1
.

M
 C U U  (4) 

Finally, the eigenvalue i  and the corresponding eigenvector i
ψ  of the covariance matrix can 

be obtained by solving the following equation: 

 ( ) 0,
ii C I ψ  (5) 

where I  denotes the M M  identity matrix,      
T

,1 ,2 ,i i i i M
ψ  in which 

  
,

1,  2,  ,  
i j

j M  is the component corresponding to the thj  sensor. 

Generally, one would sort the eigenvalues into decreasing order, namely      ＞ ＞ ＞1 2 M . 

Then, the first eigenvector 1
ψ  related to 1  contains the largest variance and thereby retains 

essential information for the original matrix U. In fact, most of the variance is contained in the first 

few principal components, while the remaining less important components involve the measurement 

of noise. For this reason, the first few eigenvectors are always used as sensitive features to detect and 

localize damage. It can be seen that neither a space window nor time window is applied in PCA. The 

total historical dataset including responses of healthy and damaged states is used for analysis, 

thereby leading to low damage detectability. 

2.2. MPCA 

MPCA is an improved method based on PCA which involves applying a moving time window 

of fixed size. Only the time series of observations inside the moving time window are used to 

construct the covariance matrix for the derivation of eigenvalues and eigenvectors. Previous studies 

have proven that the introduction of the moving time window enhances the discrimination between 

features of undamaged and damaged structures, and thereby renders better performance for damage 

detection [14,26]. Additionally, the sensitivity of MPCA for damage identification has proven to be 

significantly improved as compared with other methods such as PCA, ARIMA, DWT, RRA and IBM 

[12,13,39]. The proper choice of the window size T  is also important in the first step. If the response 

time series have periodic characteristics, the temporal window size should be equivalent to the longest 

period. Once the time window size or the number of consecutive measurements for each sensor inside 

the window is fixed, the matrix U  in Equation (1) at the k-th time step can be rewritten as: 

 

1 2

1 1 2 1 1

1 1 2 1 1

( ) ( ) ( )

( ) ( ) ( )
( ) ,

( ) ( ) ( )

k k M k

k k M k

k T k T M k T

u t u t u t

u t u t u t

u t u t u t

  

     

 
 
 
 
 
  

U k  (6) 

where 1,  2,  ,  1k N T   . Note that the mean value of each column of ( )kU  at the k-th time step 

would become, 
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k T

i i j
j k

u k u t
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   (7) 

Next, repeating the steps of PCA, one is able to obtain the eigenvalue ( )i k  and eigenvector 

( )
i

kψ . It should be noted that ( )i k  and ( )
i

kψ  are time series and vary with the time step.  

During continuous monitoring, responses are divided into two phases: training and monitoring 

phases. In the training phase, the structure is assumed to behave normally (no damage). Then, 

eigenvector variance between the training phase and the monitoring phase at the thk  time step can 

be determined by the following equation: 

   ( ) ( ) ,
i i i

k kψ ψ ψ  (8) 

where iψ  denotes the mean value of the thi  eigenvector in training phase, while iΔψ (k)  

represents the eigenvector variance between iψ (k)  and 
i

ψ  at the thk  time step of the monitoring 

phase, and                

T

,1 ,2 ,i i i i M
k k k kψ  where  

,i j
k  is the component of the 

eigenvector variance (CEV) corresponding to the thj  sensor. It should be noted that  
,i j

k  is 

generally utilized as the feature for anomaly detection in MPCA. CEV  
,i j

k  by MPCA can be 

expressed in terms of eigenvector components as follows: 

     
, , ,
( ) ( ) ,

i j i j i j
k k  (9) 

where 
,i j

 denotes the mean value of the eigenvector component in a healthy state, and 
,
( )

i j
k  

can be considered as the variation between  ,
( )

i j
k  in monitoring phase and 

,i j
 in healthy state. If 


,
( )

i j
k  exceeds a threshold, alarm will be flagged. 

When damage occurs, structural responses may change, consequently causing variations in 

eigenvectors and CEVs. Thus, one may follow the 
,
( )

i j
k  over time to examine whether damage 

exists. As indicated in Equation (6), MPCA uses only the latest T observations instead of the whole 

time series. Once damage occurs, fewer data that are irrelevant to the damage, as compared with 

PCA, are considered for the calculation, resulting in a better sensitivity for damage detection. 

However, MPCA generally takes into account responses from all sensors. Some of the sensors may 

be insensitive to damage located at a certain position. If a space window is used to group sensitive 

sensors, it is possible to enhance damage detectability. 

2.3. The Proposed DWPCA 

When damage occurs, data from sensors close to damage location change significantly while 

data from sensors away from damage may be unchanged. Hence, a novel DWPCA method is 

proposed herein to combine space and time windows with PCA. It can also be treated as an improved 

method for MPCA by the introduction of a space window. The application of the space window, in 

the aim of enhancing damage detectability, is to group sensors sensitive to damage and to exclude 

those that are insensitive. The key step for the choice of the space window is to determine the damage-

sensitive area (DSA), where measurement data change significantly when damage occurs. It should 

be noted that the DSA varies with damage location as well as damage level. For example, the damage 

location commonly decides the position of the DSA and a high damage level reasonably leads to a 

large DSA. 

For the space window, a criterion as shown below is used for determination of the damage-

sensitive sensors which fall within the DSA:  

 ( ) ( ) ( ) ,d h h

i i i
u t u t u t      (10) 
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where the superscripts d  and h  denote damaged and healthy states, respectively. For each 

measurement time step, ( )d

i
u t  represents the data from the i-th sensor in a damaged case, and ( )h

i
u t  

represents the response in a healthy state.   is the lowest limit of a detectable relative change in 

response. Note that    ( ) = ( ) ( )d h

i i i
u t u t u t  represents the variation of response under a damage 

condition. If  ( ) ( )h

i i
u t u t  is lower than the sensor sensitivity, it is impossible to detect the damage. 

Therefore,   should be chosen as the sensor sensitivity. It should be noted that Equation (10) only 

applies to responses which are sensitive to local damage. And in this paper, strains are used in the 

analysis. However, Equation (10) may not be applicable to vibration monitoring, due to the fact that 

vibration responses are integral structural effects and may not be sensitive to local damage. 

A sensor is defined as damage-sensitive if the responses it acquires in the case of damage satisfy 

the following formula: 

 0
/ ,

d
n n p  (11) 

where n  represents the total number of observations over time, d
n  represents the total number of 

observations satisfying Equation (10), 0
p  is a given constant parameter that determines the lowest 

possibility to define a damage-sensitive sensor. In fact, it is difficult to determine the exact value for 

0
p  because it depends on the specific structures. In general, an approximate range for 0

p  can be 

given as from 50% to 100%. This means if more than half of all observations at a certain scenario 

satisfy Equation (10), then a sensor can be treated as damage-sensitive. Once an accurate FE model is 

given, an accurate method for determining DSA according to Equation (11) can be provided based 

on numerical simulations of various damaged cases (various combinations of damage locations and 

severities are considered). Consequently, the space window can be defined as the set of sensors 

installed in DSA. However, it is not possible to provide an accurate method to determine the DSA 

without an accurate FE model, because the determination of DSA depends on specific structures 

including materials, types of structures and boundary conditions. In such case, only empirical 

experience is available to determine the DSA and the space window. For example, one can use diverse 

space windows of which each involves several neighboring sensors. Because damage in general has 

more effects on those sensors which are nearby, the space window that is nearest to the location of 

the damage is most likely to group the sensors that are more sensitive to damage. 

The space window is presented in the form of 
1 2 S

i i i   , where 1 2
,  ,  ,  

S
i i i  are the 

sensor numbers, and S  represents the total number of sensors in the space window, in other words, 

within the DSA. For example, 1 3 5 7    means Sensor 1, Sensor 3, Sensor 5, and Sensor 7 are 

grouped inside the space window. Once the window is determined, one can conduct PCA with a 

moving time window for measurement values to detect damage. In consideration of space and time 

windows, Equation (6) can be rewritten as: 

 

1 2

1 2

1 2

1 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( )
( ) .

( ) ( )) ( )

S

S

S

i k i k i k

i k i k i k

i k T i k T i k T

u t u t u t

u t u t u t

u t u t u t

  

     

 
 
 

  
 
 
 

U k  (12) 

Then, repeating the steps of PCA, one is able to obtain the time-variant eigenvector 

     
T

,1 ,2 ,
( )

i i i i S
kψ . Similarly, with Section 2.2, herein  

,i j
k  by DWPCA in a spatial 

window can be obtained from Equation (9). By following the CEV  
,i j

k  at each time step, 

damage can be detected if  
,i j

k  exceeds a certain threshold value. Meanwhile, it is possible to 

localize damage through the space window by observing rapidly changing components. It can be 

seen in Equation (12) that only sensitive responses are considered in the analysis for DWPCA. Thus, 

it is expected to improve the performance of damage identification. 
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3. Validation of DWPCA with a Planar Beam 

3.1. Model for Simulation 

To evaluate the effectiveness and efficiency of the proposed DWPCA method, large datasets 

including responses from a structure under various damaged scenarios are needed. In practice, it is 

not possible to acquire such datasets from a real civil structure because intentionally imparting 

damage to the structure is not allowed for safety reasons. As a result, this study adopts a finite 

element (FE) model of a planar beam established by ANSYS for calculations to obtain necessary 

datasets, as shown in Figure 1. In the simulations, strain responses of the FE model under seasonal 

temperature variations are computed under different damaged scenarios. Simulations for various 

damage severities at different locations are achieved by exerting certain stiffness reductions in certain 

finite elements of the model. 

 

Figure 1. Finite element model of a simply supported beam for simulations with ten strain sensors 

installed. 

The planar beam in Figure 1 is assumed to be 2.0 m in length ( L ) with a rectangular cross-section 

of 0.4 m in height ( h ) and 0.2 m in width ( t ). The FE model is evenly discretized into 500 quadrilateral 

elements with 50 elements for each row in the x -direction (beam length) and 10 elements for each 

column in the y -direction (beam height). Note that each element of the meshes has a length of  

0.04 m and a height of 0.04 m. It is also assumed that the beam is composed of concrete with a Young’s 

modulus of 34.5 GPa, a Poisson’s ratio of 0.2, and a thermal expansion coefficient of  / 51 10 C . For 

the thermal loads, seasonal temperature variations are applied on the bottom and top surfaces. The 

temperature on the bottom surface is set to be / 730) ( )20 10sin( C
b

T t   , while that on the top 

surface is  ( )10 C
t b

T T   . Note that the sinusoidal function in b
T  has a period of one year, which is 

consistent with the period of seasonal temperature variations. In addition, a linear temperature 

distribution along the beam height is taken into consideration. During simulations, equivalent forces 

caused by temperature variations are exerted on the nodes of each finite element to obtain strain 

responses. In this paper, thermal excitations of four years are applied. Figure 2 illustrates the 

evolution of temperatures at the top and bottom of the beam over four years.  

 

Figure 2. Evolution of temperatures at the top and bottom of the beam over four years. 

Additionally, a virtual SHM system is installed in the beam structure. As shown in Figure 1, the 

system is assumed to be composed of ten strain sensors, of which five are installed on the top surface 



Sensors 2019, 19, 2521 8 of 23 

 

and the other five on the bottom. For each damaged scenario, strain histories are computed for four 

years with four measurements per day, i.e., 5840 measurement events in total for each sensor. In 

addition, permanent damage is introduced at the beginning of the third year (after 2920 

measurements) by stiffness reductions at certain finite elements in the model. 

In this paper, the following damaged scenarios, as illustrated in Figure 3, are considered for 

comparative studies between MPCA and the proposed DWPCA: 

(1). Scenario A: Damage in four finite elements at Sensor 1 as shown in Figure 3a; 

(2). Scenario B: Damage in four finite elements at Sensor 3 as shown in Figure 3b; 

(3). Scenario C: Damage in four finite elements at Sensor 6 as shown in Figure 3c; 

(4). Scenario D: Damage in four finite elements at Sensor 8 as shown in Figure 3d; 

(5). Scenario E: Damage in four finite elements near Sensor 1 as shown in Figure 3e; 

(6). Scenario F: Damage in four finite elements near Sensor 3 as shown in Figure 3f; 

(7). Scenario G: Damage in four finite elements near Sensor 6 as shown in Figure 3g; 

(8). Scenario H: Damage in four finite elements near Sensor 8 as shown in Figure 3h; 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. Damaged scenarios for the evaluation of damage detection algorithms: (a) damage in four 

finite elements at Sensor 1; (b) damage in four finite elements at Sensor 3; (c) damage in four finite 

elements at Sensor 6; (d) damage in four finite elements at Sensor 8; (e) damage in four finite elements 

near Sensor 1; (f) damage in four finite elements near Sensor 3; (g) damage in four finite elements near 

Sensor 6; (h) damage in four finite elements near Sensor 8. 

3.2. Determination of the DSA 

To determine the DSA in this study, the value of the parameter   is chosen as 5% because the 

sensor sensitivity is assumed to be 5% in the simulation. As for 0
p , it is chosen as 60%, because it is 

observed that if more than 60% of all observations in a certain scenario satisfy Equation (10), the 

sensor is found to be damage-sensitive according to the simulation results. Figure 4 and Figure 5 

illustrate the calculated strain variation, as well as the DSA, for Scenario A and Scenario B with a 

stiffness reduction of 80%, respectively. It is seen that damage-sensitive elements are indeed more 

likely to lie in the vicinity of the damage location. However, as shown in Figure 4b and Figure 5b, 

some finite elements are sensitive to damage even though they are located far from the damage 

location. As a result, the determination of the DSA should not be directly based on damage location. 

Numerical simulations can help this problem. 
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(a) (b) 

Figure 4. Simulation results for Scenario A with a stiffness reduction of 80%: (a) contour for strain 

variation; (b) damage-sensitive area indicated by finite elements in red. 

  

(a) (b) 

Figure 5. Simulation results for Scenario B with a stiffness reduction of 80%: (a) contour for strain 

variation; (b) damage-sensitive area indicated by finite elements in red. 

In consideration of the simulation results for different damaged scenarios, as well as the 

symmetry of the FE model in Figure 1, the following four listed windows are used for comparative 

studies between MPCA and the proposed DWPCA: 

(1). Window A involving all the sensors: 1 2 3 4 5 6 7 8 9 10   ; 

(2). Window B involving all the sensors at the bottom: 1 2 3 4 5   ; 

(3). Window C: 1 2 6 7   ; 

(4). Window D: 2 3 7 8   . 

It should be noted that Window A is usually implemented in PCA and MPCA. If other windows 

are applied, the algorithm will belong to the DWPCA method. In the following calculations, the time 

window size for both MPCA and DWPCA is equal to one period of the thermal loads, namely one 

year (1460 measurement events). The first principal component 1
ψ  is considered as the sensitive 

feature for damage detection because most of the variance is contained in it. 

4. Results and Discussion 

In this section, comparative studies between DWPCA and MPCA in previous studies for damage 

detection will be carried out on detection sensitivity, damage localization, and severity evaluation. 

Noise immunity of the proposed features will also be investigated. To begin with, the effects of the 

following two features on damage identification performance are investigated: 

(1). CEV by MPCA: 


,

M

i j ; align 

(2). CEV by DWPCA: 


,

DW

i j . align 

Note that Window A is usually implemented in MPCA. Other windows including Window B to 

Window D are implemented in the DWPCA method. 

4.1. Sensitivity for Damage Detection 

To begin with, the effects of different windows on the time series CEVs are investigated. In the 

simulations, four scenarios (A, B, C, and D) and four windows (A, B, C, and D) are considered for a 

comparative study. In addition, a permanent stiffness reduction of 40% was introduced for the 
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corresponding finite elements at the beginning of the third year. Note that if Window A is used, the 

method belongs to MPCA because all installed sensors are taken into account. As shown in Figure 6, 

the time-variant CEVs of different scenarios and space windows are simulated. It can be seen that 

before the damage occurs, CEVs are stable for all cases. However, there exists a shift for the values 

after damage occurrence at all scenarios. In the unstable stage between the 2920th and 4380th 

measurements, strains within the moving time window involve responses from both undamaged and 

damaged states. As the time window moves forward, the corresponding CEVs will become stable 

again after 4380 measurement events. This results from the fact that all strain time series within the 

time window were obtained from the damaged structure after 4380 measurements. A closer look at 

Figure 6 indicates that a more significant change is observed for the proposed DWPCA method with 

Windows B, C, and D in contrast to MPCA with Window A. It is interesting to find that among the 

used space windows, Window B, that contains all the sensors installed at the bottom as shown in 

Figure 1, renders a more rapid and evident change in CEVs for the considered damaged scenarios as 

compared with the healthy state. The result can be explained by the fact that, as illustrated by the 

simulation results in Figure 4 and Figure 5, damage has a greater influence on the responses at the 

bottom. From a mechanical point of view, the sensors at the bottom are near the constraint boundaries 

and any variations in the structure may lead to a more significant change in their responses. 

Additionally, one can see from Figure 6 that damage at the bottom has more influence on structural 

responses and CEVs than damage at the top, indicating that it is easier to detect damage at the bottom. 

In a word, the proposed DWPCA uses a space window to exclude sensors outside the DSA, thereby 

leading to an enhanced sensitivity for damage detection as compared with MPCA. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Evolution of CEVs for different space windows: (a) Scenario A; (b) Scenario B; (c) Scenario 

C; (d) Scenario D. 

In order to conduct a comparative study on the detection resolution and the time to detect 

damage after damage occurrence between MPCA and the proposed DWPCA, a range of damage 

severities are considered for simulations. Detection resolution is defined as the damage level that 

induces a minimum detectable relative variation of CEVs in comparison with those in a healthy state. 

In this paper, the minimum detectable relative CEV is chosen as the value when the variation rate of 
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the corresponding CEV with respect to time is equal to 0.67 με / h . The time to detect damage is the 

period from the moment the damage occurs to that when damage is detected. Figure 7 presents the 

time to detect damage after damage occurrence with respect to damage levels ranging from the 

minimum detectable level of each method to a maximum level of 99.9% in Scenarios A, B, C and D. 

For DWPCA, the space window of Window B is considered in the simulations. As expected, higher 

damage levels at any scenario result in a shorter detection time of damage for both methods. 

However, as the damage level is lower than 70% for the considered scenarios, DWPCA shows a 

shorter time to detect damage as compared with MPCA. Furthermore, this advantage of DWPCA is 

increasingly evident as the damage level becomes smaller. Note that, usually, structural damage 

emerges is initially small and gradually evolves to larger damage. The use of a space window means 

that DWPCA possesses a superior capability in the early detection of damage and timely alarms in 

contrast to MPCA. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Time to detect damage after damage occurrence with respect to the damage level: (a) 

Scenario A; (b) Scenario B; (c) Scenario C; (d) Scenario D. 

Table 1. Detection resolution of moving principal component analysis (MPCA) and double-window 

PCA (DWPCA) for different scenarios. 

Scenario 
Detection Resolution in Damage Level (%) 

MPCA DWPCA 

A 1 0.1 

B 1 1 

C 30 10 

D 10 5 

Table 2. Time to detect damage of MPCA and DWPCA for different scenarios. 

Scenario Stiffness Reduction (%) 
Time to Detect Damage (Day) 

MPCA DWPCA 

A 1 38.25 7.75 
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B 1 52.5 14 

C 30 58.75 11.75 

D 10 79 21 

 

Table 1 presents the detection resolution of both methods according to the simulation results in 

Figure 7. It can be seen that DWPCA has a better detection resolution than MPCA for all scenarios, 

except for Scenario B, in which the same resolution is observed for both methods. In fact, the damage 

in Scenario B is located at the bottom of the mid-span and has significant effects on the structural 

responses. Hence, MPCA exhibits a comparative detection resolution even though a space window 

is not applied. For other cases, the detection resolution of DWPCA is commonly better than that of 

MPCA, owing to the fact that the space window in DWPCA excludes sensors that are not sensitive 

to damage. Further examination of Table 1 shows damage located at the bottom (Scenarios A and B) 

is easier to detect than that located at the top (Scenario C and D) because damage at the bottom, 

generally, has more significant effects on the structural responses. In addition, DWPCA has the best 

detection resolution of 0.1% in Scenario A, in which the damage is located at the bottom near the 

constraint boundary, while it has the worst detection resolution of 10% for Scenario C, in which the 

damage is located at the top near the sides of the beam. Table 2 presents the time to detect damage at 

a minimum common level for both MPCA and DWPCA in different scenarios. It is clear that DWPCA 

detects damage much earlier than MPCA. DWPCA takes about 7 to 21 days to detect damage after 

its occurrence, while MPCA needs about 38 to 80 days. Note that in Scenario B, DWPCA detects 

damage more rapidly than MPCA although MPCA has the same resolution as DWPCA. In addition, 

it is also apparent that damage at the bottom (Scenarios A and B) is easier and quicker to detect than 

that at the top (Scenarios C and D). In summary, it is demonstrated that damage detectability of the 

proposed DWPCA is improved as compared with MPCA due to the application of a space window 

which groups sensors within the DSA and excludes those insensitive to damage. 

4.2. Damage Localization 

In Section 4.1, DWPCA has been demonstrated as a more effective tool to identify damage than 

MPCA. In this subsection, a methodology for damage localization will be put forward by tracking 

the time-variant CEVs based on the proposed DWPCA. Four Scenarios (E, F, G, and H) in Figure 3 

and a stiffness reduction of 40% are considered. 

At first, cases in which damage is located at the bottom (Scenarios E and F) are considered. 

Figure 8a–c show time-variant CEVs computed by DWPCA with different space windows for 

Scenario E, in which the damage is located at the bottom between Sensor 1 and Sensor 2. For Window 

C, as shown in Figure 8a, the CEVs corresponding to Sensor 1 and Sensor 2 show evident shifts after 

the occurrence of damage as compared with those corresponding to Sensor 6 and Sensor 7. For 

Window D, shown in Figure 8b, only the CEV corresponding to Sensor 2 has a relatively evident 

change owing to the fact that Sensor 2 is the sensor that is located closest to the damage in the space 

window. As for Window B, the CEV corresponding to Sensor 1 exhibits the most evident variation 

as compared with other components. For Window A, as shown as Figure 8d, the CEV corresponding 

to Sensor 1 by MPCA is smaller than that by DWPCA with Window C in Figure 8a or Window B in 

Figure 8c. It demonstrates that the CEV corresponding to Sensor 1 computed by DWPCA is larger 

than that obtained by MPCA in Scenario E. This proves that DWPCA is more sensitive for damage 

localization than MPCA. In addition, one can infer from Figure 8 that damage is located close to 

Sensor 1 because the variation of the corresponding CEV in various windows is the most notable. For 

Scenario F, in which the damage is located close to Sensor 3, similarly, the CEV related to Sensor 3 

shows a significant change, as presented in Figure 9, especially for both Windows B and D as 

compared with Window A. Subsequently, we consider cases in which damage is located at the top 

(Scenarios G and H). The simulation results are shown in Figure 10 for Scenario G and in Figure 11 

for Scenario H, respectively. For Scenario G, as expected, the CEV related to Sensor 6 is the most 

evident because the damage is in the vicinity of Sensor 6. As for Scenario H, the CEV related to Sensor 

8 displays an evident shift. From Figure 8 to Figure 11, we can see that damage at the bottom has 
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more significant effects on the corresponding CEV as compared with that at the top. Furthermore, if 

the damage is located at the bottom, Window B shows a better performance for damage localization 

because a larger variation is observed for the CEV. However, if the damage is located at the top, 

Window C or D is preferred. In conclusion, it is seen that DWPCA can be used to localize damage 

with the aid of various space windows and shows a better performance for damage localization as 

compared with MPCA. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Time-variant CEVs with different space windows for Scenario E: (a) Window C; (b) Window 

D; (c) Window B; (d) Window A. 

  
(a) (b) 
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Figure 9. Cont. 

  
(c) (d) 

Figure 9. Time-variant CEVs with different space windows for Scenario F: (a) Window D; (b) Window 

C; (c) Window B (d) Window A. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Time-variant CEVs with different space windows for Scenario G: (a) Window C; (b) 

Window D; (c) Window B; (d) Window A. 

  
(a) (b) 
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(c) (d) 

Figure 11. Time-variant CEVs with different space windows for Scenario H: (a) Window D; (b) 

Window C; (c) Window B; (d) Window A. 

4.3. Quantitative Evaluation of Damage 

Based on the discussion above, a further investigation to provide a quantitative evaluation of 

the damage using DWPCA is presented in this section. The relationship between the damage level 

and stable absolute value of CEV after damage occurrence for a range of damage severities from 0.1% 

to 99.9% in Scenarios A and B is presented in Figure 12. It can be seen from Figure 12a that the CEV 

corresponding to Sensor 1 has a monotonically ascending trend as the damage level increases for 

both MPCA with Window A and the proposed DWPCA with Window C. However, the 

corresponding CEV for DWPCA with Window C varies more dramatically as a function of the 

damage level than that of MPCA. A more evident discrimination between data from damaged and 

undamaged states is observed for the proposed method. Thus, DWPCA has a higher sensitivity for 

quantitative evaluation of damage as compared with MPCA. According to the simulation results of 

Scenario A in Figure 12a, the damage level D
L  can be quantitatively evaluated in terms of 

，1 1  

by DWPCA with Window C, as indicated by: 

     
1,1

0.714ln 0.190 1.175DW

D
L  (11) 

For Scenario B, as illustrated in Figure 12b, the related CEV also increases with an increase in 

damage level for MPCA with Window A or DWPCA with Window D. Similarly, the variation of CEV 

related to Sensor 3 by DWPCA is larger as compared with MPCA.  

    
(a) (b) 

Figure 12. Variation of the absolute value of the CEVs with damage level by MPCA and DWPCA: (a) 

Scenario A; (b) Scenario B. 

Thus, the proposed DWPCA has a higher sensitivity for damage evaluation. For DWPCA with 

Window D, as presented in Figure 12b, the damage level D
L  can be obtained from the calculated 

CEV 
1,3  with the use of the following equation: 
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1,3

0.588ln 0.090 +1.385DW

D
L  (12) 

It should be noted that the relationship between the CEV and damage level is obtained by curve 

fitting. This methodology for quantitative evaluation requires calibration or training with an accurate 

FE model. 

4.4. Noise Immunity 

In practice, noise caused by external environmental factors or systematic errors in SHM is 

inevitable. Consequently, data from SHM systems involve noise and may render damage 

identification methods ineffective. As a result, noise immunity of the proposed DWPCA method 

should be investigated. Based on the measured strain data in a large-scale bridge from the  

literature [39], the standard deviation of noise is considered to be from 1.25 με  to 5με . Note that 

strain responses in the simulations are approximately 150με . Thus, the noise level ranges from 0.8% 

to 3.3%. The relationship between CEV and damage level in Scenarios A and B, in which different 

intensities of noise are present is presented in Figure 13. It can be seen that noise has little influence 

on the relationship between the CEV absolute value and the damage level in DWPCA. This is due to 

the favorable de-noising characteristic of PCA. In a word, the proposed DWPCA method in this study 

has considerably good noise immunity and shows potential for applications in practical engineering. 

    

(a) (b) 

Figure 13. Variation of the absolute value of the CEVs with damage level by DWPCA in the presence 

of different intensities of noise: (a) Scenario A; (b) Scenario B. 

5. Application to a Full-Scale Structure 

Based on the validation for DWPCA with a planar beam in Sections 3 and 4, in this section, 

further investigation of the performance of DWPCA for a large-scale structure will be carried out to 

demonstrate its applicability for practical engineering purposes. The full-scale FE model will be based 

on the Xijiang Bridge in Zhaoqing, China. The bridge is a continuous rigid frame bridge built in 2004 

in the Guangdong province, China. It consists of seven spans with a total length of 808 m. The 

photograph and schematic diagram of its structure are presented in Figure 14. Properties of the bridge 

are summarized in Table 3.  
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(a) 

 
(b) 

Figure 14. Xijiang Bridge: (a) photograph of the bridge; (b) schematic diagram of the structure. 

Table 3. Properties of each part of the Xijiang Bridge in Zhaoqing, China. 

Parts Material Elastic Modulus (GPa) Poisson ratio 

Pier 
1# Concrete 34.5 0.2 

2#–6# Concrete 30.0 0.2 

Bridge deck 
Box girder Concrete 32.5 0.2 

Non-pressed and pressed steel Steel 195.0 0.3 

 

In order to demonstrate the sensitivity of DWPCA for damage detection of the full-scale 

structure, response data from different damage scenarios should be prepared. Since the bridge is in 

good conditions after the completion of construction stages, there are no damage events that could 

have generated unusual structural behavior. For the purposes of application of DWPCA on real 

structures, a full-scale FE model of the bridge is established. The strain responses under seasonal 

temperature variations presented in Figure 2 in Section 3 are obtained. Continuous structural health 

monitoring responses of four years at a sampling frequency of four measurements per day are 

collected. 

Local damage is assumed to be introduced in the span between the 2# and 3# piers of the bridge, 

as shown in Figure 14b. Sensors are embedded every 5 m along the bridge length, as shown in Figure 

15a. The arrangement of the sensor locations on the top, webs and bottom of the girder box are given 

in Figure 15b. Note that there are 29 monitoring sections, and each section has six sensors installed in 

this span. Thus, there are 174 sensors in total and these are numbered from top to bottom, from left 

to right (Section ○1  to Section ○29 ) in sequence. In the FE model, damage is assumed to be at a specific 

element of the bridge with a permanent stiffness reduction and is introduced at the beginning of the 

third year. Two different damage scenarios with different damage locations marked as red are shown 

in Figure 16a and b: 

(1). Scenario A: Damage between Section ○1  and Section ○2  in the vicinity of Sensor 8 and 

Sensor 10, as shown in Figure 16a; 

(2). Scenario B: Damage between Section ○14  and Section ○15  close to Sensor 84, as shown in 

Figure 16b; 

Space windows which are related to the DSA should be determined. During the DSA analysis 

in this section, the parameter   in Equation (10) is equal to 5%. The 0
p  in Equation (11) is set to be 

60%. After simulations for a large number of damage scenarios, it was found that the DSA is more 
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likely to lie within two neighboring monitoring sections that are located close to the damage. 

Especially, when the damage is located quite close to one monitoring section, the DSA is located in 

the vicinity of this section. The space windows considered herein contain sensors from two 

neighboring monitoring sections or from one section that is closest to the damage. Thus, for brevity 

of demonstration, only the following spatial windows are used for comparative studies between 

MPCA and the proposed DWPCA: 

a) Window A involving all the sensors:   1 2 ... 174 ; 

b) Window B involving sensors from Section ○1  and Section ○2 : 1 2 ... 12   ; 

c) Window C involving sensors from Section ○14  and Section ○15 : 79 80 ... 90   ; 

d) Window D involving sensors from Section ○1 : 1 2 ... 6   ; 

e) Window E involving sensors from Section ○2 : 7 8 ... 12   ; 

f) Window F involving sensors from Section ○14 : 79 80 ... 84   ; 

g) Window G involving sensors from Section ○15 : 85 86 ... 90   ; 

 
(a) 

 
(b) 

Figure 15. Spatial distribution of the sensors in the span between the 2# and 3# piers: (a) the 

arrangement of the monitoring section marked in blue along the bridge; (b) the arrangement of the 

sensors in the monitoring section. 

 
(a) 
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 Figure 16. Cont.  

 
(b) 

Figure 16. Damaged scenarios for evaluation of the damage detection algorithms: (a) damage with a 

stiffness reduction of 40% in the vicinity of Sensor 8 and Sensor 10; (b) damage with a stiffness 

reduction of 40% close to Sensor 84. 

Comparative studies of CEVs computed by MPCA ( M

ij
 ) and DWPCA ( DW

ij
 ), respectively, 

on damage detection for this bridge are presented as follows. Window A is still used in MPCA. Other 

windows including Window B to Window G will belong to the DWPCA method in the following 

demonstration. 

Figure 17 shows the evolution of CEVs by MPCA and DWPCA upon application in two different 

damage scenarios. Similarly to that of the planar beam, there are no relative variations in the 

corresponding CEVs in the first two years since there is no damage. In addition, there exists a shift 

after damage occurrence in all scenarios when the time window involves responses from both 

damaged and healthy states. Then, the corresponding CEVs will become stable again after 4380 

measurement events when responses within the time window are obtained from the damaged 

structure after 4380 measurements. Note that a more significant change of corresponding CEVs by 

the proposed DWPCA method with Window B, C, E, or F are observed in contrast to MPCA with 

Window A in both scenarios. Additionally, Windows E and F, which consist of sensors from only one 

monitoring section, perform better than Windows B and C, which contain sensors from two 

neighboring monitoring sections, when damage is located quite close to one monitoring section. 

  
(a) (b) 

Figure 17. Evolution of the corresponding CEVs for different space windows: (a) Scenario A; (b) 

Scenario B. 

After the investigation of DWPCA in damage identification in the bridge, a closer look at all 

CEVs evolutions within a spatial window will be further explored for damage localization. Figure 

18a shows the evolution of CEVs computed by DWPCA with Window D and E for Scenario A, in 

which the damage is located between Section ○1  and Section ○2 , close to Sensor 10. For Window D 

and E, as shown in Figure 18a, the CEVs corresponding to Sensor 7, Sensor 8, Sensor 9 and Sensor 10 

shows an evident shift after damage occurrence as compared with other sensors which are located 
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far from damage. This is due to the fact that Sensor 7, Sensor 8, Sensor 9 or Sensor 10 is the nearest to 

damage in the corresponding space window. For Scenario B in Figure 18b, as expected, the CEV 

related to Sensor 84 is the most evident because the damage is in the vicinity of Sensor 84. Figure 18b 

also indicates that the CEVs corresponding to Sensor 81, Sensor 82, and Sensor 83, which are close to 

damage, also have a remarkable shift after damage occurrence. It is seen that DWPCA can be used to 

localize damage with the aid of various space windows for complex engineering structures. 

  
(a) (b) 

Figure 18. Time-variant CEVs with different space windows for Scenario A and B: (a) Windows D 

and E; (b) Windows F and G. 

Based on the discussion in Section 4.3, the relationship between the damage level and stable 

absolute value of CEV after damage occurrence for a range of damage severities in simple beams can 

be quantitatively evaluated. Similarly, for Scenarios A, the damage level D
L  can be quantitatively 

evaluated in terms of 
1,10  by DWPCA with Window E in Figure 19a, as indicated by: 

     
1,10

1.25ln 0.037 4.121DW

D
L  (13) 

As for DWPCA with Window F for Scenario B, as presented in Figure 19b, the damage level D
L  

can also be obtained from the calculated 
1,84  with the use of the following equation: 

     
1,84

1.25ln 0.032 4.303DW

D
L  (14) 

    

(a) (b) 

Figure 19. Variation of the absolute value of the CEVs with damage level by MPCA and DWPCA: (a) 

Scenario A; (b) Scenario B. 

In summary, the proposed method DWPCA is demonstrated to be feasible for damage detection 

for large-scale structures. Results show that, similarly with the conclusion drawn in Section 4 for the 

planar beam, DWPCA has better performance in damage identification, damage localization and 
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damage quantitative evaluation, as compared with the previous method MPCA. The is due to that 

the space windows used in DWPCA are capable of excluding damage-insensitive data from those 

sensors located far from the damage to enhance the damage detectability The proposed method is 

proven to have potential in applications for practical engineering. 

6. Conclusions 

This paper provides a novel effective method for structural damage detection by introduction of 

space and time windows in the traditional principal component analysis method. Due to the presence 

of the space window, the damage-insensitive data from those sensors located far from the damage 

are excluded in the analysis, and the damage detectability of the proposed method is improved in 

contrast to previous methods. Numerical results with a planar beam model demonstrate that the 

proposed method DWPCA, as compared with MPCA, improves the resolution for damage 

identification and is also quicker to detect damage after its occurrence. DWPCA is successful to detect 

minor damage with 0.1% stiffness reduction and identify damage 31 to 59 days earlier as compared 

with MPCA for a planar beam. With the aid of various space windows, the method is verified to have 

a better performance for damage localization as well. As for a quantitative evaluation of the damage 

severities from 0.1% to 99.9% for a planar beam, DWPCA proves to be more sensitive than previous 

methods. Finally, the proposed method is demonstrated to have good noise immunity and the result 

with a full-scale structure shows potential for applications in practical engineering. Further 

investigation will be focused on the feasibility of the proposed methodology to large-scale structures 

under more complicated loads such as real temperature variations and vehicle loads. 
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