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Abstract: Given its importance, fault diagnosis has attracted considerable attention in the literature,
and several machine learning methods have been proposed to discover the characteristics of different
aspects in fault diagnosis. In this paper, we propose a Hybrid Deep Belief Network (HDBN) learning
model that integrates data in different ways for intelligent fault diagnosis in motor drive systems,
such as a vehicle drive system. In particular, we propose three data fusion methods: data union, data
join, and data hybrid, based on detailed data fusion research. Additionally, the significance of the
fusion is explained from the energy perspective of the signal. In particular, the appropriate fusion
methods and data structures suitable for model training requirements can help improve the accuracy
of fault diagnosis. Moreover, mixed-precision training is used as a special fusion method to further
improve the performance of the model. Experiments with the datasets obtained from the simulation
platform demonstrate the superiority of our proposed model over the state-of-the-art methods.

Keywords: fault diagnosis; hybrid data fusion; mixed-precision training; hybrid deep belief nets;
vehicle reducer

1. Introduction

Rotary transmission equipment such as gearboxes are widely used in vehicles, automobiles, and
other industrial equipment [1]. It is easy to cause machine strain and have serious consequences
because of the accumulation of repetitive actions [2]. This “repetition” also provides an important
reference for the fault diagnosis of such devices: one or more of the characteristics exhibited by
the fault are enhanced by this “repetitive” process. There are two important issues that need to be
addressed: first, how to determine the cycle of this “repetitive” process; second, how to determine
the characteristics of the fault and establish a suitable evaluation method based on the feature. The
Time Synchronous Averaged (TSA) [3] approach is one of the most widely utilized signal processing
techniques to extract a periodic waveform from noisy signals of rotating machines and is an important
method in time domain signal processing that can solve the first problem. The second problem is much
more complicated, mainly because the fault may present different features under different viewing
angles. According to different Condition Indicators (CIs), a series of methods is generated, for example
the Standard Deviation (SD), Peak-to-Peak (P2P), Skewness (SK), Kurtosis (KT), Condition Factor (CF),
and Root Mean Square (RMS) [4,5], as shown in Figure 1. Vibration signals are the focus of attention in
this type of research [6,7] because the acquisition is easier and the characteristics are more obvious [5].
From an energy perspective, the fault signal is periodic (recurring), and the cumulative strength of
the signal is continuously increased with the periodic operation of the gearbox. These considerations
make the TSA-based CI analysis method an important diagnostic method [3].
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Figure 1. Comparison of the basic fault diagnostics system.

The reliance on professional knowledge and expert experience and the immature fusion of
multi-feature complex conditions limit the study of such empirical methods. Intelligent diagnostic
methods have developed rapidly in recent years because of the ability to mine hidden fault features
automatically from a variety of signals while relying less on expert experience [8]. A variety of methods
include the Auto-Encoder (AE) [9], Restricted Boltzmann Machines (RBMs) and their variants, the
Deep Belief Network (DBN) and Deep Boltzmann Machines (DBMs), as well as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs) and Deep Learning (DL) [10]. In addition,
this makes multisensor data fusion a key issue in intelligent diagnostic methods, since it provides
an inexperienced “foolproof” signal fusion method and feature mining method [10–12]. In a recent
study, the Denoising Auto-Encoder (DAE) [1,13] and Stacked Denoising Auto-Encoder (SDAE) [14–16]
represented a type of development trend of DL-based machine health monitoring methods.

However, difficulties and challenges still exist [8,11]: First, existing research focuses on the impact
of data fusion on the results, without explaining the meaning of data fusion based on the nature of the
data itself (e.g., from the perspective of CIs) and how this fusion affects the learning model. We can call
this method that does not consider the theory of fault diagnosis a “lazy model”. Second, such research
tends to use more sensors to obtain more data to improve the accuracy of model diagnosis, while
ignoring the conditional constraints in practical applications. More data means increased hardware
requirements, power consumption, and computational latency.

In this paper, we propose an HDBN learning model that integrates data in different ways for
intelligent fault diagnosis in motor drive systems, such as a vehicle drive system. In particular, we
identify the physical meaning and specific methods of data fusion as two key parts: (1) three basic
data fusion methods; and (2) mixed-precision training. In detail, data fusion does not mean simply
“snaping” multiple and diverse data together, ignoring basic and physical meanings. In addition, it
makes sense to reuse data from a variety of angles, for example mixed-precision training that can
enhance the model accuracy without having to incur more cost to obtain more data. Our work makes
the following contributions.

• We have established an efficient fault diagnosis model, namely, HDBN, which is based on
an energy perspective that focuses on data fusion for signal analysis and fault diagnosis of
rotating devices.

• We explain the significance and role of data (signal) fusion from a physical perspective, and three
basic fusion methods are proposed: data union, data join, and data hybrid.

• We present a hybrid precision training algorithm to improve the overall performance of our
proposed model without collecting more data.

The remainder of this paper is organized as follows. Section 2 briefly reviews the literature.
Section 3 describes the intelligent HDBN fault diagnosis model and explains the mechanism and role
of the energy perspective in fault diagnosis based on the TSA and CI methods.
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Then, the HDBN fault diagnosis model is established based on the energy function. The major
contributions are introduced in Section 4, emphasizing the fusion process and the physical meaning
of its signals that have been carefully studied in data fusion as a key issue in HDBN. Furthermore,
mixed-precision training is used to further enhance the performance of the model. In Section 5, we
present a complete experimental platform and unmanned vehicle application case, and we compare
our proposed method with existing intelligent diagnostic approaches. Section 6 concludes this paper.

2. Related Works

Machine Health Monitoring Systems (MHMS) form an integral part of the new industrial
era. The Industrial Internet of Things (IoT) and data-driven techniques have been revolutionizing
manufacturing by enabling computer networks to gather the huge amount of data from connected
machines and turn the big machinery data into actionable information [17–19]. Data-driven MHMS
is a key component of modern manufacturing systems Two major research topics are related to this
work, including multi-condition fault diagnosis methods and intelligent diagnostic methods and data
fusion research for machine learning methods. Whether it is a classic or a machine learning method,
these approaches have similarities in the data acquisition and preprocessing stages, which are still in
the time domain or frequency domain [5]. The comparison of a basic fault diagnostics system is shown
in Figure 1.

Traditional data-driven MHMS relies on the experience of experts. That is, it is necessary for
a professional to select appropriate features manually according to specific problems and perform
feature extraction and training at appropriate angles such as the frequency domain and time domain.
IMF [20] tools based on Fast Fourier Transform (FFT) and Hilbert–Huang Transform (HHT) [21],
DB-KIT [22–24] are typical application tools for this type of research. These tools help us identify and
capture characterization data and then use some statistical methods such as [6] to provide a review of
the earlier literature on condition monitoring of a gearbox based on vibration signals, including the
SD, P2P, and SK methods. The work in [2,8] updated this type of study and included SD, P2P, SK, and
other methods. Shallow learning methods such as Support Vector Machines (SVM) [25], Naive Bayes
(NB) [26], and logistic regression [27] are also common methods. The time domain method has made
some progress in early research as a simple basic method [28]. Converting a time domain signal into
the frequency or another domain suppresses noise while highlighting features, because background
noise is also included in the time domain signal. The work in [7] expressed the resonance signal
caused by the fault through Amplitude Modulation and Frequency Modulation (AM-FM) processes
and derived the explicit equation of the Fourier spectrum. The work in [5] proposed a time-frequency
analysis method based on an Ensemble Local Mean Decomposition (ELMD) and FKthat effectively
separates fault features from non-Gaussian noise and ambient noise. The work in [29] proposed a
mixedH_ /H∞ fault detector design method based on the Linear-Parameter-varying (LPV) model for
fault detection of a steering actuator in an Electric Ground Vehicle (EGV). Moreover, the work in [3]
presented a new TSA-based method using a single piezoelectric strain sensor for Planetary Gearbox
(PGB) fault diagnosis.

However, it is difficult to design appropriate features and perform feature selection. Manually
designing features for a complex domain requires a great deal of human labor and cannot be updated
on-line. These methods attempt to define fault features for one or a specific type of condition from
different perspectives (especially the vibration signal as an energy view) based on experience, as
we have introduced in the Introduction. As we all know, the complex and noisy working condition
hinders the construction of physical models, which make the modeling of complex dynamic systems
very difficult [29]. There is a deepened reliance on expert knowledge and experience in order to obtain
strong fault characteristics and to achieve more adaptability, which is not always available.

Deep learning-based MHMS provides a bottom-up solution. A deep neural network with multiple
layers of nonlinear transformation is constructed to extract hierarchical representations from input data.
The conversion of the input value to the output value takes place in each layer. From a data-driven
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perspective, the “weak” feature that contains the original “non-dominant” will gradually become
“strong” after multiple layers of training until it is sufficient to represent the identity of the object
clearly such as fault classification. Compared to conventional data-driven MHMS, DL-based MHMS
does not require extensive human labor and knowledge for hand-crafted feature design. Therefore,
DL-based models can be applied to address machine health monitoring in a very general manner. The
data and feature fusion methods provided by machine learning greatly reduce the dependence on
experience and have enabled more researchers to enter the field of drive fault diagnosis [30]. Deep
learning is a novel machine learning method based on multiple nonlinear transformations that can be
used to extract deep features from raw data automatically.

In general, the deep learning model is mainly divided into auto-encoders [31,32], deep belief
networks [33,34], deep Boltzmann machines [28], convolutional neural networks [29,35], Deep Neural
Networks (DNN) [10], recurrent neural networks [30], and various variants and optimized versions
derived therefrom. Deep learning generally refers to a network with a multi-layer structure, more like
an artificial neural network. We try to learn the hierarchical representation of data through multiple
nonlinear processing layers [36]. In the deep learning that originated from the “perceptron”, the
most basic structure is to combine multiple perceptrons to form a multi-layer perceptron [37]. A
convolutional neural network is obtained by adding a cortical structure similar to human vision.
The other category originated from the “Peltzman machine based on graph model” [38]. The former
belongs to supervised learning and outputs training networks according to expectations; the latter is
an unsupervised learning that trains networks only based on specific training data.

The automatic encoder consists of two parts, an encoder and a decoder, as a feedforward neural
network. It is designed to learn a new representation of the data by attempting to reconstruct the
input data [32]. The encoder accepts input x and converts it to a hidden representation h by nonlinear
mapping. To prevent the learned transformation from being the identity one and to regularize
auto-encoders, the sparsity constraint is imposed on the hidden units [9,39]. In order to overcome the
effects of noise interference in the operating environment and data loss caused by random network
time delay [40], the addition of denoising AE takes a corrupted version of data as input and is trained
to reconstruct/denoise the clean input x from its corrupted sample x̃, achieving better adaptability.
Since the automatic encoder can be trained in an unsupervised manner, automatic encoders, especially
Stacked Denoising Automatic encoders (SDAs), can train the model by initializing the weight of the
Deep Neural Network (DNN) to provide effective pre-training [41]. The work in [42] proposed a novel
energy-fluctuated multiscale feature mining approach based on a Wavelet Packet Energy (WPE) image
and DCN for spindle bearing fault diagnosis.

RBM is a two-layer neural network as a Markov random field. A bipartite graph that consists
of two groups of units including visible units v and hidden units h under the constraint. DBN and
Deep Boltzmann (DBM) systems are derived from RBM. The DBN can be established by stacking
multiple RMBs. Similar to SDA, DBNs can be trained in a greedy, layered, unsupervised manner. DBM
can be seen as a deep-structured RBM. The main difference between DBN and DBM is that DBM is a
completely undirected graphical model, while DBN is a mixed directed/undirected graphical model.
Unlike DBNs that can be trained layer by layer, DBM is trained as a joint model. Therefore, DBM
training is computationally more expensive than DBN.

More data from multiple sensors means higher accuracy and adaptability due to the nature of deep
learning methods. The work in [43] proposed a comprehensive review of the data fusion state-of-the-art
approach, exploring its conceptualizations, benefits, and challenging aspects, as well as existing
methodologies. The work in [34] proposed a two-layer Sparse Auto-Encoder-Deep Belief Network
(SAE-DBN), and the work in [44] proposed an Adaptive Neuro-Fuzzy Inference System (ANFIS) in
which multiple accelerometers were used. The work in [45] combined a multivariate orthogonal space
transformation and vectorized time-series models into a system equipped with multisensor networks
to implement a residual-based fault monitoring system. The work in [46] proposed an unsupervised
feature extraction method based on Greedy Kernel Principal Component Analysis (GKPCA) under
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multidimensional unlabeled signal conditions, which has improved monotonicity, robustness, and
computational speed performance. The study by [47] presented a new probabilistic nonlinear feature
selection and fusion method, named Probabilistic Kernel Factor Analysis (PKFA), in order to solve the
feature selection and fusion problem in machinery condition monitoring. DBN is a good fault feature
mining model in which [48] combined spectral data acquired from three identical acceleration sensors
based on DBN and established the ball screw degradation recognition method. The work in [49]
achieved rolling bearing fault diagnosis based on DBN through multiple values obtained by multiple
different sensors. The RNN can generate and address the memory of an input mode sequence of any
length. It can be built in a directional loop different from the basic neural network: the multi-layer
perceptron can only map from the input data to the target vector; the RNN can in principle map the
entire history of the previous input to the target vector and allow the previously entered memory to be
stored in the internal state of the network, thus combining with LSTM and applying MHMS [50].

Multisensor data fusion remains a challenging issue [51], although some good research progress
has been made. Current research is more focused on how to perform efficient feature extraction, such
as the above studies, while ignoring the methods, roles, and mechanisms of data fusion. Another
challenge is the selection of different fusion levels. Similarly, different fusion levels have their own
advantages and disadvantages, and the suitable ones for different fault diagnosis tasks are usually
different [52]. Selecting an optimal fusion level for a specific fault diagnosis task always requires
domain expertise, prior knowledge, and human labor [43]. Therefore, we have proposed the HDBN
method in order to solve these problems.

3. Methodology

The HDBN establishment process is divided into two parts: the basic fault diagnostics system
and the hybrid data fusion process. Among these parts, the establishment process of the basic model
can be divided into three steps, as shown in Figure 2.

Figure 2. The basic model of TSA.

First, it was necessary to preprocess the acquired raw data, such as vibration signals. In addition,
the data were filtered by a suitable low-pass filter [3]. Second, the TSA signal, residual signals, and
other input signals were computed based on tachometer signals. Finally, the condition indicator was
calculated. Then, the DBN method was used instead of the experience-dependent method, and we
could define the basic diagnostic model.

3.1. TSA-Based CI Diagnostic Method from an Energy Perspective

The basic idea is that when the motor is running at a constant speed, its periodic signals (such
as fault signals) are boosted to a higher level and are clearly distinguished from the noise signal.
Assuming the total number of N observed periods, the TSA of x(t) can be expressed as [53]:

xTSA =
1
N

N−1

∑
r=0

x(t− rTR) (1)

where r is the index of the periodic signal, TR is the time of a cycle, and ∆t = t− rTR. Basically, TSA
chops up the raw sensor signal into multiple single-revolution signals. Then, each of the revolution
signals is resampled to have the same number of sample points in one revolution. Next, the final
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periodic signal is obtained by averaging the resampled signals. After TSA is computed, any kind of
fault diagnostic CI can be evaluated [54,55].

There are a variety of definitions of CIs, as shown in Figure 1. Each type of CI can be
computed using different input signals. The energy operator (EO) [4] is defined as the residual
of the autocorrelation function as follows:

for i = 2, 3, · · · , N − 1
{

xEO,i−1 = x2
TSA,i − (xTSA,i−1 · xTSA,i+1)

}
(2)

where xEO,i is the ith element of EO data. In this way, the type of fault can be determined by analyzing
the residuals of different features.

As another point of view, the Fourier Transform (FT) is a classical vibration fault analysis method.
By changing the vibration signal from the time threshold to the frequency domain, this energy view can
be expressed more intuitively. The result converted by fast Fourier Transform (FFT) equation X( f ) =∫ ∞
−∞ x(t)e−i2π f tdt can be found in Section 5.2. The fault’s main feature component is highlighted by

the FFT to convert the signal that is decomposed into multiple segments into a spectrum [56]. Then,
a comparison is performed using a waterfall graph. This feature component is further enhanced
if iterated using the TSA method described above. However, there is still a large number of lower
amplitude components in the figure, which will also affect the actual effect of TSA.

3.2. Basic DBN Model

The TSA-based multiple CI analysis method provides us with a feasible diagnostic method.
However, there are two problems: The data (signal) segmentation has certain difficulties if the period
of the signal and its starting point are not clear and there is lack of expert experience. Another issue is
how to fuse multiple data or conditions to enhance fault characteristics. DBN does not pay attention to
the segmentation process of the precise period in TSA, as long as the dimension after data segmentation
is appropriate (easy to store and train). Additionally, this will be discussed in Section 5. For the fusion
problem of multiple CIs, from different perspectives, it can be a data fusion problem (using multiple
CIs as training conditions to input to the DBN) or a feature fusion problem (i.e., CIs as a result of
feature mining).

In this article, we will focus on the data fusion problem of CIs.
Another reason for choosing DBN as the base model is that it exhibits better performance under

low speed regulation conditions in pre-training.
(1) RBMs: DBN is a multilayer neural network consisting of a series of RBMs that are stacked [57].
The structure of RMB is a bipartite graph, that is the nodes in the layer are not connected; as

shown in Figure 3, where the first layer is the input node Vv, and its state space is {0, 1} or a real
number R. The second layer is the hidden node Vh, and the state space is {0, 1}. W is the connection
weight coefficient matrix of Vv and Vh.

Figure 3. The basic model of RBMs.

Each of these nodes can take different states. The state of this model is also determined when the
state of each node is determined and refers to the degree to which the model takes the state; moreover,
the model is evaluated by the energy function.

When the state space of Vv is {0, 1}, the energy function is defined as:
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E(v, h) = −∑
i,j

viWijhj − ∑
i∈visible

ajvj − ∑
j∈hidden

bjhj (3)

(2) k-step Contrastive Divergence Method (k-CDM): We used the k-CDM training method [48] because
the default Gibbs sampling RBM training method is less efficient [49]. There are two one-step methods
“binary to binary” and “Gaussian to Gaussian”. The model of CD-1 (binary to binary) is as follows:

Above all, there is the input node Vv ∈ [0, 1], and the loss function is defined as:

Loss = ∑(v− pv′)
2 (4)

In the second layer, regarding p(h|v), if ph > rand(0, 1), then h = 1; otherwise, h = 0. The
reconstructed data are returned when the calculation is complete, and p(v|h) can be determined by
calculation. When the data are passed back to the hidden layer, the output is:

ph = sigmoid(v ·W + b)

pv′ = sigmoid(h ·W T + a)

ph′ = sigmoid(pv′ ·W + b)

(5)

The calculations of ∆W e, ∆ae, and ∆be are:
∆W e = (vT · ph − pT

v′ · ph′)/n

∆ae = ∑(v− pv′)/n

∆be = ∑(ph − ph′)/n

(6)

Then, W e+1, ae+1, and be+1 can be calculated:
W e+1 = We + m∆We−1 + r∆We − dWe

ae=1 = ae + m · ∆ae−1 + r · ∆ae

be=1 = be + m · ∆be−1 + r · ∆be

(7)

In the model of CD-1 (Gaussian to Gaussian), the energy function is redefined as:

E(v, h) = −∑
i,j

vi
σi

hj

σj
Wij + ∑

i∈visible

(ai − vi)
2

2σ2
i

+ ∑
j∈hidden

(bj − hj)
2

2σ2
j

(8)

If the K-step is set to one-step, then σi = 1, σj = 1 and the Formula (5) in the process is changed to:
ph ∼ N(v ·W + a, σ), h = v ·W + a

pv′ ∼ N(h ·WT + b, σ), v′ = h ·WT + b

ph′ ∼ N(v′ ·W + a, σ), h′ = v′ ·W + a

(9)

while the Formula (6) changes to: 
∆W e = (vT · h− v′T · ph′)/n

∆ae = ∑(v− v′)/n

∆be = ∑(h− h′)/n

(10)

(3) Building DBN: In this way, the DBN model is built by linking the RBM layers, as shown in
Figure 4. Additionally, the HDBN model will be built after solving the hybrid data fusion problem.
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Figure 4. HDBN architecture.

4. Hybrid Data Fusion and Model Improvement

4.1. Pretreatment

Data fusion has an important impact on training models and fault classification. The specific
process, methods, and impacts of data fusion have not been carefully studied, although many studies
in the literature have proposed analytical models based on data fusion. Therefore, this paper carefully
studies and elaborates three types of data fusion processes and their different effects, as shown in
Figure 5. The approach is mainly divided into three parts: data preprocessing, data segmentation, and
data fusion.

Figure 5. Hybrid data fusion structure.

Different data sources can have a significant impact on data fusion and its outcome. Taking the
experimental platform shown in Section 5 of this paper as an example, the data of eight sensors F1∼F8

wre obtained from two parts: the BLDCM and NI DAQ board. The sampling frequency and accuracy
of the BLDCM are lower than those of the NI DAQ board. In addition, we have to preprocess different
data separately because there are five different kinds of sensors.

The preprocessed data need to be processed by segmentation, labeling, etc., before being sent
to the model to form a dataset. Obviously, the length of the data is different due to the difference in
sampling frequency. For example, both F1 and F4 are current data, but they have different lengths and
need to be “aligned” before the merger. Using interpolation is appropriate, although downsampling
also enables data alignment. However, sampling will greatly reduce the total number of samples,
which directly affects the training accuracy. Moreover, they will be split into two types of datasets
DS1(m× n) and DS2(m′ × n′), where m′ ≥ m and n = n′ (interpolation or downsampling was used
to facilitate calculation) for the appropriate data. Here, m and m′ represent the number of rows of the
set, and n identifies the column as the feature of the signal.

4.2. Hybrid Data Fusion Method

The three fusion methods union, join, and hybrid are proposed according to the source of
the data.
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(1) “Union (∪)” is a basic data fusion method, and even data of different kinds, such as frequency
and current, can be combined to form a training set. For the two datasets with the same number of
features, the (∪) can be defined when n = n′ as:

DS1(m× n)∪ DS2(m′ × n′) = DS′([m + m′]× n) (11)

In this way, if more samples (rows) are merged, it is beneficial to improve the accuracy of machine
learning; thus, it is the most common data fusion method in the existing research.

(2) “Join” ( +©) operations are suitable for the same type of data, such as vibration signals from
different installation locations. The merging operation is suitable for the same type of data, such as
vibration signals from different mounting positions. From a physical point of view, this is equivalent
to merging the same but different phase signals in a single sample. For example, in this paper, the
installation angles of the two vibration sensors are 90◦ with each other. The +© operations can be
defined when m = m′ as:

DS1(m× n) +©DS2(m′ × n) = DS′(m× [n + n′]) (12)

Thus, the number of features (cols) of a single sample is increased. The total number of samples
(rows) has decreased. This fusion approach may reduce recognition accuracy based on machine
learning experience.

(3) “Hybrid” (]) operations can be defined by combining the two fusion methods ∪ and +©.
This is similar to the approach that we used in data segmentation. The main difference is that the
segmentation granularity is reduced to n/s, and s is the partition coefficient with s ∈ [1, n]. Then, +©
fusion is performed on the new sample. Finally, more samples (especially a dissimilar sample) are
then fused by the ∪ fusion method. Thus, ] = ∪ when s = 1 and ] = +© when s = n. It is possible to
flexibly adjust the specific fusion mode and degree through the adjustment of s. Additionally, s = 2 is
the default setting. The advantage of this approach is that we can both increase the sample size and
optimize and further enhance the sample in the physical sense. The ] operations can be defined as:

DS1(m× n) ] DS2(m′ × n′) = DS′
[

1 ∼ n
s 1 ∼ n′

s
n
s + 1 ∼ n n′

s + 1 ∼ n′

]
(13)

The segmentation and fusion of such datasets is only in the physical sense. In addition, this
process does not change the essential characteristics of the data. It is equivalent to observing the target
(dataset) from different perspectives in order to better discover its characteristics. This approach leads
to two basic results: the deep learning approach helps to mine deep, implicit features from the data
without having to rely too much on expert experience because experts understand which perspectives
are easier to observe. More data means that more distinctive features can be observed and learned
to improve the accuracy of the model; even if the same sensor acquires the same signal at different
locations, it will help the model improve. This is also the root cause of most intelligent diagnostic
methods that choose deep learning models or using multisensor fusion.

In particular, the FFT method converts the signal from the time domain to the frequency domain,
at which point its essential characteristics have changed and F′7 = FFT(F7), F′8 = FFT(F8). Moreover,
new features may be introduced to the model without adding new samples. This approach is analogous
to two simple forms of carbon—graphite and diamond—although they are homologous, but different
in traits.

We can make the following assumptions based on the above analysis:

Assumption 1. It is possible to improve the accuracy of the model within a limited range by using the ∪, +© or
] methods alone.
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Assumption 2. Limited enhancements or even side effects occur if the +© method is used. This is because the
dimension of the data is increased, but the total number of samples is reduced. In addition, the cost of model
learning has been improved.

Assumption 3. Larger enhancements can be expected by fusing a variety of different features, such as (F7 ∪
F8) ] (F7 ] F8), without reducing the number of samples.

Assumption 4. Larger boosts can be expected by introducing data of a different nature, including multisource
sensor data or changed data such as F′7 and F′8 or F1∼F6.

4.3. Mixed-Precision Training

The mixed-precision training model is constructed to further explore the potential of existing data
and enhance the above model [58] as shown in Figure 6. First, the original samples can be classified
into Float 16 (F16) and Float 32 (F32) according to the storage format and precision. The F32 with
higher precision is called the master-weight. F16 data are converted by F32 through the float2half
function. Then, in the second part, we activate the function calculator to calculate its weight level
and fuse it with the master-weight to obtain the updated weight. This mixed-precision training has
two functions: F16 low-precision data help speed up the pre-training process and provide directional
guidance for feature mining; and the training (weight) data used to update the master-weight help
improve accuracy.

Figure 6. Mixed-precision training model.

In addition, unlike this pure software approach, there are two sets of data from the higher precision
NI DAQ system and the lower precision data from BLDC acquisition in our experimental system. This
situation allows us to compare both software and physical (signal source) angles simultaneously.

Assumption 5. Although the effect may be limited, mixed-precision training is beneficial for improving the
accuracy of the model.

5. Experimental Setup

5.1. Experimental Platform and Fault Seeds

(1) Experimental platform:
The experimental system is composed of ten parts. Figure 7a displays the PGB test rig used to

collect the data under different gear health and operating conditions.
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(a) (b)

Figure 7. Experimental device architecture of the system. (a) Experimental architecture. (b) A vehicle
instance designed by the author.

1© Power supply: Converts 220 V AC power to 24 V DC with constant voltage mode. 2© BLDC
Motor controller. It has the ability to measure system current and voltage through an integrated 8-bit
sensor. In addition, based on the CAN bus, the command and monitoring data are exchanged through
the “COM-CAN” converter at a sampling rate of 50 Hz. 3© Brushless direct current motor (BLDCM),
rated power 24 V 5.6 A, 3000 RPM; output torque 0.42 n/m. In addition, a 1000-pulse/s encoder was
integrated for measuring motor speed. 4© A commercially-available single-stage PGB with a 10:1
speed.

Additionally, a price below $25 makes it less likely to achieve good enough performance. 5©
A magnetic powder brake for simulating loads. 6© Integrated Electronics Piezoelectric (IEPE)-type
of accelerometer. Two were glued on the housing of the ring gear. One was in the vertical position
(V1), and the other was in the horizontal position (H1) in order to accurately capture their vibration
signals. 7© Dynamic torque sensor. 8© Rotary encoder for obtaining output speed. 9© Four-way voltage
and four-way current analog sensor. 10© Data acquisition card: NI UB-6002, 16 bit. Performs A/D
conversion and transfer data to PC.

It is noteworthy that the above components may be adjusted. The actual vehicle system was
limited by factors such as size, cost, and environment of use. For example, torsion sensors are difficult
to deploy based on compact design considerations. Figure 7b displays a set of unmanned vehicle
systems designed by the author team for use in agriculture. There is not enough space here to deploy
additional large sensors such as torsion sensors. The system is composed of five parts from 1©′– 5©′ in
the experimental environment [40]. In addition, there are some differences here. In Section (1), the AC
power source needs to be replaced with a power battery. For 8©, it is necessary if the motor of 5©′ is
not BLDCM and there is no integrated encoder; this will also affect 3©′, the choice of controller. For
example, if voltage and current sensors are not integrated within the controller, then 9© and 10© are
necessary or should be replaced with equivalent components.

(2) Fault seed setup.
Five types of faults were defined from mild to severe, as shown in Figure 8. Each type of gear

fault was created by artificial damaging. Table 1 gives the test conditions and pattern labels. Both the
healthy gearbox and the gearboxes with seeded faults were tested at seven different input shaft speeds.
In addition, a 50-h rack operation was employed to simulate the compounding of multiple problems
in the actual environment. For example, Figure 8c displays a combination of tooth damage and tooth
surface wear. The adjacent teeth of the problem tooth marked in Figure 8e also have a certain degree
of wear: originally, the pressure of the tooth sharing was borne by its proximity.
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Figure 8. Faults of the planet reducer (zoom ×50).

Table 1. Pattern labels and test conditions of the gear fault.

Pattern Label Gearbox Condition Input Speed (RPM) Load

1 Tooth surface wear

100, 200, 400, 600,
800, 1200, 1400

Null
2 Tooth damage (partial) Null
3 Tooth damage (medium) Null
4 Tooth broken (half) Null
5 Broken teeth (overall) Null
6 Normal Null

(2) DAQ system:
The sampling period of the first part was chosen at 20 Hz, as recommended for the motor

controller shown in Figure 7a. In the second part, the speed and vibration frequency of each gearbox
gear can be calculated [8]:

f (s) = ω1 × s1 + ω2 × s2 + · · ·+ ωn × sn (14)

Figure 8f shows a specific PGB with a standstill ring gear that was used in this paper. The sun
gear z1 and the three planet gears z2 had 15 teeth, and the ring gear z3 had 45 teeth. For this type of
PGB, the number of teeth was linear to the radius of each gear pitch circle. This fact indicates that the
gear ratio was also related to the angular velocity ω of the gears. The gear ratio can be defined as:

R = ω1/ωA = 1 + z3/z1 (15)

where ωi is R the angular velocity of the ith gear component; zi is the number of teeth on the ith gear
component; and the gear component index subscripts 1, 2, 3, and A correspond to sun gear, planet
gear, ring gear, and arm (i.e., planet carrier), respectively. The planet carrier rotation speed (i.e., output
shaft speed) in terms of frequency could be obtained as:

fa = f1/R (16)

where fi is the rotation speed in frequency at the ith gear component. In addition, a meshing
characteristic frequency of PGB can be obtained as:

f12 = f23 = f1z1z3/(z1 + z3) = f1z3/R (17)

where fij is the relative rotation speed in frequency between the ith and jth gear components.
The most common three failure modes of a PGB are the sun gear fault, planet gear fault, and ring

gear fault. Their corresponding fault frequencies are represented as follows:
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
f f ,1 = s( f1 − fa) = f1z3s/(z1 + z3)

f f ,2 = 2( f2 + fa) = 4 f1z1z3/(z2
3 − z2

1)

f f ,3 = s fa = f1z1s/(z1 + z3)

(18)

where f f ,i represents the fault frequency at the ith gear component and s represents the number of
planet gears in the gearbox. For more details, see [10]. Table 2 presents the structural information and
characteristic frequencies of the PGB used in this paper.

Table 2. Characteristic frequencies of the PGB at varied input shaft speeds (Hz).

Input Shaft
Speed (RPM)

Output Shaft
Speed ( fa)

Meshing
Frequency
( f12 = f23)

Sun Gear Fault
Frequency

( f f ,1)

Planet Gear Fault
Frequency

( f f ,2)

Ring Gear Fault
Frequency

( f f ,3)

100 0.42 18.75 3.75 2.5 1.25
200 0.83 37.50 7.50 5.0 2.50
400 1.67 75.00 15.00 10.0 5.00
600 2.50 112.50 22.50 15.0 7.50
800 3.33 150.50 30.00 20.0 10.00

1000 4.17 187.50 37.50 30.0 12.50
1200 5.00 225.00 45.00 35.0 15.00
1400 5.83 262.50 52.50 35.0 17.50

We can determine the minimum effective sampling rate of the system through the above
calculation. Data acquisition was performed in conjunction with the sensor shown in Figure 7. Table 3
displays the DAQ parameter setting. The DAQ system consisted of two parts: (1) BLDC integrated
control system with a low sample rate and accuracy, integrating current, voltage, and rotary encoders.
The basic control cycle is also a sampling rate of 20 Hz, although the maximum sampling period is
only 1 kHz. The other part is (2) an NI DAQ board with a maximum analog input sampling rate of
1.25 MHz that integrates current and voltage sensors, two IEPE accelerometers, a torque sensor, and
an encoder. Both parts were accessed via the MATLAB Data Acquisition Toolbox in order to obtain
a uniform measurement time stamp. The BLDC and NI DAQ used the CAN (COM-CAN) and USB
interface, respectively.

At each loading condition, 42 sample sets (42 × 9 sensors = 378 items) were taken. In addition, the
system was preheated for one hour of continuous operation at 16 ◦C in order to obtain accurate data.

Table 3. Sensor parameter setting.

Part Sensor Feature Values Weight Rate

(2) Current F1 50 mA w1
20 Hz(2) Voltage F2 100 mV ω2

(2) Encoder F3 1000PPR ω2

(6) IEPEV F4 102 mV/g w4

12.5 kHz

(6) IEPEH F5 98 mV/g ω4
(7) Torque sensor F6 0.01 N·m ω5
(8) Encoder F7 1024 PPR ω6
(9) Current F8 50 mV/A ω7
(9) Voltage F9 98.7 mV/V ω8

(10) A/D converter 16 bit ω9

5.2. Data Collection and Segment

(1) Acquisition of raw datasets:
Data acquisition was by DAQ as described in Section 5.1. Here, the main vibration sensor was

taken as an example to describe the data and the subsequent dataset.
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1© The raw data format was an Excelr-compatible Comma-Separated Values (CSV) file, as shown
in Figure 9. It contained two parts: data description and data. It can be seen that the absolute
sampling time of the sample was 1 February 2019, 17:58; and the sampling interval of both sensors was
8.00 × 10−5 s, converted to frequency as 12.5 kHz. The data section was divided into three columns:
sampling time relative to absolute time; Sensor 1 (vertically mounted); and Sensor 2 (horizontally
mounted).

2© Import raw data into processing tools such as MATLABr. Two data files
“F1_SPD600_DUAL_01” and “F5_SPD600_DUAL_01” were imported as a case study. Its naming
convention was “[Fault type]-[input speed]-[sensor channel (single/dual channel)]-[sample number]”.
That is, the sample failure types we imported were F1 and F5 , respectively, and the speed was 600RPM,
using vertical and horizontal dual-channel sensors.

3©We can preview the data to see their basic properties after import. As you can see, the imported
data types were “double”, and the dataset dimensions were 1,026,576 × 3 and 1,048,572 × 3. Although
the sampling time of these two sets of samples was about 100 s, the amount of data was very large.
We needed to align and split and align because the count of data rows 1,026,576 and 1,048,572 was
different.

Figure 9. Acquisition of raw datasets.

(2) Data segmentation process:
In order to support common deep learning methods, the original data needed to be segmented,

merged, and tagged to form a training set and a test set. This process is shown in Figure 10.

Figure 10. Data segement.

1© It is unlikely that the above raw dataset will be sent directly to the training model, even
if we know the type of failure the sample belongs to; it is too large and does not conform to the
basic idea of TSA. It is challenging to have a single run cycle for each sample segment during data
segmentation. We do not know or it is difficult for ordinary users to know the start time and period of
the operation. We only need to know that each fragment contains fault features, which is the benefit
of the deep learning method. The size of the data split is usually 2n × 2n. Too small and too large a
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size will increase the training overhead. Additionally, 24 × 24 = 1024 is a typical size. We defined
the split size as 1000 to simplify the split process. For example, the dataset formed by the original
dataset “F1_SPD600_DUAL_01” was divided into SegmentedSet[rows,cols] = 2(sensors)× 1026× 1000
and 576 data that could not be divisible were discarded. ‘F5_SPD600_DUAL_01‘” was divided into
SegmentedSet[rows,cols] = 2(sensors)× 1048× 1000.

2© The multiple divided dataset can be obtained to perform similar processing on all samples.
These datasets need to be merged and tagged before they are sent to model training and testing. The
split ratio used in this paper was 87.5%:12.5%. Thus, we obtained a test set size of 875× (2(faulttype)×
2(sensors))× 1000 and a training set of 125× (2(faulttype)× 2(sensors))× 1000. We set a fault label
for each line of samples such that “TrainLabel” was 3500× 1000 and “TestLabel” was 500× 1000.

3© Through the processing of the above steps, we had a complete dataset that could be used
directly for test1 ∼ test4 testing, including the training set, training set label, test set, and test set label.

(3) Data demonstration:
The time series comparison of the two samples “F1_SPD600_DUAL_01” and

“F5_SPD600_DUAL_01” is shown in Figure 11. The waveform of the raw data provided the
basic features: 1© F1 was not “clear” and contained more interference and signal components than F5;
2© both sensors in F5 showed three high-intensity, periodic shock signals. It was difficult for us to find

such periodic features in the sequence of F1, making it possible to distinguish between the two fault
features, because the F1 and F5 fault seeds were significantly different.

0 1 2 3 4 5 6 7 8 9 10
Time serials (  10-5s) 105

-0.5

0

0.5
Fault 1 Data 1 (Vertical)

0 1 2 3 4 5 6 7 8 9 10
Time serials (  10-5s)

105

-0.5

0

0.5

(V
)

Fault 1 Data 2 (Horizontal)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5
Fault 5 Data 1 (Vertical)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

(V
)

Fault 5 Data 2 (Horizontal)

Figure 11. Comparison of the original waveform.

Converting the signal into a spectrum through FFT allowed us to understand the characteristics
of the signal from another angle as shown in Figure 12 (the peak of the spectrum was suppressed to
0.03(g) in order to facilitate the observation of the details). We can observe that the primary frequencies
had similar distribution characteristics because they had the same input speed and fault position in
planetary gears. This is the raw signal shown in Figure 11 that cannot be provided directly. F1 had
higher energy (also including noise level) compared to F5.



Sensors 2019, 19, 2504 16 of 23

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

0

0.01

0.02

0.03

FFT result of Fault 1 Data 1 (Vertical)

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

0

0.01

0.02

0.03

A
m

pl
itu

de
(g

)

FFT result of Fault 1 Data 2 (Horizontal)

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

FFT result of Fault 5 Data 1 (Vertical)

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

A
m

pl
itu

de
(g

)

FFT result of Fault 5 Data 2 (Horizontal)

Figure 12. Comparison of the FFT waveform.

We performed FFT conversion and visualization on the vibration signals of all six fault types
and eight speed conditions based on the same processing method. Figure 13 displays the six types of
sample spectra after FFT transformation that were acquired by the acceleration sensor (the peak of the
spectrum was suppressed to 0.05(g) in order to facilitate the observation of details).

Figure 13. Spectrum comparison of six data sources.

5.3. Test Group Setup

The data from each sensor were input as a feature parameter (F1–F9, as shown in Table 3) into the
HDBN model based on the analysis and assumptions in Section 4.2. All or a part of the features were
selected to perform the test, grouping them into data union and feature fusion. The grouping situation
is shown in Table 4:

Table 4. Test grouping settings.

Test Group Grouping Method Test Group Grouping Method
Test1 F4 ∪ F5 Test4 (F4 ∪ F5) ] (F4 ] F5) ] (F′4 ∪ F′5)
Test2 F4 +©F5 Test5 Test4 ∪ F1 · · · ∪ F3 ∪ F6 · · · ∪ F9
Test3 F4 ] F5 Test6 Test5 ∪Mixed_precision(F4, F5)
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6. Results and Analysis

6.1. Results Analysis and Discussion of Different Test Groups

The recognition accuracy comparison of different test groups is shown in Figure 14. The test
based on the grouping conditions shown in Table 4 was based on HDBN. The test results are shown in
Table 5 and Figure 14. It can be seen that:

(1) The test3 accuracy was 73.51% in the three types of fusion tests, that is the overall effect of the ]
method was the highest.

(2) test4 and test6 worked best in conditions that could be merged. By comparison, the weight of
the vibration data from F4 and F5 contributed more than 80%. Other data, such as current and
voltage, accounted for less than 3%. In addition, an average increase of 2.04% occurred based
on F′4 and F′5 conversion from FFT(F4) and FFT(F5). It is worth noting that mixed precision
training contributed an average of 1.88%. Hybrid data fusion and mixed precision training could
effectively improve the accuracy of the model without relying on new data.

(3) Figure 15 displays the results of the group test. It can be observed that Test6 had the highest
accuracy. The accuracy of the difference between test1 and test2 was reduced, although the
difference between test1 and test2 was small. The reason was that the accuracy of the model
depended more on the number of samples if the total number of samples was not increased,
although from a different fusion perspective.

Table 5. Group test results using HDBN.

Speed (RPM) Test1 (%) Test2 (%) Test3 (%) Test4 (%) Test5 (%) Test6 (%)
100 35.14 34.51 35.75 37.13 38.34 40.21
200 43.38 42.23 43.75 44.85 45.95 46.09
400 88.73 89.47 89.76 90.56 93.64 95.16
600 82.56 82.77 84.01 87.12 91.52 94.83
800 82.29 82.12 83.65 85.91 89.67 93.61

1000 79.42 78.46 79.34 83.08 87.93 88.67
1200 88.78 89.47 89.73 92.67 95.59 96.13
1400 81.87 81.32 82.11 83.10 86.25 89.22

average 72.77 72.54 73.51 75.55 78.61 80.49
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Figure 14. Recognition accuracy comparison of different test groups.

6.2. Results Analysis and Discussion of Different Diagnostic Models

Based on the grouping test, the ] method was selected as the benchmark data fusion method.
In addition, a set of experiments was implemented that compared some state-of-the-art methods
in the field of fault diagnosis by using the same sample set. The average classification accuracies
of all the diagnostic models are listed in Table 6. The diagnostic performance of the model based
on HDBN with deep feature learning was superior relative to the diagnostic model based on the
shallow feature learning architecture, such as the SVM. However, the diagnostic performance of a
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model based on HDBN with multiple hidden layers was still unsatisfactory, especially at low-speed
operating conditions. In addition, CNN achieved better accuracy in some tests such as the SPD1000
and SPD14000 conditions.

Table 6. Comparison of different models under test6.

Speed (RPM) SVM (%) BPNN (%) DBN (%) CNN (%) HDBN (%)
100 24.89 36.67 31.09 32.86 40.21
200 28.34 38.21 35.14 36.22 46.09
400 53.18 63.77 88.38 86.96 95.16
600 61.34 77.62 92.91 84.50 94.83
800 71.14 74.46 88.62 91.58 93.61
1000 68.58 77.66 82.41 91.87 88.67
1200 66.96 85.19 90.81 89.99 96.13
1400 58.36 78.15 83.92 92.53 89.22

average 54.1 66.47 74.16 75.81 80.46

BPNN SVM SNN CNN HDBN

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

1
2
4
6
8
10
12
14
mixed

SPD  100

Figure 15. Recognition accuracy comparison of different models.

6.3. Results Analysis and Discussion of Fault Prediction

The fault prediction accuracy of various methods was compared based on MSE as shown in
Table 7. Here, we selected F5 fault seed, based on the test group test6 and seven input speed conditions.
Figure 16 displays the results of failure prediction.

Table 7. MSE comparison results of the main methods in failure prediction.
Method 100 200 400 600 800 1000 1200 1400

DBN 278.49 269.52 219.69 205.39 196.38 189.93 205.88 210.27
AE 262.76 260.77 210.38 182.38 180.24 179.2 160.89 176.13

LSTM 269.79 264.73 153.73 145.62 150.75 165.43 146.94 161.81
CNN 265.87 257.02 160.47 166.91 148.97 142.34 155.2 154.06

HDBN 248.96 243.38 146.42 147.82 146.2 152.98 143.35 160.03
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Figure 16. MSE comparison of fault prediction.

After the basic comparison test was completed, we established a hybrid precision training test
for each model. As shown in Figure 15, the mixed-precision training could improve the accuracy of
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the model to a certain extent, with an average increase of 1∼3%. By comparison, we can conclude the
following:

(1) The neural networks with multiple hidden layers can preferably learn representative features
from input data. By directly using the RMB algorithm to train multiple hidden layers, HDBN can
easily fall into local optima, so that the performance is unstable. This shortcoming occurs because
the initial weights and the deviation occurring in the process of error back propagation will affect
the stability of neural networks.

(2) Compared with standard neural networks with multiple hidden layers, deep learning consists
of two procedures: unsupervised pre-training and supervised fine-tuning. Deep learning can
effectively solve the problem of local optima by using unsupervised pre-training layer-by-layer to
find the optimal initial weights before fine-tuning these weights.

(3) The diagnostic model based on HDBN can automatically and adaptively learn deep features and
the complex nonlinear relevance between the input data of the model and fault patterns. The
performance of the model is less dependent on prior knowledge and diagnostic experience.

(4) In the MSE error analysis of fault prediction, HDBN still achieved good performance. However, it
should be noted that the error of the above method was large under low speed conditions. The
waveform characteristics of the system at higher speeds in the verification system environment
were more significant, and the (noise) energy level was also lower, as can be seen from Figures 11
and 12. The effect of noise at low speeds was significant.

7. Conclusions

In this work, we proposed to exploit data sources and the implications of their integration to
better extract depth features when building diagnostic models. First, a deep fault feature learning
method was established based on DBN, and the hybrid data fusion method was used to establish the
HDBN diagnostic model. Second, three data fusion methods were established according to the type
and physical meaning of the signal instead of the “data union or data mix” used in the existing research.
Experiments showed that different fusion methods were related to the actual characteristics of the
data, and the appropriate fusion method and dataset composition method could improve the learning
accuracy. Third, mixed-precision training was used as a special data fusion method to further improve
the performance of the model. Finally, the experimental results confirmed that the deep learning
and ] data fusion of HDBM effectively improved the performance of intelligent fault diagnosis and
outperform the other diagnostic models. In the future, the author will further study the problem of
fault diagnosis in complex environments, including optimized diagnostic methods under multi-load
and multi-drive input crosstalk conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

A/D Analog-to-Digital Converter
AC Alternating Current Power
AE Autoencoder
AM-FM Amplitude Modulation and Frequency Modulation
ANFIS Adaptive Neuro-Fuzzy Inference System
BLDCM Brushless Direct Current Motor
CF Condition Factor
CIs Condition Indicators
CM Confusion Matrix
CNNs Convolutional Neural Networks
COM-CAN Communication Interface-Controller Area Network Converter
CSV Comma-Separated Values
DAE Denoising Auto-Encoder
DAQ Data Acquisition
DBMs Deep Boltzmann Machines
DBN Deep Belief Network
DC Direct Current Power
DL Deep Learning
DNN Deep Neural Network
ELMD Ensemble Local Mean Decomposition
EO Energy Operator
FFT Fast Fourier Transform
FT Fourier Transform
GKPCA Greedy Kernel Principal Component Analysis
HDBN Hybrid Deep Belief Network
IEPE Integrated Electronics Piezoelectric
k-CDM K-Step Contrastive Divergence Method
KT Kurtosis
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MHMS Machine Health Monitoring Systems
NN Neural Network
P2P Peak-to-Peak
PCA Principal Component Analysis
PGB Planetary Gearboxes
PKFA Probabilistic Kernel Factor Analysis
RMBs Restricted Boltzmann Machines
RMS Root Mean Square
RNNs Recurrent Neural Networks
SAE Stacked Auto-Encoder
SAE-DBN Sparse Autoencoder-Deep Belief Network
SAEs Sparse Auto-Encoders
SCADA Supervisory Control and Data
SD Standard Deviation
SDAs Stacked Denoising Automatic encoders
SK Skewness
TSA Time Synchronous Averaged
WPE Wavelet Packet Energy
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