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Abstract: New advances in sensor technologies and communications in wireless sensor networks have
favored the introduction of low-cost sensors for monitoring air quality applications. In this article,
we present the results of the European project H2020 CAPTOR, where three testbeds with sensors
were deployed to capture tropospheric ozone concentrations. One of the biggest challenges was the
calibration of the sensors, as the manufacturer provides them without calibrating. Throughout the
paper, we show how short-term calibration using multiple linear regression produces good calibrated
data, but instead produces biases in the calculated long-term concentrations. To mitigate the bias, we
propose a linear correction based on Kriging estimation of the mean and standard deviation of the
long-term ozone concentrations, thus correcting the bias presented by the sensors.

Keywords: wireless sensor networks; low-cost sensors; calibration; error estimation;
air pollution sensors

1. Introduction

Today, sensor technology installed on wireless nodes is beginning to mature with applications in
various fields including precision agriculture, air pollution, location, water flow monitoring, etc. [1–4].
Air pollution is one of the major concerns in modern society due to its economic impact and on
people’s health. Air pollution is mainly monitored by reference stations deployed by government
organizations. Due to the high cost of these reference stations, researchers have focused their studies
on low-cost air pollution sensors for pollutants such as O3, CO, NOx, CO2, PM2.5, etc., whose objective
is to complement the data obtained by reference stations. These low-cost devices are mounted
and integrated into wireless nodes that send their sensed data to database repositories for further
processing, for example to elaborate high resolution air pollution maps [5,6]. One of the criticisms
of this approach [7,8], currently under frequently debate [9,10], is the lack of knowledge of the
performance and reliability of the long-term results made by these low-cost sensors. The reliability of
low-cost sensors is an issue that has been debated several times in the literature in different fields of
application [7,8,11,12].

Several research projects have explored the possibility of deploying a low-cost wireless sensor
platform to collect air quality data. Our H2020 CAPTOR project (https://www.captor-project.eu/
en/) is one of them and it is based on the assumption that the combination of citizen science,
collaborative networks and environmental grassroots social activism helps to raise awareness and
find solutions to air pollution problems. In order to engage people and raise social awareness,
the CAPTOR project (2016–2018) has developed wireless sensor nodes able to measure tropospheric
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ozone (O3). The nodes have been deployed in three testbed wireless networks in Spain, Italy and
Austria. Although the development of nodes in terms of hardware, software and communications
have been challenging, one of the main concerns in the development of the project is the uncertainty of
the captured data. One of the causes of this low reliability is that low-cost sensors are calibrated in
manufacturer controlled environments such as laboratory chambers or have not even been calibrated.
In general, the ideal case would be that low-cost sensors are calibrated by manufacturers. However,
this is not always the case, due to the cost of calibration and the fact that in many cases the calibration
depends on the environmental conditions at the deployment site [4]. Therefore, calibration should be
performed under the same environmental conditions under which the sensor will have to measure.

When calibration is performed in the field, under network deployment conditions, calibration is
said to be in an uncontrolled environment [13]. In this paper, we explain how is the calibration process
of about one hundred and forty sensors that measure tropospheric ozone in a network deployed in
Spain, Italy and Austria in the H2020 CAPTOR project. The calibration of ozone sensors has been
challenging for several reasons: (i) ozone is a seasonal pollutant, e.g., in Europe ozone concentrations
are high in summer between May and September and low the rest of the year; (ii) in winter, as ozone
concentrations are low, it is difficult to calibrate the sensors due to the lack of data representative of the
environmental conditions present in summer; and (iii) the lifetime of low-cost sensors is short, close to
a year or a year and a half, which prevents low-cost sensors from being calibrated for long periods of
time with large data sets.

Most studies [14–21] are characterized by using large data sets that divide into two parts: one part
to train the model called training data set and another part to validate the model called testing data set.
However, all these authors do not analyze the behavior of the models when the calibration parameters
have to estimate pollutant concentrations in the long-term. There is little knowledge, even using
linear models, of how long-term estimation behaves. This problem is relevant in a deployment of
sensors whose objective is not to investigate how a sensor performs but rather to calibrate the sensor
with a small data set (calibration period) near a reference air quality monitoring station and then
deploy it elsewhere. In this case the calibration parameters are used to estimate long-term pollution
concentrations without being able to verify the quality and accuracy of the measurements taken.

Our paper aims to answer the question of how the location, amount of data in the training set,
calibration period and environmental conditions impact on the estimation of ozone concentrations,
both in the short and long term, providing an exhaustive study to calibrate ozone sensors with
metal-oxide technology. Thirty-five wireless nodes with one hundred and forty ozone sensors,
thirty-five temperature and relative humidity sensors deployed in the H2020 CAPTOR project have
been used for this purpose [22]. Summarizing, in this paper, we:

• investigate the effect of the size of the data set on calibration and its ability to give short-term
ozone concentrations,

• perform an analysis of the behavior of one hundred and forty sensors, showing that sensors of the
same family behave differently with great variability in terms of Root Square Mean Error (RMSE),

• study the impact of calibration in different locations and the impact of different environmental
conditions as well as bias over time,

• finally, propose a mechanism of calibration in two phases: in the first, we calibrate the sensor and
we obtain data calibrated with bias. In the second phase, we correct the values with bias by means
of a linear correction based on the calculation by means of a distributed network of sensors that
estimate the mean and the standard deviation of the ozone concentration.

The outline of the paper is as follows. Section 2 enumerates the related work. Section 3 describes
the testbeds and data sets used for the analysis. Section 4 explains the calibration method based on
multiple linear regression techniques with array of sensors. Section 5 presents the results of calibrating
one hundred and forty ozone sensors, including short-term and long-term calibration, and the impact



Sensors 2019, 19, 2503 3 of 25

of ambient conditions and bias on the sensors. Section 6 describes a distributed mechanism to correct
the bias produced in the sensor. Finally, concluding remarks are made in Section 7.

2. Related Work

There is a rich literature on how to calibrate low cost sensors applied to wireless sensor
networks (WSN). We start with two surveys [13,23]. Barcelo-Ordinas et al. [13] describe the different
approaches to calibrate sensors in applications with sensors of light, temperature, relative humidity,
vibration, accelerometer, localization, synchronization, target location applications or air pollution.
Maag et al. [23] focuses more on characterizing how sensors are calibrated in the air pollution area.
In general, the most used calibration architecture [13] defined for low-cost air pollution sensors in
WSN is centralized, micro, collocated, pre/post-calibration, off-line, non-blind with an array of M
sensors [14,15,21,24–26]. The reason for such an approach lies in the need to have a reference station
that provides accurate data (micro, collocated and non-blind calibration). Wireless nodes send sensor
data to a server or repository where it can be calibrated (centralized and off-line calibration). Finally,
many air pollutants are directly or inversely related to other pollutants (e.g., ozone is inversely related
to nitrogen oxide due to titration) or to environmental parameters (e.g., ozone correlates to ambient
temperature), which means that we need an array of sensors to calibrate a specific pollutant.

Other authors follow other approaches to calibrate sensors in a distributed way. For example,
Saukh et al. [27] and Maag et al. [28] propose using a multi-hop architecture instead of
collocated-centralized architectures for calibrating O3 and NO2 low-cost sensors in a WSN. The authors
deployed a set of wireless nodes in a mobile network, on top of buses in Zurich, and these nodes use a
window interval when the vehicles pass near (opportunistically) a reference station or other already
calibrated wireless node (multi-hop). Here, in this context, multi-hop calibration means that a sensor
node has been calibrated using an already calibrated sensor node.

From an algorithmic point of view, many of the low cost sensors have been calibrated with
linear models such as multiple linear regression [14,15,21,24–26]. Recently, it has been proven that
some of these sensors have non-linear behaviors and has been investigated how air pollution sensors
can be calibrated with non-linear methods. For example, Esposito et al. [25] analyse air pollution
using support vector regression (SVR) and artificial neural networks (ANN) and compare these signal
processing techniques against multiple linear regression (MLR) and Gaussian process regression
(GPR) showing that when non-linearity appears in the response function, ANN and SVR outperform
MLR and GPR at the cost of more computational resources. Spinelle et al. [14,15] also use ANN for
comparing sensors (NO2, O3, CO and CO2) from several manufacturers and technologies (metal-oxide
and electro-chemical) and how they behave in providing good estimates regarding reference values.
Liu et al. [21] analyze arrays of air pollution sensors (CO, CH4, CeO2 and C3H8 among others) using a
Bayesian approach. Other authors also study calibration using models such as k-nearest neighbors
(KNN) [18,29], Gaussian processes [18], random forest (RF) [16–18] or support-vector regression
(SVR) [17,19,20]. However, all of these papers do not investigate the performance of calibration in
estimating long-term contaminant concentrations.

Among the works that investigate the impact that calibration has on long-term estimation we
can find the following: Yamamoto et al. [4] shows how temperature sensors behave very differently
when calibrated in a different place from where they are deployed, mainly because they have different
environmental conditions of temperature and relative humidity, which impacts on the long-term
prediction. Castell et al. [30] also evaluate electro-chemical sensors and how environmental conditions
impact long-term predictions, showing very low accuracy in the long-term and emphasizing that the
information provided by manufacturers is not sufficient for such calibration.

In addition, to mitigate the bias affecting long-term estimates, we propose an adjustment to these
estimates using a linear correction based on the estimation of the mean and standard deviation of
long-term concentrations. For this estimation of the mean and standard deviations we use Kriging.
Kriging interpolates values using a weighted average based on points in the neighborhood of the
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target point. Schneider et al. [31] also use Kriging to make urban air quality maps from low-cost NO2

sensors in Oslo, Norway. The authors show how Kriging provides good results depending on several
factors including the number of observations or the spatial distribution of nodes.

3. Data Set and Wireless Sensor Nodes

Gas sensors to measure gases such as CO, CO2, O3, NO, NO2 are sensors that follow multiple
linear responses. Tropospheric ozone (O3) formation occurs when nitrogen oxides (NOx) and volatile
organic compounds (VOCs) react in the atmosphere in the presence of sunlight. In general, to calibrate
ozone sensors and depending on the type of sensor, (metal-oxide or electro-chemical), it is necessary
to measure O3, NO2, temperature and relative humidity [14,15]. During the ozone measurement
campaign in the H2020 CAPTOR project in the summers of 2017 and 2018, nodes have been deployed
in Spain, Italy and Austria. The nodes called captor nodes were built by UPC (Universitat Politecnica de
Catalunya), Barcelona, Spain, following the DIY (Do It Yourself) philosophy, uses Arduino technology
with a sensor shield board that attaches four SGX Sensortech MICS 2614 metal-oxide O3 sensors in each
captor node, a temperature (Temp) sensor and a relative humidity (RH) sensor, Figure 1a. Each captor
node is powered by an external power supply and is connected to Internet using Wifi or 3G.

(a) (b) (c)

Figure 1. (a) Captor box, (b) Palau Reial reference station with captor nodes in calibration process,
(c) captor nodes in Volunteer houses.

The data used in this paper belong to the captor nodes deployed in the summer 2017 ozone
measurement campaign in Spain (Catalonia) and Italy (Piemonte, Veneto, Lombardia and Emilia
Romagna). Twenty-five nodes were deployed in Spain and ten in Italy, with a total of one hundred
and forty ozone sensors, thirty-five temperature sensors and thirty-five relative humidity sensors.

Captor nodes have been calibrated using reference stations, Figure 1b, in Spain and Italy, Table 1.
Palau Reial reference station is an urban reference station in a large town like Barcelona, where ozone
in average in summer is low. We have used Palau Reial because it is near UPC and the nodes could
easily be tested in a first phase. The other reference stations are located in country-side areas where
ozone in summer is high and are near the volunteer houses, Figure 1c, where the wireless sensor nodes
were placed. The nodes have undergone the following calibration process:

• Phase 1: in this phase, called calibration phase, captor nodes 01–08, 10–12, 14, 15, 18–20, 22–30
and 34 have been placed, Table 2, and calibrated during three or four weeks between the months
of May and June 2017 in the reference stations of Spain and Italy, Table 1, where it is known that
large concentrations of ozone are produced in summer,

• Phase 2: these nodes have been placed in volunteer houses near the reference stations where
the nodes were calibrated during phase 1. The nodes have remained during the months of July,
August and September 2017 in the volunteer houses,
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• Phase 3: in this phase the nodes that were deployed in the volunteer houses have been relocated
to recalibrate for two weeks in October 2017 in the same reference stations where they were
calibrated in phase 1.

Table 1. Reference Stations geolocalization.

Spanish Testbed Palau Reial Manlleu Tona Vic Montseny
(Barcelona) (Catalonia) (Catalonia) (Catalonia) (Catalonia)

Latitude 41◦23’14” N 42◦0’6.966” N 41◦50’49.7796” N 41◦56’08.4” N 41◦46’45.6” N
Longitude 2◦6’56” E 2◦17’13.7868” E 2◦13’14.7864” E 2◦14’18.8” E 2◦21’28.9” E

Italian Testbed Cuneo Ossio Sotto MonteCucco Colli Euganei
(Piemonte) (Lombardia) (Emilia Romagna) (Veneto)

Latitude 44◦22’53.6” N 45◦37’14.1” N 45◦02’18.8” N 45◦17’21.76” N
Longitude 7◦32’18.4” E 9◦36’41.6” E 9◦40’09.7” E 11◦38’32.43” E

The nodes 09, 13, 16, 17, 21, 31, 32, 33 and 35 have been maintained during the period that lasts
the three phases in reference stations with the objective of carrying out calibration studies.

Table 2. Captor nodes history: Palau Real, Manlleu, Tona, Vic and Montseny are reference stations in
Spain; Cuneo, Ossio Soto, Monte Cucco and Colli Euganei are reference stations in Italy. Captor nodes
are labeled from 17001 to 17035 (abbreviated as 01 to 35). Node 17032, placed in Italy in Colli Euganei
Rf. St., had a hardware failure and finally did not participate in the campaign.

Phase
Palau Manlleu Tona Vic Mont- Cuneo Ossio- Monte- Colli- Volun-
Reial Rf. St. Rf. St. Rf. St. seny Rf. St. Sotto Cucco Euganei teer
Rf. St. Rf. St. Rf. St. Rf. St. Rf. St. Houses

1

09,15, 01–03,05, 04,06–07, 16 24,29 08,35 28, 30
18–20, 10–11,13 12,14,17, 31 33–34
26 21–23,

25,27

2

09 13 17 16 21 31 35 33 32 01–08,
10–12,
14–15,
18–20,
22–30,
34

3

09,15, 01–03,05, 04,06–07, 16 24,29 08,35 28, 30
18–20, 10–11,13 12,14,17, 31 33–34
26 21–23,

25,27

Each sample is the average of a set of multiple consecutive samples taken every five minutes.
In order to avoid non-representative values due to voltage spikes, we eliminate 5% of the highest values
and 5% of the lowest values. The sample is then sent every half hour using wireless communication to
a database in a repository where the sensors are off-line calibrated. Finally, the nodes are deployed in
the homes of volunteers in areas of high ozone concentrations. The coefficients estimated during the
calibration, phase 1, are loaded into the nodes using wireless communication and from that moment
on, all actual ozone concentration values measured by sensors in the volunteers’ homes are sent to the
database. These concentrations can be viewed using a smart-phone app or a browser on a tablet or PC.

Two types of data sets have been used in the paper. For those nodes (01–08, 10–12, 14, 15, 18–20,
22–30 and 34) that have been deployed in volunteer houses, the data set consists of three or four
weeks of calibration, between May and June 2017, depending on the node and two weeks at the end
of September, which respectively correspond to the calibration periods of phases 1 and 3. For those
nodes (09, 13, 16, 17, 21, 31–33 and 35) that have been deployed throughout the campaign at reference
stations, the data set covers the entire campaign period, nearly 21 weeks, between May and the end of
September 2017.
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As can be deduced, the data of the nodes deployed in volunteer houses can only be compared
with reference values during the calibration period, phases 1 and 3 and allow us to investigate the
behavior of a large number of sensors in a short calibration period that corresponds to a deployment
situation. On the other hand, the data of the nodes deployed during a long period in reference stations
allow us to vary the period dedicated to the training of the data in the calculation of the calibration
parameters and therefore will be the data used during most of the paper.

4. Multi-Array Non-Blind Calibration of Ozone Sensors Using Linear Models

In our first approximation and throughout the entire Section 4, we will assume that an uncalibrated
sensor is placed relative to a reference station that provides reference ozone concentration values [13].
By collocated, we mean that an uncalibrated node is closely deployed in the vicinity of the reference
station, i.e., less than two meters, and that the node and reference station take samples close enough
in time [27]. In addition, as previously mentioned, samples are sent from the Captors nodes to a
repository, so the calibration is off- line. Since the data from the reference station is obtained at a certain
point and the captor nodes send data to a server, the calibration is micro and non-blind [13]. Finally,
as explained in the Section 3, each Captor node includes a set of sensors, so the calibration uses an
array of sensors.

For calibrating SGX Sensortech MICS 2614 metal-oxide O3 sensors, let us consider an array of
M sensors: O3, temperature and relative humidity sensors (M = 3). The data set of size N is split
in two parts. The training set of size N1 is used to obtain the calibration coefficients in the MLR
model. The testing set of size N2 is used to validate how these calibration coefficients predict ozone
concentrations. A multiple linear regression model (MLR) in multi-array calibration sensor assumes M
predictors, one for each sensor of the array, taking the form of [32]:

yn ∼ f (β, xn) = β0 +
M

∑
j=1

β jxnj + εn n = 1, ..., N1 (1)

where εn is a random error term, Gaussian distributed with zero mean and variance σ2. The model
assumes that y is a vector of N1 snapshots (samples) with the ground-truth or reference values, and xj
(j = 1, . . . , M) are vectors of size N1 with the data measured by each of the M sensors of the array with
the uncalibrated or raw values. For each of the ozone sensors sk (k = 1, 2, 3, 4) used at each node,
the resulted model will be:

yn ∼ f (β, xn) = β0 + β1xn,sk + β2xn,Temp + β3xn,RH + εn n = 1, ..., N1 (2)

Thus, MLR assumes a data set of N1 snapshots that are used to derive the coefficient estimates β̂ j.
These coefficient estimates will allow to calculate in what we call a single-scale (SS) mechanism new
calibrated values:

ŷn = β̂0 +
M

∑
j=1

β̂ jxnj n = N1 + 1, . . . , N (3)

The parameters β̂ j are estimated by minimizing Equation (4), the residual sum of squares (RSS):

RSS = E(β) =
N1

∑
n=1

(yn − f (β, xn))
2 =

N1

∑
n=1

(yn − β0 −
M

∑
j=1

β jxnj)
2 (4)

Calling ŷn = f(β̂,xn), the mean square error (MSE) measures the average of the squares of the errors.
The MSE is the second moment (about the origin) of the error, and thus incorporates the variance of the
calibration curve. However, most of the times it is more interesting to compare different sizes of data
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sets. root mean-squared error (Restricting N to N1 or N2, we can calculate the RMSE for the training or
for the testing set.) (RMSE) is measured in the same scale than the target value yn:

RMSE =
√

MSE =

√√√√ 1
N

N

∑
n=1

(yn − ŷn)2 (5)

The error is positive except whenever the function f(β̂,xk) passes exactly through each target
point yn in which case the error will be zero and the sensor will be perfectly calibrated. Moreover,
the Coefficient of Determination (R2) measures the proportion of variability in Y that can be explained
using X and it is bounded between 0 and 1. When R2 is close to 1 indicates that a large proportion of
the variability in the response has been explained by the regression. Given that µy = 1

N ∑N
n=1 yn is the

mean of the reference data:

R2 = 1− ∑N
n=1(yn − ŷn)2

∑N
n=1(yn − µy)2

(6)

Each ozone sensor sk (k = 1, 2, 3, 4) at each node is calibrated individually. For this purpose,
Equation (2) is used, in which for each sensor sk (k = 1, 2, 3, 4) of the node, the raw data of the ozone
sensor and the data of temperature and relative humidity are used. In the H2020 project, for each node,
the sensor with the lowest test RMSE value was chosen to represent the node.

When evaluating long-term RMSE, it is interesting to break it down into two components:
the mean bias and the centred RMSE. The mean bias measures the difference between the mean
of the predictions µŷ= 1

N ∑N
n=1 ŷn and the mean of the reference values µy.

Bias =
1
N

N

∑
n=1

(ŷn − yn) = µŷ − µy (7)

The centred RMSE (CRMSE) centers the measured and reference values with respect to their
respective averages.

CRMSE =

√√√√ 1
N

N

∑
n=1

[(ŷn − µŷ)− (yn − µy)]2 (8)

It can be easily proven that:

RMSE2 = CRMSE2 + Bias2 (9)

And finally, when studying the long-term we can normalize the metrics with respect the reference
data standard deviation σy: RMSE/σy, CRMSE/σy and Bias/σy.

5. Experimental Evaluation

In our wireless sensor network, the sensors are calibrated for three weeks, phase 1, and then
deployed in volunteer houses, phase 2. This calibration is evaluated in the next section.

5.1. Sensor Family Analysis

We first investigate the difference in performance of the family of one hundred and thirty-six
low-cost metal-oxide sensors deployed in the CAPTOR project. All sensors come from the same
manufacturer and should behave similarly according to the datasheet. The data set used in this section
corresponds to the data of all captor nodes. For the nodes that were deployed in the volunteer houses,
Table 2, we have taken the data for phase 1. For the nodes that were all the campaign deployed in
reference stations, we have taken the data for three weeks in June. To validate the calibration process,
the data for the three weeks has been divided into 65% for the training set and 35% for the test set.
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We can see in the Figure 2a the high variability in the RMSE of the different sensors ranging from
24.0 to 7.8 µg/m3. To install one or another sensor of the same family impacts on the quality of the
data obtained irrespective of the calibration process [26]. Figure 2b displays the RMSE for each sensor
against R2 (Coefficient of Determination). We can observe that low RMSE corresponds to R2 high,
although some high RMSE values also had a high R2. There were a 76.5% of the sensors that had R2

values greater than 0.75, which shows that multiple linear regression is an acceptable model for this
type of sensors.

Figure 3a,b illustrate how locations under different environmental conditions show similar
performance. Sensors calibrated at the same location also show high variability in calibration
performance. A good solution, given the low price of the sensors, is for each node to install several
metal- oxide ozone sensors. In this way, the redundancy of the sensors adds reliability at the same time
that it allows to choose the best representative value of the ozone concentration. Figure 4a,b display
the RMSE for the four sensors of each node of the testbeds of Spain and Italy respectively. Each Captor
node is labeled from 1 to 25 (Spanish testbed) and from 1 to 9 (Italian testbed) [26].

(a) (b)

Figure 2. (a) RMSE for the set of sensors, (b) RMSE versus correlation coefficient (R2).

(a) (b)

Figure 3. RMSE classified for testbed and place: (a) Spanish Testbed, (b) Italian Testbed.

In the y-coordinates, the RMSE for the entire data set is displayed for each of the four sensors
of each Captor node, labeled s1, s2, s3 and s4. You can see how the sensor with the best (minimum)
RMSE marked with the largest circle in the Figure 4 can be chosen to estimate ozone concentration.
As an example, the node 17012 placed in Tona and labeled as 10 in the Figure 4a has sensors with
testing RMSE of s1 = 8.3, s2 = 17.7, s3 = 13.3 and s4 = 14.6 µg/m3 with R2 equal to 0.94, 0.75, 0.86 and
0.83 respectively. The sensor chosen to calculate node 17012 is s1. In the event of s1 sensor failure,
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the Captor node offers resilience by predicting with s3 sensor as the second best RMSE of the four
ozone sensors.

(a) (b)

Figure 4. RMSE classified by testbed and node: (a) Spanish Testbed, (b) Italian Testbed.

5.2. Calibration of Sensors with Different Amounts of Data

We then validate the use of the multiple linear regression model and analyze whether this model
correctly gives concentrations of O3 in the short-term and in the long-term. As mentioned in Section 4,
the data set is divided into two parts, one for the training of the coefficients and the other for the
estimation (testing) of the data. When the estimation is close, a few weeks, to the training data set,
we call it short-term estimation. When the estimation is distant, several weeks, from the training data
set, we call it long-term estimation. In general, a good calibration should be able to maintain similar
errors in short- and long-term predictions unless the sensor has a bias, drift, or ages.

To study short and long-term estimations, we chose the nodes that have been placed throughout
the campaign in the reference stations, Table 2: nodes 17013 (Manlleu), 17016 (Vic) and 17017 (Tona)
of the Spanish testbed. Each of these captor nodes has four O3 sensors labeled s1, s2, s3 and s4.
These nodes, Figure 5, have been placed in reference stations from May 8th to October 4th 2017 (21
weeks) with 30-min time resolution. Manlleu, Vic and Tona are areas with high concentrations of
ozone. Tona is 62.5 km North of Barcelona, Spain. In a line that goes South to North, Vic is 10.5 km
from Tona, and Manlleu is 13.3 km from Vic. Figures 6–8 show the different cases studied. A period
[tk,tk+1] represents a fixed interval of time, e.g., a day or a week, where data is analyzed.

• Case 1 (Figure 6): the test data set was fixed from week fourteen, starting in August 7th , to week
seventeen, ending in September 2nd . The training data set increased from week one to week
thirteen (forward direction). The objective was to see the effect of increasing the training data set
when the training data set approaches the test data set.

• Case 2 (Figure 7): the test data set was fixed from week fourteen, starting in August 7th, to week
seventeen, ending in September 2nd. The training data set increased from week thirteen to week
one (backward direction). The goal was to see the effect of increasing the training data set when the
training data set moves away from the test data set.

• Case 3 (Figure 8): the training data set was fixed from week one, starting in May 28th, to week
three, ending in June 19th. The test data set was fixed to one week, but moves from week four to
week twenty-one (forward direction). The goal was to observe the effect of giving short- term
and long-term ozone concentrations. This case was representative of an actual deployment,
where sensors were calibrated for a limited period of time [t0,twt] in a specific location and then
deployed in a different place but close to where they have been calibrated.

Figure 9a plots the RMSE as a function of the training set size (forward direction case)
for two sensors on Captor nodes 17013, 17016 and 17017 placed at the Manlleu, Vic and
Tona reference stations. Average daily concentrations at these stations ranged approximately
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between 50–110 µgr/m3, Figure 10b. Moreover, instantaneous ozone concentrations for one
thousand samples (twenty days) are shown in Figure 11a,b.

Figure 5. Map with the Captor nodes: the reference stations (in red), Captor nodes (in blue), Captor label
number below or behind the Captor mark.

Figure 6. Case 1: Training set size increases in forward direction. Test set size fixed.

Figure 7. Case 2: Training set size increases in backward direction. Test set size fixed.
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Figure 8. Case 3: Training set size fixed. Test set size fixed but moves in forward direction.

(a) (b)

Figure 9. (a) Case 1: Training data increases in forward direction, (b) Case 2: Training data increases in
backward direction.

(a) (b)

Figure 10. (a) Case 3: Captors Test RMSE in per day basis with training set of 3 weeks, (b) Case 3:
Average ozone (µg/m3) in per day basis in the reference station.
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(a) (b)

Figure 11. Case 3: Ozone concentration (µg/m3) for (a) Captor node C17013 (Manlleu), (b) Captor
node C17016 (Vic).

For one or two week training data set sizes the RMSE is small, Figure 9a. Then, the RMSE increases
for training data sets of three to four weeks and then decreases the RMSE as the training data set
grows. In general, the larger the data set, the better the RMSE, but as seen in Figure 6, this is because
the training data set approaches the test data set and the environmental conditions of the test data set
are similar to those of the training data set. If we analyze Figure 9b, where we start from a small data
set close in time to the test data set (backward direction case), it can be observed that after two or three
weeks of training data set the RMSE does not improve. We conclude that for short-term estimates a
training set of between two and four weeks is sufficient, and for long-term estimates we need large
training set sizes.

However, in a deployment of a network of wireless air pollution sensors, the sensors are calibrated
over a short period of time, e.g., a few weeks, and then placed in the chosen locations. The key question
is to learn how ozone concentrations can be calculated over long-term based on calibration coefficients
pre-calculated during short training phases. To verify short or long-term outcomes, case 3, Figure 10a
plots the results when the test data set moves away from the training data set. The training data set
has been chosen with a size of three weeks. Figure 10a shows the RMSE measured by days. Each tic
of the x-axis represents a day starting on the day following the completion of the training data set.
The figure shows Captor nodes 17013, 17016 and 17017 placed in the reference stations in order to
compare the measurements with reference data. Only the sensor s4 is shown in the figure. We can
observe in Figure 10a that the RMSE of the test set is not constant and oscillates every day from values
that sometimes reach about 40–45 µg/m3 and others are not more than 5–8 µg/m3. Figure 10b shows
the average ozone concentration per day taken at the reference stations. The figure displays that
the ozone concentration also oscillates and that they are seasonal, with lower averages at the end of
summer, the month of September. The conclusion is that long-term estimates are worse than short-term
estimates when there is a small training data set size.

Table 3 shows the training and test RMSE and R2 for one hundred days of measurements.
The training set size is of three weeks and the test set size is of fifteen weeks. We can observe:

1. there was a large difference between sensors performance, even being in the same place and
under the same environmental conditions. For example, the four sensors in Captor 17017, had
testing RMSE oscillating between 13.7 µg/m3 and 22.1 µg/m3,

2. even having days in which the RMSE was large, the testing RMSE in some cases are in the same
order of magnitude than the training RMSE, as can be seen in sensors s1 of Captor node 17013 or
sensor s1 of Captor node 17017. On the other hand, other sensors such as s2 of Captor node 17016
has testing RMSE of 35.4 µg/m3, that is larger than the training RMSE, 11.8 µg/m3. Captor node
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17016 has worst RMSE, probably caused by high peaks of ozone concentration in Vic area on
weeks 3, 4 and 5, Figure 11b,

3. the high variability of the RMSE observed in Figure 10a can be explained observing Figure 11a,b,
which show the instantaneous testing estimates of the ozone concentration in Captors 17013
(Manlleu) and 17016 (Vic). Each sample represents half an hour and therefore, the 1000 samples
represented about 20–21 days. Each cycle was a day, as ozone reached higher peaks during the
day and its lower concentrations at night. We can observe that low-cost metal-oxide sensors have
difficulty in reaching high values of ozone concentration (larger than 150 µg/m3) and low values
of ozone concentration (lower than 30 µg/m3). This situation means that those days with very
high or very low ozone concentration increase the RMSE.

Table 3. Training and testing RMSE, R2 for nodes 17013, 17016 and 17017.

17013 (Manlleu) 17016 (Vic) 17017 (Tona)
s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Training RMSE (µg/m3) 12.7 12.3 18.7 12.1 18.5 11.8 10.9 10.9 12.0 12.9 16.5 11.8
Training R2 0.91 0.91 0.81 0.92 0.81 0.92 0.93 0.93 0.91 0.90 0.84 0.91

Testing RMSE (µg/m3) 15.1 17.0 20.5 15.6 23.1 35.4 23.4 18.9 13.7 22.1 21.1 17.6
Testing R2 0.85 0.81 0.72 0.84 0.64 0.17 0.63 0.76 0.87 0.65 0.68 0.78

5.3. Study of the Sensor Bias

To better understand the long-term fluctuations of the RMSE in Captor nodes, Figure 12a,b show
the decomposition of the normalized RMSE into Bias/σy and into CRMSE/σy (variance) over time of
sensor s4 at Captor node 17013 (Manlleu) and sensor s4 at Captor node 17017 (Tona). Each unit on the
x-axis is one day.

(a) (b)

Figure 12. Mean normalized bias and normalized centred CRMSE: (a) sensor s4 Captor 17013 (Manlleu),
(b) sensor s4 Captor 17017 (Tona).

It can be observed that both nodes have biases and a high variance over time. The reason
for these behaviors, and which have a strong impact on the RMSE obtained, is the reaction that
measurements have to different environmental conditions, e.g., temperature and relative humidity,
making it difficult to estimate long-term ozone concentrations. This impact of environmental conditions
has been observed in other sensors. Yamamoto et al. [4] analyze the impact of the calibration site
and environmental conditions on temperature sensors, and Castell et al. [30] study the impact of
temperature and relative humidity on sensors with electro-chemical technology.
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From now on, we will call this type of calibration single-scale calibration because we only use the
pre-calculated calibration coefficients and we have not performed any kind of bias correction and we
will use the acronym SS to indicate it.

5.4. Impact of the Environmental Conditions in the Calibration

We have observed in the previous sections that the RMSE reported by the sensors have a high
variability and that the sensors had biases due to environmental conditions. To verify the impact of
environmental conditions on long-term estimations, we have measured in Figure 13a the RMSE as
a function of the average day-to-day temperature, and in Figure 13b, the RMSE as a function of the
average day-to-day relative humidity.

(a) (b)

Figure 13. (a) Test RMSE versus average temperature in a per day basis, (b) Test RMSE versus average
Relative Humidity in a per day basis. In green the single-scale case and in orange the multi-scale case.

The green dots represent the s1 sensor of the Captor 17013 node placed in the Manlleu reference
station in case of single-scale calibration. The multi-scale case, dots in orange, will be explained in
Section 6. It can be seen that high temperatures and low relative humidity produce high RMSE values
for the single-scale calibration case. Low temperature and high relative humidity values, on the other
hand, produced low RMSE values, indicating better calibration. This explains the bias shown in the
previous section, i.e., if we calibrate under ambient conditions different from those that occur in the
period when estimations of ozone concentrations are made, bias will appear.

Figure 14a illustrates the mean temperature as a function of relative humidity in Captor node 17013
by showing that high temperatures correspond to days with low relative humidity values. Figure 14b
draws the RMSE as a function of the reference ozone concentration obtained by the day-to-day reference
station. As in the previous figure, the green dots show the RMSE for the single-case calibration case.
The figure confirms that high RMSE values generally correspond to dry days with high temperatures
and low relative humidity values. Under these conditions, sensors with metal-oxide technology behave
worse than when there are low temperatures and wet days.
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(a) (b)

Figure 14. (a) Average temperature versus average relative humidity in a per day basis, (b) Test RMSE
versus average ozone concentrations in a per day basis.

6. Distributed Multi-Scale Calibration

As mentioned in the previous section, a challenge in calibrating an actual deployment in air
pollution networks is that given a fixed data set of a few weeks, we will be able to provide calibrated
ozone concentrations, i.e., good estimations of the test data set, regardless of time separation from
the training data set. In this section we present a calibration model that we call multi-scale (MS) that
corrects the bias produced in the ozone concentrations calibrated with respect to the model used in the
previous section and that we called single-scale (SS).

6.1. Multi-Scale Calibration Using Multiple Linear Regression Correction with Exact Values

We call single-scale estimation (SS) to, ŷSS
n , the instant estimation on the test data set,

i.e., using Equation (3). Now, we call multi-scale estimation (MS), ŷMS
n , the corrected estimation

on the value calculated by the single-scale model.

ŷMS
n = a1 + a2 ∗ ŷSS

n n = N1 + 1, · · · , N. (10)

Now, taking expectation and variance in Equation (10), we obtain expressions for constants a1

and a2:

a2 =
σMS

σSS.
(11)

and

a1 = µMS − a2 ∗ µSS = µMS − σMS

σSS ∗ µSS. (12)

where µSS and σSS are the mean and standard deviation of the instantaneous testing data for the
single-scale model, ŷSS

n , and µMS and σMS are the real mean and standard deviation of ozone
concentrations in the period of the testing data for the multi-scale model, ŷMS

n .
Moreover, reformulating Equations (7) and (8) applying the linear correction and normalizing

with respect to the reference standard deviation σy we obtain:

BiasMS

σy
=

(µMS
ŷ − µy)

σy
(13)
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and,

CRMSEMS

σy
=

√
1
N ∑N

n=1[
(ŷMS

n −µMS
ŷ )

σy
− (yn−µy)

σy
]2 =

√√√√
1
N ∑N

n=1[

σMS
ŷ

σSS
ŷ

(ŷSS
n −µSS

ŷ )

σy
− (yn−µy)

σy
]2 (14)

As it can be seen in Equations (10)–(12), to calculate ŷMS
n you need to know µSS, µMS, σSS and

σMS. To estimate µSS, µMS, σSS and σMS a K-sample window has been taken. From now on we set
this K window to the equivalent size in samples of a day or a week (multi-scale with daily/weekly
averages correction). Then, the multi-scale calibration process consists of the following stages:

1. sensors placed during phase 1: obtain single scale calibration parameters (Equations (1) to (4))
from sensors using the MLR model,

2. sensors placed during phase 2: take the latest K estimates obtained by the single scale method
([ŷSS

n−K, ŷSS
n ]) using Equation (3), and calculate µSS and σSS,

3. sensors placed during phase 2: take a K-size window and estimate µMS and σMS,
4. sensors placed during phase 2: estimate ozone concentrations (ŷMS

n ) using the multi-scale
correction, Equation (10).

The biggest difficulty in applying the multi-scale correction is in estimating µMS and σMS (stage 3),
since µSS and σSS can be obtained from ŷSS

n . Before proposing a way to estimate µMS and σMS let us
check that if we knew the exact values of µMS and σMS, the linear correction improves the bias of the
instant estimates. To do this, we are going to use the values of the mean and standard deviation of the
ozone concentration values provided by the reference station when the node is placed with respect
to that station. For this, we use the same data set as in Section 5.2: Captor nodes 17013 (Manlleu),
17016 (Vic) and 17017 (Tona).

In the case of multi-scale calibration with exact correction, µMS
ŷ = µy and σMS

ŷ = σy (mean and

standard deviation of the reference station data in the window interval [n−K, n]). Thus, BiasMS =
0 and:

CRMSEMS

σy
=

√√√√√ 1
N

N

∑
n=1

[

σMS
ŷ

σSS
ŷ

(ŷSS
n − µSS

ŷ )

σy
−

(yn − µy)

σy
]2 =

√√√√ 1
N

N

∑
n=1

[
(ŷSS

n − µSS
ŷ )

σSS
ŷ

−
(yn − µy)

σy
]2 (15)

Figure 15a,b reproduces the results of Figure 10a (Section 5.2, case 3), where the RMSE of the test
set is drawn day by day for the whole summer campaign. In this Figure 15, it can be observed that for
the Captor nodes 17016 (Vic) and 17017 (Tona), the average per day is more stable, still with some peaks
due to environmental conditions, but not with as high variability as observed in the single-scale case.

Figure 16a,b shows the mean normalized biasMS and the normalized CRMSEMS for the
Captor 17016 and 17017 nodes. It can be seen that the mean normalized bias is zero and the
normalized CRMSEMS decreases with respect to the single-scale case (green) when exact correction
(black) is used.

In addition, Table 4 shows the values of the ozone concentrations before applying the correction,
testing RMSE (SS), and after applying the correction, testing RMSE (MS), during the one hundred
days of the campaign. For the correction we have considered two cases: (i) correction with mean
and standard deviation with one day size K-window; and (ii) correction with mean and standard
deviation with one week size K-window. It can be observed that the average RMSE decreases in all
sensors when the values are daily, with reductions ranging from 25% to 75%. When the values are
weekly, the reduction is smaller, although still considerable. The reason is that the estimation of the
mean value and standard deviation of the ozone concentration is less accurate. These results show
that it is possible to correct the bias presented by the sensors if we are able to find estimators of the
mean and standard deviation. However, finding mechanisms that are capable of calculating such
estimators is difficult, and if that is not possible, single-scale calibration is the best thing that can be
done using MLR.



Sensors 2019, 19, 2503 17 of 25

(a) (b)

Figure 15. Case 3: Test RMSE in per day basis with training set of 3 weeks, single-scale versus
multi-scale with exact correction, (a) Captor 17016 (Vic), (b) Captor 17017 (Tona).

(a) (b)

Figure 16. Case 3: Mean normalized bias and normalized CRMSE, single-scale (green), multi-scale
with exact correction (black) and multi-scale with Kriging estimates (orange), (a) Captor 17016 (Vic),
(b) Captor 17017 (Tona).
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Table 4. Training RMSE, R2 and total testing average RMSE for nodes 17013, 17016 and 17017.

17013 (Manlleu) 17016 (Vic) 17017 (Tona)
s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Single-Scale (SS)

Training RMSE (µg/m3) 12.7 12.3 18.7 12.1 18.5 11.8 10.9 10.9 12.0 12.9 16.5 11.8
Training R2 0.91 0.91 0.81 0.92 0.81 0.92 0.93 0.93 0.91 0.90 0.84 0.91

Testing RMSE (µg/m3) 15.1 17.0 20.5 15.6 23.1 35.4 23.4 18.9 13.7 22.1 21.1 17.6
Testing R2 0.85 0.81 0.72 0.84 0.64 0.17 0.63 0.76 0.87 0.65 0.68 0.78

Multi-Scale (MS) with daily averages correction with exact values

Testing RMSE (µg/m3) 11.1 12.8 15.3 11.1 11.6 8.3 7.6 8.1 10.3 10.8 15.4 8.5
Testing R2 0.92 0.89 0.84 0.92 0.91 0.95 0.96 0.96 0.92 0.92 0.83 0.95

Multi-Scale (MS) with weekly averages correction with exact values

Testing RMSE (µg/m3) 12.9 14.8 18.4 12.6 13.7 12.7 10.8 10.6 11.8 12.6 17.0 10.2
Testing R2 0.76 0.85 0.78 0.89 0.87 0.89 0.92 0.92 0.90 0.89 0.79 0.93

Multi-Scale (MS) with daily averages correction with Kriging estimates

Testing RMSE (µg/m3) 14.0 15.4 17.5 14.0 14.0 11.4 10.9 11.2 19.1 19.4 22.5 18.1
Testing R2 0.87 0.84 0.80 0.87 0.87 0.91 0.92 0.92 0.74 0.73 0.64 0.77

Multi-Scale (MS) with weekly averages correction with Kriging estimates

Testing RMSE (µg/m3) 14.8 16.5 19.7 14.7 15.9 15.1 13.6 13.4 20.5 21.0 24.0 19.5
Testing R2 0.86 0.82 0.74 0.86 0.83 0.85 0.88 0.88 0.70 0.69 0.59 0.73

One of the effects of multi-scale correction is to mitigate the impact of environmental conditions,
i.e., temperature and relative humidity, on the RMSE. By looking again at Figure 13a,b, we can compare
the effect of temperature and relative humidity in the RMSE for the single-scale case (green dots) and
the multi-scale case (orange dots). You can see how the correction of mean and standard deviation
softens the RMSE in all environmental conditions. In addition, we can observe that the reduction
in the RMSE is greater when the RMSE is large, while the reduction is smaller when the RMSE is
small. Examples are the reduction of an RMSE in the range of 28–34 µg/m3 to values in the range of
13–17 µg/m3, while RMSE values in the range of 10–14 µg/m3 are reduced to values of 7–10 µg/m3.

6.2. Multi-Scale Estimation Using Kriging

As the monitoring area is suburban/rural and the nodes have been deployed near reference
stations, we propose to estimate the mean and standard deviation to correct the values obtained by
the single-scale model using Kriging. Ozone concentrations in suburban/rural areas are known to
show a relatively low spatial variability due to the secondary nature of this pollutant, which means
that the Kriging approach could be adequate for this pollutant and type of area [33]. This would not
be the case for other pollutants such as NO2 in urban areas, because of the high spatial variability of
NO2 emissions and ambient concentrations [34]. In urban areas it would be necessary to use more
sophisticated estimation models that would take into account the propagation of the pollutant in
such areas.

Kriging is a technique used in geostatistical models that estimates the value of a function at
a given point computing the weighted average of the known values of the function in the vicinity
of the point. Although Kriging is not intended as a distributed mechanism, it allows estimating
and therefore calibrating parameters at a localized point. In its distributed version, the nodes can
gossip (Gossip is a type of routing mechanism for WSN that allows information to be communicated
between nodes.) their values together with their GPS locations to the nodes participating in the Kriging
mechanism. Kriging is closely related to regression analysis and is a particular case of the Gaussian
process model [35], where the domain is space. Kriging estimators interpolate the value of the random
field at an unobserved location from observations of its values at nearby locations. The objective is to
estimate the value at a localized point by a weighted average of the neighboring points to the location
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of the estimated target. In general, uniformly distributed dense data locations give good estimates,
while sparse or clustered data locations can provide worse estimates.

In the CAPTOR project the set of neighbours is composed of other sensors already calibrated and
reference stations. Since ozone is not necessarily constant and the neighboring nodes can be in an area
of a few kilometers, we chose Universal Kriging with a Gaussian semivariogram model as an estimator
of the mean µMS−Kriging and the standard deviation σMS−Kriging of ozone concentrations. We want to
emphasize that we do not use Kriging to estimate the instantaneous value of ozone concentrations,
but it is for the means and standard deviations that are used to correct the estimates of the single-scale
model. Therefore, we estimate Kriging on the mean and standard deviation of 2-hop sensors using
neighboring sensors that can be either pre-calibrated sensors or reference stations. Finally, we corrected
the instantaneous ozone concentration values using Equation (10), where a1 and a2, Equations (11)
and (12), are obtained using the Kriging estimates µMS−Kriging and σMS−Kriging.

To validate multi-scale calibration using linear correction with Kriging estimation, we calculated
RMSE and R2 for target nodes 17013, 17016 and 17017. We use the same data set as in the previous
section. As before, the training data set is three weeks. The test data set consists of one hundred
days. Since these nodes are placed in reference stations, for the validation to be fair, we have to be
careful that the reference stations where the target node is positioned do not participate in the Kriging
process. All reference stations and Captor nodes in the Spanish geographical area participate in the
final calibration of all nodes except baseline nodes 17013, 17016 and 17017 which have only been used
to validate the model.

Tables 5–7 show the process of estimating the means and standard deviations for each of the
three target nodes 17013, 17016 and 17017, using Kriging estimates. As an example, take node 17013,
located in the Manlleu reference station, so this reference station does not participate in the algorithm
in this case. To estimate its mean and standard deviation, the distributed algorithm consists of five
steps, Table 5: (1) we obtain the mean value and the standard deviation of the ozone concentrations in
the Vic and Tona reference stations for the time window [n-K,n] and calculate with Kriging the value of
µMS and σMS in the coordinates of nodes 17012 and 17023; (2) repeat the process in the coordinates of
the node 17027, but now in the Kriging process participate the mean value and the standard deviation
of the stations of Tona and Vic and the nodes 17012 and 17023; (3,4) the process is repeated with the
rest of the nodes that participate in the calibration of the objective node 17013, and finally, in step (5)
you get µMS and σMS in the coordinates of the objective node 17013 and you apply the multi-scale
calibration process explained in Section 6.1.

Table 5. Multi-scale calibration with Kriging estimates (Captor node 17013).

Calibration of Node 17013 Collocated with Manlleu Ref. Stat.

Step # Nodes to be Calibrated Nodes Participating in the Kriging Process

1 17012, 17023 Vic and Tona Ref. Stations
2 17027 Vic and Tona Ref. Stations and nodes 17012, 17023
3 17006, 17014 Vic and Tona Ref. Stations and nodes 17012, 17023, 17027
4 17005, 17010 Vic Ref. Station and nodes 17006, 17014, 17027
5 test node 17013 Vic Ref. Station and nodes 17005, 17010

Table 6. Multi-scale calibration with Kriging estimates (Captor node 17013).

Calibration of Node 17016 Collocated with Vic Ref. Stat.

Step # Nodes to be Calibrated Nodes Participating in the Kriging Process

1 17005, 17010, 17012, 17023 Manlleu and Tona Ref. Stations
2 17006, 17014, 17027 Manlleu and Tona Ref. Stations and nodes 17005, 17010, 17012, 17023
3 test node 17016 Manlleu and Tona Ref. Stations and nodes 17006, 17014, 17027
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Table 7. Multi-scale calibration with Kriging estimates (Captor node 17013).

Calibration of Node 17017 Collocated with Tona Ref. Stat.

Step # Nodes to be Calibrated Nodes Participating in the Kriging process

1 17005, 17010 Manlleu and Vic Ref. Stations
2 17006, 17014 Manlleu and Vic Ref. Stations and nodes 17005, 17010
3 17027 Manlleu and Vic Ref. Stations and nodes 17005, 17006, 17010, 17014
4 17012 Vic Ref. Station and nodes 17006, 17014, 17027
5 17023 Vic Ref. Station and nodes 17006, 17012, 17014, 17027
6 test node 17017 Vic Ref. Station and nodes 17006, 17012, 17014, 17023, 17027

Looking at Table 4, we can see: (i) the improvement using the multi-scale model with Kriging
estimation with respect to the single-scale case; and (ii) how good is the multi-scale model with Kriging
estimation with respect to the baseline estimation with exact values of the Section 6.1. We can observe
that the MS model with Kriging estimation has better performance in all sensors of node 17016 (Vic) for
both daily and weekly averages and standard deviations. In the single-scale case, the lowest RMSE was
18.9 µg/m3 for the sensor s4 and the highest was 35.4 µg/m3 for s2. With the estimate of Kriging MS,
the RMSE for s4 goes down to 11.2 µg/m3 (daily correction) and to 13.4 µg/m3 (weekly correction).

The values are worse than in the baseline case using the Vic reference station but close, showing an
improvement over the single-scale case. In the case of node 17013 placed in the Manlleu reference
station, the multi-scale model with mean correction and standard deviation with Kriging estimators
improve the single-scale case, although not as much as in node 17016. The reason is that this node
already had better RMSE values in the single-scale case than the 17016 node and therefore there is
not as much room for improvement. Finally, for the 17017 node placed in the Tona reference station,
the multi-scale model with daily or weekly averages correction with Kriging estimates works the same
or even worse than the single-scale.

The case of nodes 17013 (Manlleu) and 17017 (Tona) are different from the case of node 17016
(Vic). The reason is that since node 17016 is in the center of the area studied, Figure 5, two reference
stations (Manlleu and Tona) participate in the estimation of the mean and standard deviation with
Kriging. On the other hand, to calibrate node 17013, we only used one reference station (Vic), since we
have excluded the Manlleu station for the validation of the results. The same occurs with the node
17017 in which we only used one reference station (Vic) in the calibration process.

To better understand the causes of these results, Figures 17a,b and 18a,b draw the daily estimates
of the mean and standard deviation using Kriging estimators on nodes 17016 and 17017. We have
chosen the s4 sensor of node 17016 because the performance improvement between single-scale
and multi-scale is big, and the s4 sensor of node 17017 that has a worse performance in multi-scale
compared to single-scale. One can observe the plot for the mean and standard deviation of the
ozone concentration measured by: (i) the reference stations (black), (ii) the single-scale model (green),
and (iii) the multi-scale models with Kriging estimators (orange). We can see that for the estimation of
µMS−Kriging and σMS−Kriging, the sensor s4 of the node 17016 estimates with little error the mean and
the standard deviation, while the sensor s4 of the node 17017 estimates with little error the standard
deviation but underestimates the mean. The cause can be explained from Figure 10b, where it is
observed that the ozone concentration measurement in Tona is higher than in Vic and Manlleu. So,
doing a Kriging using these stations that have lower averages underestimates the average. This shows
the importance of having reference stations close to the nodes involved in the Kriging process for good
results in estimating the mean and standard deviation.

In Figure 19, the average daily RMSE is drawn for the single-scale case (green), multi-scale with
correction with exact values (black) and multi-scale with correction with Kriging estimators (orange)
in the s4 sensors of nodes 17016 and 17017. Observing the sensor s4 of the node 17016—similar
results were obtained in the other sensors of the nodes 17013 and 17016—it can be observed how the
multi-scale model with correction with Kriging estimators has higher RMSE than with the correction
with exact values but less than with the single-scale. This happens when the correction is made with
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daily and weekly values. On the other hand, for the reasons explained above, the sensors of node
17017 in general give worse performance in the multi-scale due to the underestimation of the mean in
the Kriging method.

We can finally compare in Figure 16a,b the mean bias for the Captor 17016 and 17017 nodes when
using the single-scale and multi-scale case with exact values and with Kriging estimates of the mean
and standard deviation. It is observed that for node 17016 the mean bias and the variance decrease,
while for node 17017 the variance decreases slightly but underestimates the mean bias because it only
uses one reference station, Vic, too far away and with a mean ozone concentration lower than in Tona.

The conclusions that can be drawn from this validation is as follows: (i) if there are no reference
stations involved in the Kriging estimation process, it is best to use the single-scale case; (ii) if
reference stations are available, an estimation of the mean and standard deviation and therefore a
multi-scale correction can be made, provided that these reference stations have means of similar
ozone concentrations and are close to the target node; (iii) if there are reference stations which,
although close, have a very different mean ozone concentration, e.g., above or below, the Kriging
estimate will overestimate or underestimate ozone concentrations, so in this case, it is best to use the
single-scale model.

(a) (b)

Figure 17. Case 3: Training set of 3 weeks: Mean ozone concentration for single-scale versus multi-scale
with exact correction and Kriging estimation (daily), (a) in Captor 17016 (Vic), (b) in Captor 17017 (Tona).
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(a) (b)

Figure 18. Case 3: Training set of 3 weeks: Standard deviation (STD) ozone concentration for
single-scale versus multi-scale with exact correction and Kriging estimation (daily), (a) in Captor
17016 (Vic), (b) in Captor 17017 (Tona).

(a) (b)

Figure 19. Case 3: Test RMSE with training set of 3 weeks, single-scale versus multi-scale with exact
correction and Kriging estimation, (a) daily in s4 of Captor 17016 (Vic), (b) daily in s4 of Captor
17017 (Tona).

7. Conclusions

In this paper, we have evaluated the calibration process of a low-cost sensor deployment
performed during the H2020 CAPTOR project in Spain, Italy and Austria. Thirty-five Captor nodes
with one hundred and forty ozone sensors, thirty-five temperature and relative humidity sensors
have been deployed. In many papers, calibration is investigated using large data sets to verify the
performance of low-cost sensors. However, in an actual deployment, there are only a few weeks to
calibrate the sensors. With these few data in the training data set, calibration coefficients must be
obtained that are capable of estimating long-term ozone concentrations with low error. In this paper we
have shown the difficulty of this task and how biases appear in the long-term estimation, mainly due
to the different environmental conditions with respect to those that existed during the training.

To correct the bias presented in the long-term estimate, we propose a linear correction on
the estimated results obtained using multiple linear regression calibration, which we have called
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single-scale. We call this correction multi-scale calibration because it uses the mean and standard
deviation calculated over a period of time, e.g., a day or a week. We show that if we had the
exact mean and standard deviation values, the bias is corrected in the estimation of long-term
instantaneous concentrations.

However, it is difficult to find mechanisms capable of estimating such mean and standard
deviations from daily or weekly values. In our case, as the nodes were deployed in non-urban areas
and near reference stations, we have used a geostatistical method of interpolation called Kriging to
estimate the mean and standard deviation in time intervals that allow correcting the bias and variance.
In other situations, such as contaminants in urban areas, it will be necessary to use other more
sophisticated estimation models. Thus, in the paper, we show how this estimation improves long-term
ozone concentration values when there are reference stations close to the sensor to be calibrated.

Although in this paper we have used Kriging as a technique to interpolate the mean value and
standard deviation of the linear corrector, we believe there are other techniques that can be used.
The first question to mention is that we have used Kriging with a contaminant in a non-urban area.
In this case, a network of calibrated sensors or reference stations the Kriging may be sufficient. In the
case of other pollutants or urban areas, other interpolation techniques will have to be investigated to
estimate the mean and standard deviation.

It is also necessary to investigate other techniques, not necessarily spatial, to estimate the mean
and standard deviation. For example, the use of time series or if there are sufficient training data in
various environmental conditions, could allow the estimation of the mean and standard deviation
of ozone concentration in the long term. Finally, the issue of long-term concentration estimates is an
understudied issue that is important in deployments of air pollution sensor networks. We believe that
more experiments with little training data and the development of algorithms to estimate long-term
pollutant concentrations are necessary.
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