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Abstract: For online sign language recognition (SLR) based on inertial measurement unit (IMU)
and a surface electromyography (sEMG) sensor, achieving high-accuracy is a major challenge.
The traditional method for that is the segmentation–recognition mechanism, which has two key
challenges: (1) it is difficult to design a highly robust segmentation method for online data with
inconspicuous segmentation information; and (2) the diversity of input data will increase the burden of
the classification. The recognition–verification mechanism was proposed to improve the performance
of online SLR. In the recognition stage, we used sliding windows to pull the data, and applied a
convolutional neural network (CNN) to classify the sign language signal. In the verification stage,
the confidence was evaluated by the Siamese network to judge the correctness of the classification
results. The accuracy and rapidity of the classification model were discussed for 86 categories of
Chinese sign language. In the experiments for online SLR, the superiority of the recognition–verification
mechanism compared to the segmentation–recognition mechanism was verified.

Keywords: sign language recognition (SLR); recognition–verification mechanism; surface
electromyography (sEMG); CNN; Siamese network; VGG

1. Introduction

Sign language recognition (SLR) refers to the process of classifying sign language by analyzing the
motion information of the hand and arm acquired by the sensors. As a main way of communication
between deaf people, sign language is widely used in hearing-impaired groups. However, most people
of normal hearing generally do not understand sign language, so SLR has become an important research
subject to help people communicate and live. In addition, as a special case of gesture recognition
and human–computer interaction (HCI), sign language is more complex and changeable. Therefore,
research on SLR can also greatly promote the development of gesture recognition and human–computer
interaction. The recognition of Chinese natural sign language is a very complicated process. Natural
sign language consists of elements such as hand shape, position, and movement. Unlike American
sign language based on the letter-related hand shape, there are 61 types of hand shapes in Chinese
natural sign language, which is twice that of American sign language. In addition, there are more than
8000 basic words in Chinese natural sign language, which greatly increases the complexity of SLR.
In SLR, the difference between sign language made by different subjects is huge, which also causes a
challenge for the recognition of Chinese natural sign language.

There are three main types of SLR, which are based on computer vision, data gloves, and
other wearable devices. Compared to vision-based and data glove-based methods, wearable devices
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containing surface electromyography (sEMG) sensors and IMU have been widely used in the study
of SLR [1,2] due to their advantages of low cost, low environmental dependency, natural gestures
friendliness, good wearability, etc. However, the current research on SLR mainly focuses on optimizing
the extracted features and improving the SLR algorithm to increase the accuracy rate [3,4], while
ignoring the processing problem of continuous sign language signals in online recognition. Since online
SLR is often accompanied by the interference of non-effective action information [5], those classification
methods which perform high-precision in offline SLR may not do well in online recognition.

In recent years, the Myo armband, as a new type of wearable device, has been applied to gesture
recognition and HCI. Fernando et al. [6] used the combination of the Myo armband and Leap Motion
to estimate continuous hand position using the recurrent neural network (RNN). Li et al. [7] used
the Myo armband to obtain the sEMG signal of the arm position and combined deep learning with
principal component analysis (PCA) to control the grasp of a prosthetic hand; Ding et al. [8] combined
a three-dimensional imaging sensor and wearable Myo armband device for HCI with a mobile
service robot platform. Due to the good portability and anti-interference ability of the Myo armband,
we applied it to our sign language recognition research.

How to recognize continuous sign language with higher precision from a long string of data
whose segmentation information is not obvious is a core problem in SLR. Previous studies have been
more inclined to solve this problem by using a segmentation–recognition mechanism. For example,
in reference [9], a method based on the segmentation probability for sign language segmentation and
recognition was proposed. In reference [10], the sEMG threshold was used to segment effective sign
language signals. The endpoint detection method based on dynamic time warping (DTW) was used in
references [11,12]. However, there is interference of non-sign language actions during the action of sign
language, which makes the segmentation information inconspicuous. In the face of interference, it is
difficult to determine the start and end positions of a sign using the traditional segmentation–recognition
mechanism to accurately separate the valid part and the invalid part. The diversity of the input data
will increase the burden of the classification model. Otherwise, the over-fitting inevitably occurs in the
classification model, which makes the reliability of subsequent recognition results difficult to guarantee.

To solve the above problems, we used a wearable device integrated with sEMG and an inertial
sensor for sign language data collection, and proposed a recognition–verification mechanism to realize
online SLR. There are three main points in our contribution: (1) the recognition–verification mechanism
is first proposed to complete online SLR, which overcomes the problem of extracting effective action
patterns from continuous sign language data; (2) we are the first to use a convolutional neutral
network (CNN) based on VGG to construct the classification model of sign language and migrate
the convolution part of the classification model to the verification part. By optimizing the network
structure, the network training overhead is saved while ensuring the accuracy rate; (3) we apply the
Siamese network structure to the verification part of pattern recognition for the first time and reduce
the probability of overfitting after online continuous signal recognition.

2. Online Sign Language Recognition

This section mainly analyzes the difficulties encountered in online SLR and the solution to
traditional continuous signal recognition. Except for the effective sign language information, there are
also some non-sign-language pieces in the input of real-time continuous signals which are not present
in the offline recognition system but online. These non-sign-language pieces increase the difficulty
and complexity of online SLR. The accuracy rate in online SLR is lower than that in offline. In the
traditional continuous signal recognition method, the segmentation–recognition mechanism is used to
separate the effective sign language segments. This method solves the problem of continuous signal
recognition to some extent. However, the effect of this traditional method in online recognition still
faces enormous challenges.
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2.1. Analysis of Online Sign Language Recognition

In the online SLR, the use of the sEMG signal for sign language segmentation or sign language
data segment detection is a common means [9–12]. However, the effective segmentation information
of the real-time input data is not obvious. Figure 1 presents sEMG signals in the case that two kinds
of sign language executed continuously. We can see that there are some non-sign-language signals
between “today” and “morning”. In reality, the boundary waveform of non-sign language is very
similar to those of adjacent sign language, and it is difficult to find the boundary between sign language
signals and non-sign language signals through a general algorithm.
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Figure 1. A segment of surface electromyography (sEMG) signal containing two effective regions and
one blank region. The purple area in the red box represents the effective region of sign language action,
while the green area represents the blank region. The left box represents the sign language of “today”
and the right box is “morning”.

We call the factors that cause the inconspicuous segment information interference. The causes of
interference are different. Noise and non-sign language actions are the main sources of interference.
Noise is an unavoidable interference factor in the process of signal acquisition. When the collected
signal is weak, the signal-to-noise ratio of the signal is low. Noise will become a very strong interference
factor. Usually, this situation will occur at the beginning and the end of the sign language action.
It is difficult to deal with the low signal-to-noise ratio signal well by denoising, which will cause the
accurate segmentation of the sign language signal. Non-sign language is another important interference
factor. At the beginning and end of sign language action execution, additional non-sign language
actions are usually accompanied. In addition, when people do not make sign language, they may also
perform other actions, such as walking, swinging their arms, grabbing or raising their hands. When
these actions are executed, the collected sign language signals are very strong, because they are not
noise, but real body movements. These actions are complex, changeable, and difficult to predict in
advance, so it is difficult to recognize these actions effectively. Therefore, the interference of non-sign
language actions has a great impact on the process of sign language segmentation.

In order to effectively distinguish the influence of interference information in the online recognition
process, we partition the collected real-time signal data segments, wherein the effective sign language
signal segment is called the “effective region” and the signal segment between the effective sign
language data is called the “blank region”, as shown in Figure 1. The blank region can be subdivided
into two zones, wherein the data segment away from the effective region is called the “free zone”,
and the data immediately adjacent to the effective region is called the “adjacent zone”. Regardless
of whether the interference is in the free zone or the adjacent zone, the online SLR causes different
degrees of influence.

We call the successful recognition of sign language data in the effective region “correct”, and the
others misrecognition cases. In order to understand and distinguish the misrecognition cases in online
SLR, we divide the situation of misrecognition into five categories, as shown in Figure 2:



Sensors 2019, 19, 2495 4 of 33

1. Insert: the misrecognition that the data segment in the blank region is identified as an exact
category of sign language.

2. Misalignment: the misrecognition of the data segment combining the adjacent zone and part of
the effective region data into a certain type of sign language.

3. Repeat: the misrecognition that the same effective region is correctly recognized multiple times.
4. Substitute: the misrecognition of the data segment of a certain type of sign language in the

effective region into another type.
5. Delete: the misrecognition that the entire effective region is recognized as the blank region.
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Figure 2. Situations in online sign language recognition (SLR): (a) insert; (b) misalignment; (c) repeat;
(d) substitute; (e) delete; (f) correct. The red box indicates the effective region of sign language action,
and the green box indicates the position of the recognition results, including correct recognition and
misrecognition. (a–e) are misrecognition in online SLR and (f) is correct recognition.

The reasons for the above misrecognitions are different. When the non-sign-language action
exists in the free zone, the signal presenting in this zone is more active, which may easily lead to
misrecognition of “insert”. When the non-sign-language action exists in the adjacent zone, it is
not easy to find the starting and ending positions of the effective sign language data in the online
recognition, which leads to the occurrence of “misalignment” errors. However, due to the influence
of subject-independent, the standard of action and other factors in the online recognition process,
the input effective sign language data is diverse, and there may be differences from the sign language
data collected during the original training process, which leads to the occurrence of “substitute”
and “delete” errors. Since the classification model is robust, the same effective region was correctly
identified multiple times, thereby causing “repeat” errors.
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2.2. Traditional Segmentation–Recognition Mechanism

In the traditional online SLR, the segmentation–recognition mechanism, as Figure 3 shows, was
used to extract the effective action from the continuous signal [9–12].
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In the segmentation–recognition mechanism, the segmentation method was first designed to find
the start and end points of the effective sign language signal from the continuous input signal, and
then used the classification model to recognize the class of the valid sign language segment. This SLR
mechanism can help extract effective sign language fragments in continuous signals and construct sign
language datasets, which can help improve the accuracy rate of SLR in the recognition process.

Although the traditional segmentation–recognition mechanism provides a reference solution
for the recognition of continuous sign language signals, the application of this mechanism to online
recognition still faces a big challenge. In online SLR, the interference of non-sign-language action
has an important impact on the accuracy rate. Such as the following cases: if there is an interference
action in the blank region, misrecognition will occur because the signal strength of the region is strong,
and it may be segmented as a valid segment during the segmentation process. After entering the
classification model, if it was recognized as an action, an error of “insert” occurs. In another case,
when interference appears in the adjacent zone, the segmentation–recognition mechanism finds it
very difficult to determine the true sign language effective segment, since the action in this zone is a
coherent action formed by the standard sign language action and the signal strength is strong. If this
coherent signal was passed to the classification model during the segmentation process, the error of
“misalignment” will occur. If the complete sign language action and the additional action are combined
in the segmentation process, passing as an input signal to the classification model may result in a
“substitute” or “delete” error. Besides, if only a portion of the valid sign language action signal is
transmitted to the classification model, it may also result in a “delete” or “substitute” error.

In the process of online SLR, the effective sign language data segment of the continuous data
transmitted is not very obvious due to the interference action, which makes it difficult to design
an efficient segmentation method to accurately segment complex continuous data. The method of
denoising can effectively eliminate the noise interference in online recognition, but it is ineffective for
non-sign-language action interference. In addition, due to the diversity and complexity of the data
segment input to classification model, the burden of the classification model is increased, and the
classification model inevitably has a certain over-fitting characteristic, resulting in an increase in the
classification error rate. In order to extract real-time continuous signals and recognize effective action
modes, it is necessary to create a new mechanism to realize online SLR.
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3. Database

Since the specific data processing method needs to be made according to the input data in the
SLR’s stage, before describing the recognition–verification mechanism we created, we first introduce
the sign language signals and the sign language database we collected.

3.1. Sign Language Signals

In this paper, we use sign language signals for SLR collected by wearable devices that include
sEMG sensors and IMU. Compared with the methods of using computer vision [13,14], this method is
not affected by factors such as light intensity, background color, and motion occlusion, and there is no
need to attach the device to somewhere outside the body in order to ensure that the sign language
information of the object can be obtained at any time, so it is more portable. Compared to data
gloves [15,16], this method is more convenient to wear and does not affect the naturalness of action.

The wearable device shown in Figure 4 that we used to collect the sign language signal was fixed
at the muscle group position of the subject’s arm. The device integrated an 8-channel sEMG sensor
and a 6-channel IMU. The sEMG sensor was used to collect muscles’ electrical signals in the generated
gestures, and the IMU included 3-axis accelerometer (ACC) and 3-axis gyroscope (GYR) to capture
motion information in gestures.
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accelerometer (ACC), and gyroscope (GYR).

Figure 5 shows six classes of sign language. In the process of analyzing different kinds of signals,
we will discuss the similarity and difference of different classes of sign language signals in combination
with Figure 5. The signal of sEMG is an electrical signal generated by the potentials generated through
the contraction of many fiber bundles in the muscles, which are superimposed in time and space, such
as in Figure 6. The signal has strong volatility and instability [17]. In Figure 7, we can see that the
fluctuations of sEMG signals in different sign languages are different. Compared with Figure 7a–d,
we can see that the sign “luggage” has the largest scope of forearm movement, so the activity of the
forearm muscle of this action is the most intense. Therefore, the sEMG signal of the sign “luggage” has
the largest amplitude. The highest frequency information was in the signal of the sign “thanks” and
the signal of the sign “friend” had the lowest frequency information. Because the action of signing
“thanks” can cause intense activity of the thumb extensor and the activity scope of signing “friend” the
smallest. Through analyzing the fluctuation characteristics of sEMG generated by related muscles
during the sign language execution, we can achieve the purpose of SLR.
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muscle myolin is an independent unit of kinetic energy and structure. The action potential h(t) produced
by tens of thousands of contraction changes of muscle myolins is transmitted to the skin surface and
superimposed in time and space to form sEMG.
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The acceleration information collected by the IMU is a kind of motion information, including
ACCs and GYRs [18]. In the process of sign language execution, the movement of the arm will cause
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the change of linear acceleration and angular acceleration at the position of the sensor. Figure 8a,b
represents the ACC curves of the horizontal axis. In the horizontal direction, the forearm of the sign
“communication” is rotated, so the ACC signal shows regular fluctuation. The horizontal direction of
the sign “you” is a forward movement, so the ACC signal has an obvious peak. The GYR curves in the
vertical direction are plotted in Figure 8c,d. The GYR curves of the sign “communication” and “you”
are similar because of their similar vertical swing arm movements. By capturing these acceleration
changes with motion sensors and processing and analyzing them with a pattern recognition method,
the types of sign language actions in the process of sign language execution can be distinguished.
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Although both signals collected by the sEMG sensor and the IMU can be used to recognize sign
language, the characteristics of the two signals are different. The inertial information collected by the
IMU can effectively recognize the motion category of the forearm, but not of the wrist and the palm of
the hand. The movements of the hands and fingers, as well as the strength information in the sign are
difficult to recognize, while the sEMG signals can efficiently describe this information to achieve good
recognition [19]. The combination of the two sensors to jointly collect the relevant signals in the sign
language execution process can better complete the SLR work.

3.2. Sign Language Database

Although the work of SLR using sEMG and inertial signals has been studied, this research is still
a relatively new field. There is no existing database to provide reference and research [20]. Therefore,
in order to study and implement an effective scheme of online SLR and test the scheme, we created a
sign language database based on sEMG and inertial signals collected by ourselves.

Sign language is a kind of communication method with high flexibility and variability. In order to
cover the sample space of sign language as much as possible, we divided the data collection work
into multiple groups. Each group of data contains one or more categories of sign language, and
each category of sign language contains 20 samples. In addition, the sign language actions made by
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different subjects are less standardized, so the subjects need to learn sign language systematically
before data collection.

To overcome non-specific issues, we invited more than 20 subjects between the ages of 20 to
26 to collect data. Each subject was healthy in the right hand and had no history of neuromuscular
disease. The energy distribution of the sEMG signal was in the range of 20–500 Hz, and the sEMG
signal at 50–200 Hz was most excellent in SLR [21]. The acquisition frequency of the signal was set to
100 Hz. During data collection, each subject chose several categories of sign language for acquisition.
Each sign language was collected in groups with 20 samples each time. In order to ensure the quality,
we conducted a manual screening for the sign language data collected.

As shown in Table 1, the sign language database we built contains 86 categories of Chinese natural
sign language with empty classes. The data size of sign language data ranges from 164 to 207 points.
In the model training phase, we extracted 128 data points from the core of the sign language samples
for pre-processing. After pre-processing, the sign language vector with 64 dimensions was transmitted
to the classification model and verification model. When the “empty” category is not included, the
maximum number of single sign language samples is 2964, and the minimum is 564. The dataset of the
“empty” category contains 361 samples. The database contains 85,424 samples, wherein the dataset of
each category contains an average of 993.30 samples.

Table 1. List of sign language categories. “[]” stands for “empty” class.

Sign Language Categories

friend today think luggage how good doctor afternoon one
hello egg me ok where support lighter morning dusk
sky home airport consign find we fever yesterday say

evening return who take off why Shenyang teacher communicate ask
happy go toilet time ID card help like how to go do
noon late refund miss terminal China listen not found []

thanks meat ticket change watch Liaoning come tomorrow
sorry contact worry flight key world love confiscate
it’s ok you how delay knife Beijing want everybody

eat what question excuse cigarette charge drink (early) morning

4. Method

In order to solve the difficulties encountered in online SLR, different from the traditional
segmentation–recognition mechanism, we propose the recognition–verification mechanism.
The mechanism is divided into three parts: data preprocessing, the classification model, and the
verification model. These three parts are connected in an assembly line that continuously pulls data
from the data source and processes the sequential signal of the online input from sensors in real time
to output the effective result.

4.1. Recognition–Verification Mechanism

In view of the difficulties encountered in online SLR, the recognition–verification mechanism
is proposed as shown in Figure 9. Traditional SLR is completed by the segmentation–recognition
mechanism, where the segmentation algorithm was designed to segment effective signal segments of
sign language from the real-time input signal and then the classification model is used to recognize
them. The effect of this mechanism depends on the accuracy rate of segmentation and the robustness
of the classification model. Due to the existence of non-sign-language actions and noise interference
in online sign language data, it is difficult to guarantee the segmentation’s effectiveness. When the
non-sign-language signal is passed into the classification model, the output of the recognition result will
also present an uncertain state, which leads to the great increase in misrecognition in online recognition.

In the recognition–verification mechanism, the traditional segmentation operation is discarded.
The data fed into the mechanism is continuously pulled from the data source by sliding window in
advance, and the data is transmitted to the classification model in real time. The length of the sliding
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window is set to 128 to pull the core part of the sign language data, and the sliding step is set to random
integers from 8 to 20. The working principle of the sliding window is shown in Figure 10.
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Figure 10. Schematic diagram of the sliding window. The two boxes in the figure are two adjacent
positions during the moving process of the sliding window, the green window is the first position, and
the red window is the last one during the moving process.

In order to describe the principle of pulling data of the sliding window, the change of the sliding
window position in the Figure 9 replaces the real data pulling situation. In the process of online
SLR, corresponding to the form of the sliding window moving, fixing the window in one place, once
the input data fills the sliding window, the system begins to pull the set of data and pass it into
the recognition–verification mechanism to complete recognition and verification. At the same time,
the sliding window slides forward one step. When the new input data fills the sliding window again,
the same process is performed until the recognition process is at the end.

Instead of the segmenting operation, the sliding window is used to pull the data, which results
in the amount of data passed into the mechanism being larger and the diversity of the data greatly
increasing. In order to ensure a high accuracy rate, we added a verification model to judge the
correctness of recognition of the classification model.

The classification model is the core of the whole mechanism. When the sign language samples
pulled are sent to the mechanism, the data are sent to the classification model for preliminary
recognition after data pre-processing. It is worth noting that, without the segmentation process, there
is no corresponding operation to select the effective region from the input raw data, so that the input
data are no longer mainly from the effective region, but may come from a combination region of
blank region and effective region data. We call the data coming mainly from the effective region as
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“benign data”. They are mainly composed of data of the effective actions of sign language, which the
classification model can easily recognize as the correct result. Other data are called “malignant data”.
Unfortunately, the amount of “malignant data” entering the classification model far exceeds that of
“benign data”. The input of “malignant data” will cause misrecognition of produce, and a large number
of “malignant data” will lead to extremely chaotic classification results. Increasing the robustness of
the classification model can improve the recognition effectiveness to some extent. However, in the face
of such a large number of “malignant data”, it is difficult to say that the solution is better.

The function of the verification model is to verify the correctness of the recognition results of
classification models by calculating the difference. Its working principle is to use the trained verification
model to generate the standard reference vector of each category of sign language in the model training
stage. In the online recognition stage, the verification model encodes the data pulled through the sliding
window into the current sign language vector the same way. The mechanism selects the standard
reference vector from the set of vectors of all categories based on the output category of the classification
model. Then, the difference calculated from the current sign language vector and standard reference
vector is used to judge the recognition result. The “benign data” and the samples of the same category
in the database are relatively similar, and the difference between the generated encoding vector and
standard reference vector is accordingly small; they are more likely to be recognized successfully.
Even if the “malignant data” is misrecognized, the difference between the generated encoding vector
and standard reference vector is generally large. The verification model can effectively filter out the
misrecognition results of the classification model.

4.2. Data Pre-Processing

In order to get better recognition results, the data was pre-processed before it was transferred
into the classification model. Pre-processing was used to eliminate the interference of the raw data.
Pre-processing performs the same operations in model training and online recognition. In the model
training phase, we extracted 128 data points from the core of sign language samples for pre-processing.
In the online recognition stage, data pre-processing was directly used in the data of 128 lengths pulled
by sliding window. Regarding the signals collected by different sensors, we adopted different data
processing schemes due to the different characteristics of the signals.

The IMU was used to collect traditional Newtonian physical signals in sign language actions,
including 3-axis ACC signals and 3-axis GYR signals. Through research, we found that there was a large
amount of jitter in the collected data during the execution of sign language actions. In order to eliminate
the interference of such jitter on the classification effect, we adopted the method of polynomial fitting
combined with down-sampling to process the signals collected by the IMU. This processing method
is a means to smooth the data, eliminate meaningless noise and jitter, and to only retain effective
information in the data body. In the data fitting stage, according to the transformation frequency of
data, we used the quadratic polynomial with 16 data points as a unit for fitting, and the polynomial is
as follows:

y(xn,ω) = Axn
2 + Bxn + C (1)

where ω = (A, B, C), A, B, and C are the fitting coefficients, xn is the input value of the nth point, n is a
serial of numbers ranging from 1 to 16, and y(xn,ω) is the output value about xn and ω. We used the
sum of the squares of the errors as the loss function, and its formula was as follows:

L2(ω) =
16∑

n=1

(y(xn,ω) − yn)
2 (2)

where L2(ω) is the loss value about ω. By minimizing the value of loss function, the coefficients of
the polynomial were calculated. In the stage of data restoration, the polynomial coefficient obtained
was put into Formula (2) to calculate the restored data at the corresponding position. The data was
recovered at every other data point via down-sampling to replace the original data so as to achieve
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the purpose of data smoothing and compression. However, the piecewise fitting method is a regional
fitting method, which will lead to data discontinuity and data jump in the connected region. In order
to solve this problem, we improved the polynomial fitting: by setting-up the overlapping part when
fitting the section between two units, and in the process of restoration, we calculated the average of the
overlapping part to effectively eliminate jump. The data smoothing effect is shown in Figure 11. After
data smoothing and down-sampling, the data size of sample becomes 64.
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The signal of sEMG is a kind of bioelectrical signal, which is similar to an electroencephalogram
(EEG). Referring to reference [22], we found that the frequency domain of noise signal is less than
15 Hz, and when the target muscle is active, its amplitude will change greatly [23]. Therefore, we firstly
filter the signal in the frequency domain and the amplitude threshold to preliminarily eliminate the
noise. Subsequently, we used the discrete wavelet transform (DWT), which is a signal processing
method successfully applied on the unstable signal [24]. The general formula of the DWT is as follows:

W f ( j, k) =
∫ +∞

−∞

f (t)ψ j,k(t)dt (3)

where f (t) is the original sEMG signal, j and k are integers related to discretization of scaling and
displacement parameters, ψ j,k(t) is discrete basis vector, W f ( j, k) is the transformation result of original
signal f (t).

According to Reference [22], the signal process of wavelet transform is to select a wavelet
family and its transform layers according to the frequency of the input signal, signal granularity, and
signal-to-noise ratio to achieve the best effect. With reference [25], we finally determined to apply the
db5 wavelet in the Daubechies wavelet family to do 4 layers of multilayer wavelet transform for the
data to get the waveform characteristics of the timing signal. In order to obtain the same length as the
data collected by the IMU, we extended the transformed sEMG data. The processing effect of sEMG
signal is shown in Figure 12.
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4.3. Classification Model

4.3.1. 1D Convolutional Neural Network

The nature of SLR is multi-classification for a period of a 1D time-series signal. Studying the data
form, we can find that data have strong local correlation, thus we adopted a 1D convolutional neural
network (1D CNN) algorithm for the classification model of sign language. The CNN was first applied
in the field of computer vision in the case of large data volume and multi-classification [26–29] and
achieved great success. The sharing of convolution kernel parameters in the hidden layers of a CNN
and the sparsity of the connection between layers enables the CNN to learn lattice features with a small
number of parameters. Compared with the traditional manual feature extraction method, this method
has a stable effect and no additional feature engineering requirements for data.

In this paper, we used the VGG architecture to build a CNN model for SLR. The model of VGGNet
was first applied to large-scale image recognition problems. The model obtains a larger receptive field
by increasing the depth of the network and using a very small (3 × 3) convolution filter. Compared
with the traditional CNN network, the model parameters were reduced, and the results were better
than the traditional network of a large convolution core and less layers [30]. In addition, this model
had a good generalization effect for other datasets. We applied the VGG architecture, which was
originally applied to the 2D image classification problem, to the 1D SLR problem.

The input signal of sign language consists of a 3-channel ACC signal, 3-channel GYR signal, and
an 8-channel sEMG signal. The length of each channel was 64 after data pre-processing. Although the
three types of signals have their own characteristics, they describe sign language in different forms,
and the signal has time consistency. It was assumed in this paper that good feature extraction and
classification effects can be achieved by directly transmitting the signals into CNN without using
independent channels.

4.3.2. Classification Model

In this paper, a 1D CNN based on VGG architecture was used to build the classification model.
The input of the network was the timing data of sign language, and the output was the category
mapping of the input sequence. The final network structure is shown in Figure 13. The network was
composed of convolutional layers and fully connected layers. The convolutional layers were used to
fuse different kinds of sign language signals and extract features.
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In the VGG architecture, feature extraction was accomplished by blocks composed of multiple
convolution layers using small convolution kernel (3 × 3). In general, in a neural network, the layer far
away from the input contains more information. In order to ensure that the deep network contains
more complex characteristic information, the number of convolution layers in the block close to the
output (behind block) should be no less than that in the block close to the input (front block). In the
problem of SLR, front blocks are mainly responsible for the signal pre-processing and signal fusion,
while behind blocks contain more of the depth features of sign language. The block structure is shown
in Figure 14.
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compression are carried out through the pooling layer.

In each block, the convolutional layers and the activation function are combined to complete
the non-linear description for sign language signals. A single block may contain multiple contents
of such combination to obtain stronger non-linear expression ability of the sign language signal and
better complete the feature extraction. Between the convolution layer and the activation function layer,
we added a batch normalization (BN) layer to improve network performance and stability. The pooling
layer is placed at the output position of each block for automatic filtering and data compression of the
features extracted.

Between the parts of the convolution and full connection (FC) of the network, we adopted the
adaptive average pooling layer [31]. By pooling a high-dimensional time-series vector, we only saved
the information-efficient part, which reduced the dimension of the convolution output and effectively
realize the function of feature selection. The method has been effectively used in human action
recognition in video [32].

4.3.3. Training

In this paper, we used a sign language database to collect and train the classification model.
We took 10% of samples as the testing set and the rest as the training set. The datasets were passed into
the network in batches, each batch containing 128 samples. Before the model training, we used the
normal distribution method to initialize the weights of the classification model. This network used
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the Adam optimizer to optimize network parameters. The initial learning rate of the network was
0.0001, and the learning rate was adjusted by exponential attenuation. The learning rate decreased by
0.1 times every 10 epochs.

4.4. Verification Model

In the process of online SLR, we used the sliding window to process the continuous input data.
In order to avoid the data segment of effective sign language being skipped in the process of window
sliding, the stride should be far smaller than the window size. This increases the possibility of which
“malignant data” passes into the classification model. Due to the limited number of training samples
and the strong black box, the network is inevitably over-fitting, resulting in its limited ability to
deal with the wrong input. The confidence obtained by the SoftMax function cannot guarantee the
classification effectiveness. For example, if the input consisting from each half of the two samples is
passed to the network, the model also outputs a high degree of confidence. Therefore, we propose to
use the verification model to judge whether the classification result was accurate.

4.4.1. Verification Model for Sign Language Recognition

We used the Siamese network based on VGG architecture to verify the classification results,
and this model has been widely used in facial expression recognition and object tracking [25,33].
The structure of the Siamese network is shown in Figure 15. The Siamese network is used to measure
the similarity of two samples: the input of the model is a pair of samples and the output is the distance
or difference value of the two samples. If the categories of the two samples are same, the model tends
to output a smaller value, otherwise it tends to output a larger value.
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samples, and the output of the network is to measure the distance between the two samples.

Two input samples of the model are first fed into two coding networks, which share the same
structure and the same parameters. After passing through the coding network, the data of the two
samples are mapped to a multi-dimensional Euclidean space and generate two coding vectors with
64 dimensions. These two vectors are passed into a distance function to calculate the distance between
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them. The encoding network is divided into two stages: feature extraction and feature encoding.
In the feature extraction stage, we selected the same structure of the classification model. After being
flattened, the size of the extracted feature was 1024. In the feature encoding stage, an FC, whose input
size was 1024 and output size was 64, was used to encode the feature. For the measurement of coding
vector distance, we used the Euclidean distance function to calculate.

4.4.2. Training Method

Different from the classification model, the Siamese network used to verify the model contains
one pair of samples at a time. The matching and extraction of sample data pairs needs to be completed
before the model training. In the dataset of the Siamese network, data pairs of the same category and
different category account for 50% [34]. In order to ensure the adequacy of data matching, the total
number of data pairs we extracted was five times the total dataset of the sign language.

In the process of training, data pairs were sent to the network for parameter optimization by
means of batch training. In order to improve the training efficiency, we designed a loss function based
on Sigmoid function. Similar to the classification model, the Siamese network also used the Adam
optimizer to optimize the network parameters. The initial learning rate of the network was 0.0001, and
the learning rate was adjusted by exponential attenuation. The learning rate decreased by 0.1 times
every 10 epochs.

The training of the Siamese network used 90 percent of the sign language pairs and the remaining
10 percent of the pairs were used for network testing. In order to obtain the network training situation,
in addition to using the average loss value as the basis of the training stage, the statistical value
of the test results was also used as the evaluation criteria. In the case of model convergence, the
output distance of different data pairs increased gradually, while that of the same data pair decreased.
We chose the 95% quantile (L1) of the output distance with different data and 5% quantile (L2) of the
output distance with the same data as the benchmark of test. When L1 was much larger than L2, and
the status tended to be stable, the training process of the verification model was completed.

4.4.3. Operation Stage

In the use stage, the input data will be encoded into a coding vector by the coding network.
Each sign language category retains a standard reference vector in advance. According to the
classification results of the classification model, the input coding vector was compared with the
standard reference vector of the corresponding category and the difference value was calculated.
The correctness of the classification result was judged by comparing the difference value and the
threshold value. If the difference value was less than the threshold value, the classification result was
judged to be correct, and on the contrary, the result wrong. Because there were different distributions
of difference values in different categories of sign language, the threshold was set to a value related to
the category of sign language.

For the acquisition of reference vectors, we first encoded all types of training data to obtain a
large number of coding vectors, and then calculated the average value of each class of vectors to obtain
the standard reference vectors. For the threshold value, we used the reference vector as the basis to
calculate the difference value with all the samples of the same type and obtained the difference value
sequence. The ascending sequence Sd was obtained by ascending the order of each kind of difference
sequence. The threshold value of each class was 2.5 times of 80% quantile. The formula is as follows:

I = |0.8N| (4)

VTh = 2.5Sd(I) (5)

where Sd is the ascending sequence of the difference value of a single category, N is the number of
elements in Sd, I is the ordinal number of 80% of the quantile, Sd(I) is the element which order number
is I in Sd, and VTh is the threshold of the category.
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According to the comparison, only the recognition results with the difference value less than the
threshold value were output. When a correct result was encountered, the sliding window of several
subsequent steps was skipped, so that part of the correct data would not be calculated in the model,
thus avoiding the waste of computing resources and avoiding repeated errors.

5. Experiments

This section introduces the main experiments involved in the recognition–verification mechanism,
including the optimization experiments of the classification model and the verification model, and
the online recognition experiments of the recognition–verification mechanism. Sections 5.1 and 5.2
aim to analyze some parameter options of the classification model and verification model. The final
parameters of these two models are given in Section 5.3.1.

5.1. The Optimization of the Classification Model

In order to improve the accuracy rate of the classification model and speed up the network training
and operation, we adjusted and optimized the parameters of the classification model. The following
describes the optimization methods one by one.

5.1.1. The Layers of the Network

On the basis of the VGG architecture, we refer to the VGG network structure given in reference [30]
to adjust the number of blocks in the network and the number of layers in the block to optimize the
network. The main structure of the network built in the experiment is shown in Table 2: There are
five structures in Table 2. Conv3 represents the set of the convolution layer, BN layer and activation
function layer with the kernel size of three, and the number after the symbol “-“ represents the number
of output channels. Each box in the table shows a block of layers, and the output of each block is
followed by a “MaxPooling” layer. In the result analysis, the changes of loss and accuracy rate, training
time, and testing time will be discussed. By comparing the performance of different network structures,
a network structure with the best comprehensive performance is finally selected.

Table 2. Convolutional network layer configuration. Five convolutional network layer structures are
defined from VGGA to VGGE.

VGGA VGGB VGGC VGGD VGGE

Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64

MaxPooling

Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128

MaxPooling

Conv3-256 Conv3-256
Conv3-256

Conv3-256 Conv3-256
Conv3-256 Conv3-256 Conv3-256 Conv3-256

MaxPooling

Conv3-256
Conv3-512

Conv3-512 Conv3-512
Conv3-256 Conv3-512 Conv3-512

MaxPooling

Conv3-512
Conv3-512

MaxPooling

APL

FC-86
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5.1.2. Adaptive Pooling Layer

After the last block of the CNN, we added an adaptive average pooling layer to optimize the
network. After the multi-layer convolution operation, the output of the convolution part contains
a large amount of depth information, which not only has a high dimension but has a large amount
of redundant information. By adding an adaptive average pooling layer, the information in the
signals will be automatically learned and screened, and the data dimension reduction will be achieved.
This process effectively replaces the classification function of the FC functionally and reduces a large
number of network parameters by reducing the number of FC, so as to avoid the phenomenon of
network overfitting. In this optimization experiment, we fixed the output of the adaptive average
pooling layer at two and the number of FC layers was reduced from three to one. By analyzing and
discussing the same parameters as in Section 5.1.1, the experimental result is compared with adaptive
average pooling layer or not.

5.1.3. The Activation Function

The VGGNet proposed in reference [30] was applied in the field of image classification, and
rectified linear unit (ReLU) was used as the activation function. In recent years, the Leaky ReLU
activation function has been applied to the classification of CNNs, and its performance was analyzed in
reference [35]. In reference [36], considering the trade-off between network sparsity and performance
of the Leaky ReLU function, Leaky ReLU is used as an activation function to classify sound signals
in a CNN network. The sign language signal processed in this paper belonged to a one-dimensional
fluctuation signal as well as a sound signal. Referring to reference [36], Leaky ReLU is also used as an
activation function in our classification model. The formula is as follows:

f (x) =
{

x, x > 0
λx, x ≤ 0

(6)

where x is the input value of the activation function. f (x) is the output value. When x is negative, λ is the
slope of the activation function. In this experiment, the value of lambda is set to 0.01. The advantages
of Leaky ReLU over ReLU were analyzed by analyzing and discussing the same parameters as in
Section 5.1.1.

5.1.4. Batch Normalization

The layer of BN, as an important result of deep learning in recent years, has widely proved to be
effective and important [37]. Its advantages are as follows:

1. The layer of BN can alleviate the internal covariate shift, improve the stability in the network
training process, and make it possible to use a large learning rate in the network training process,
so as to accelerate the training of neural network.

2. The problem of gradient explosion and disappearance can be alleviated to a certain extent, thus
making it possible to train the deep network.

3. Since the input of the hidden layer is processed in a standardized way, BN can make the network
training process less affected by parameter initialization.

Therefore, this paper tries to add a BN layer into the network and compares the network training
effect of adding BN layer or not by analyzing and discussing the same parameters as in Section 5.1.1.

5.2. The Optimization of the Verification Model

In order to improve the validating effect of the verification model and reduce the training time of
the Siamese network, we optimized the verification model by experiment.
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5.2.1. Loss Function

The traditional Siamese network uses the contrastive loss function to estimate the performance of
the model [38]. The input of this function is the distance of the coding vector generated by the pair
of sign language data, and the output is the loss value of the pair of data processed by the network.
The expression is as follows:

L(M, Y, X1, X2) = (1−Y)
1
2

D2
M + Y

1
2

max(0, m−DM)2 (7)

where M refers to the model of the Siamese network after each iteration, X1 and X2 is the coding
vectors of sample pairs, DM = DM(X1, X2) represent the Euclidean distance between the vector X1

and X2 under the model M; Y represents two vectors of category labels, which are the same or not,
where “0” is on behalf of the same category, “1” represents different categories; m is the lower margin
of distance desired when the category is not the same. When categories are different and Euclidean
distance is greater than this threshold, the output of the L value is 0. When the categories are the same,
the value of L increases with the increase of the input DM value; otherwise the value of L decreases,
until DM is greater than the margin.

Employing the contrastive loss function can ensure that when the categories are the same,
the output distance of the model tends to be a relatively small value, while when the categories are
different, the output distance of the model is generally a relatively large value. However, when the
function is used as a loss function to train twin neural networks, the sparsity of the network will be
large. At the stage of model training, when different kinds of sign language data are transmitted to the
network, the model output is larger than the margin, and the result of the gradient calculation is 0.
The existence of the sparsity problem leads to the phenomenon of fluctuation and slow training speed
in the process of training.

To avoid the sparsity problem, we created a new function as the loss function of the Siamese
network. This function is based on the Sigmoid function, which is called the “sigmoid modification
function”. Its mathematical formula is as follows:

L(M, Y, X1, X2) =
1

1 + e−DM+m (8)

We call the m a boundary point, and the remaining parameters have the same meaning as the
contrastive loss function. The value of L is distributed between 0 and 1, which can be regarded as the
probability of different categories of input data pairs. When larger than the margin, the value of L is
greater than 0.5, more than 50% of the input data is likely to be of different categories.

The distance output of the Siamese network is not less than 0, within which the sigmoid
modification function is a smooth curve. This function not only avoids the sparsity problem of
contrastive loss function, but also has a large gradient at the position close to the boundary point in the
process of training, which enables the verification model to have a better discrimination effect after the
training convergence. The variation of loss and the frequency distribution of different distances will be
discussed to prove the validity of our loss function.

5.2.2. Model Initialization

Model initialization is a very important step in network training. The degree of model initialization
will have a great influence on the speed and even the effect of model training [39]. Since parameters of
the convolution part have been trained in the classification model, the CNN using these parameters
has achieved a good classification effect and has also proved the feature extraction ability of the
convolutional layer using these parameters. In this experiment, the characteristics of the network
coding part adopts the normal distribution weights initialization method. The network structures of
feature extraction are exactly same as the classification model’s, so we will transfer the parameters
of the convolution part to the verification model to initialize the convolution part of the Siamese
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network. By analyzing and discussing the same parameters as in Section 5.2.1, we compare the training
model with another initialization case which the whole network initializes weights by the normal
distribution method.

5.2.3. Batch Size

During model training, datasets are usually sent to the network in batches. Selecting the batch
size is a very important task in the process of network training. When the batch size was too large,
the number of iteration times of each epoch network was too small, resulting in slow training speed.
Meanwhile, the normally large batch size would reduce the generalization ability of the network.
Therefore, the batch size should not be too large when conducting network training [40]. However,
when the batch size is too small to reflect the overall situation of the datasets, it results in excessive
fluctuations in network training. In our experiment, we set the batch size to 128, 256, and 512,
respectively, and then compared the three conditions to select the most suitable batch size for this
model by analyzing and discussing the same parameters as in Section 5.2.1.

5.3. Online Sign Language Recognition

In order to verify the effectiveness of the recognition–verification mechanism, we designed
an online sign language recognition experiment and compared it with the traditional
segmentation–recognition mechanism.

5.3.1. Online Dataset

For ensuring the consistency of data sources of the two mechanisms, a set of online sign language
data was collected in advance as the validation set. Figure 16 shows a sign language signal intercepted
from online data.
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sign language signal intercepted are depicted in the figure, wherein the red box is the effective region
of sign language data.
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The subject of the online dataset was involved in the construction of offline databases. The data we
collected takes 2226 s and contains 20,383 data points. The dataset contains 437 effective sign language
actions, including all kinds collected in the offline dataset. In the process of data acquisition, the time
interval between two sign language actions is 0.5–5 s at random. At intervals, some non-sign-language
actions of the subjects were recorded as interference in online data, such as walking, raising hands,
grasping, swinging arms, or the combination of these actions. As can be seen from the figure,
the strongest interference is the part between the signs “we” and “help”. Because the hand-raising and
fist-clenching were carried out simultaneously, it is difficult to distinguish the starting point of the sign
“help” from any of the three signals. Between the sign “help” and “you”, the interference of the sEMG
signal was very strong due to the influence of arm force.

We passed the data of the online verification set into the two mechanisms and analyzed the
performance of the two mechanisms by comparing the number of “insert”, “misalignment”, “repeat”,
“substitute”, “delete”, and “correct”.

5.3.2. Recognition–Verification Mechanism in Online Recognition

Through the optimization experiments of the classification model and the verification model,
we selected some important parameters in the recognition–verification mechanism. The convolution
part of the CNN uses structure D in Table 2 and we used the adaptive average pooling layer to reduce
the number of layers of the full connection layer. The activation function of the classification model
was Leaky ReLU, and the batch standardization was added to the model to optimize the training
process of the model. In the verification model, we used structure D in the feature extraction, and we
used the FC with an input size of 1024 and output size of 64 for feature coding. The length of the
encoding vector was 64, and we calculated the Euclidean distance with the standard reference vector
as the difference. The selection of thresholds is shown in Equations (4) and (5).

5.3.3. Segmentation–Recognition Mechanism in Online Recognition

Reference [41] was used for the design of the recognition–verification mechanism. The main flow
of the mechanism was divided into pre-processing, data segmentation, feature extraction, and sign
language classification, and its flow chart is shown in Figure 3. However, in order to obtain a better
online recognition effect, we made some modifications to several details and specific parameters.

In the pre-processing stage, the low-frequency noise in sEMG was eliminated by using a 5 Hz
infinite impulse response (IIR) digital high-pass filter. The original signals were used in the ACC and
GYR. Data segmentation used an average energy of multi-channel sEMG signals. A non-overlapping
window contained 16 data points of sEMG to calculate energy. The calculation formula is as follows:

E =
1
n

n∑
j=1

m∑
c=1

R2
c ( j) (9)

where Rc( j) represents the jth data point of the cth channel of sEMG, m = 8 is the number of sEMG
channels, n = 16 is the length of the window, and E is the energy value. In this experiment, the threshold
of energy was set to 582. If four of the six consecutive windows were larger than the threshold, the
first data point of the first window was regarded as the beginning of sign language. If five of the
seven consecutive windows were below the threshold, the first data point of the first window was
considered as the end of sign language. For feature extraction, sEMG uses four features of root mean
square (RMS), zero-crossing (ZC), autoregressive coefficient (ARC) and short-time Fourier transform
(STFT), and inertial information uses four features of RMS, ARC, power spectral density (PSD) and
wavelet transform (WT). Finally, support vector machine (SVM) with radial basis function kernel is
used for classification, which is based on “scikit-learn” in python. In SVM, the penalty parameter “C”
is 256, the kernel coefficient “gamma” is 0.0175, and other parameters are default.
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6. Results

In this section, we demonstrate and analyze the results of the parameter selection experiments
of the classification model and verification model designed in the previous section. After discussing
the results, some important parameters will be selected. In the online recognition experiments,
the experimental results of the recognition–verification mechanism and segmentation–recognition
mechanism will be analyzed. Finally, the experimental results of the recognition–verification mechanism
and the traditional segmentation–recognition mechanism are compared.

6.1. Classification Model

The accuracy rate, training speed, and running speed of the model are important indicators to
measure the quality of the classification model. The higher the accuracy rate is, the more reliable the
result of SLR. Faster training speed can ensure that developers and users of the SLR system obtain a
new model in less time. Faster running speed can allow us to obtain the results of recognition faster,
and it is also a necessary condition to ensure online recognition. It is worth mentioning that batch
processing of data can speed up the operation. Even though more samples are used in model training,
each generation of training takes more computing time than each generation of testing. Because,
in each operation, batch data is used in the training process and only one sample is used in the testing
process. In the analysis of experimental results, we used these three indicators to compare the selection
of different model parameters. The results of model parameter selection are given in Section 5.3.1.

6.1.1. The Layers of Network

In the convolution part of the classification model, we built five network structures. The comparison
results are shown in Figure 17.
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Figure 17. Experimental results demonstration of the convolutional network structure. The graphs
show the changes of the five network structures with an epoch under one certain assessment index
with epochs during the training process. Each epoch contained 601 iterative updates of the network
parameters. (a) The change curve of loss with epoch; (b) the change curve of the accuracy rate with
epoch; (c) the change curve of training time with epoch; (d) the change curve of test time with epoch.

In order to describe the experimental results more clearly, Table 3 illustrates the experimental
results. Wherein the “loss” label stands for the value of loss function, under which displays some
parameter indicators when the specified value was first reached. “e” stands for epoch, “t” stands for
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time(s), and “AR” stands for accurate rate. In VGGA, when loss = 0.01, the three indicators are 0,
indicating that loss does not decrease to 0.01 until the end of model training.

Table 3. Experimental results of the convolutional network structure.

Model
Loss = 0.5 Loss = 0.1 Loss = 0.05 Loss = 0.01

e AR t e AR t e AR t e AR t

VGGA 3 94.72 13.41 8 97.96 35.05 12 98.55 52.56 0 0 0
VGGB 2 96.44 11.27 5 98.41 28.03 7 98.55 38.8 17 98.92 94.89
VGGC 2 95.11 9.05 5 98.09 22.43 8 98.56 36.28 20 98.92 90.54
VGGD 2 97.07 12.08 4 98.4 24.18 5 98.63 30.29 14 98.83 84.98
VGGE 2 97.85 16.05 3 98.31 24.05 4 98.51 31.98 11 98.54 88.45

It can be seen from Table 3 that when the loss is at the same level, there is no significant difference
in the accuracy rate of the classification models with different structures. Therefore, the loss value and
accuracy rate can be regarded as equivalent to the performance of the model. Combining Tables 2 and 3,
and Figure 17, it can be seen that with the increase in the number of convolution layers, the training
time and test time of each generation are slightly increased. However, when the number of layers
remains unchanged, the change in the number of blocks has little effect on the training time and testing
time of each generation. Therefore, the number of convolution layers determines the computing time
of the network.

When using a CNN to process sign language signals for SLR, the convolution part is used to
extract features, and the FC part is used for feature classification. In VGG architecture, each block
operation extracts deeper features from sign language data, and the number of layers in the block
determines the complexity of the features that the block can extract.

By comparing the structures of A, D, and E, extracting deeper sign language features by increasing
the number of blocks can help the model achieve stable convergence with fewer iterations. However,
as the number of blocks increases to a certain extent, depth features can accurately represent the
characteristics of sign language data, and the acceleration effect of extracting deeper features on model
training will gradually weaken. If the extracted sign language features are too deep, the training speed
starts to slow down, since the increase in the number of blocks makes each iteration take more time.
By comparing the combination of structures C and D, it can be found that when the depth of the
features (the number of blocks) are the same, the better feature extraction effect can be obtained by
increasing the number of convolutions in the block. Combined with the observations of structures B
and D, it was found that when the number of blocks and convolutional layers were the same, increasing
the number of feature extractions and the parameters of convolutional layers by increasing the number
of channels could enhance the optimization effect of each iteration of the model. Finally, compared
with the combination of structures A and C, it could be seen that, when the total number of convolution
layers was constant, the time spent on each iteration of the model was basically not affected by the
number of blocks, but the convergence effect of each iteration of the model was significantly enhanced.

In this experiment, we judged the training performance of the model by combining the convergence
effect and the time spent in each iteration and selected the optimal structure of the convolution part.
Finally, we chose VGGD as the optimal structure in the recognition–verification mechanism to conduct
experiments on online SLR.

6.1.2. Adaptive Average Pooling Layer

In the output of the convolution part, besides deep sign language features, it also contained a
lot of redundant information. The use of an adaptive average pooling layer can help the network
automatically select feature parameters, reduce the number of FCs, and improve the performance of
the network. In this experiment, we discuss the influence of an adaptive average pooling layer on the
network performance through comparative experiments. The experimental results on whether to add
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an adaptive average pooling layer to the output position of the network convolution section are shown
in Figure 18.
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Figure 18. The experimental results for the adaptive average pooling layer. (a) The change curve of
loss with iterations. (b) The change curve of the accuracy rate with epoch. (c) The change curve of
training time with epoch. (d) The change curve of test time with epoch. The VGGD1 represents the
situations without an adaptive average pooling layer and the VGGD0 represents the situations after
using an adaptive average pooling layer.

Through Figure 18a, it can be seen that after using an adaptive average pooling layer,
the convergence speed of the network increased to a certain extent, and at the same time, the fluctuation
effect of the network also decreased. By analyzing Figure 18b, we can see that the accuracy rate of
the network with the adaptive average pooling layer increased faster and the final accuracy rate
was higher. The analysis above shows that the automatic feature selection and the classification
function of replacing the FC using an adaptive average pooling layer achieved good results. As can
be seen from Figure 18c,d, the training time and testing time of the model were reduced due to the
reduction in the number of FCs. Because of the good effect in the feature selection of sign language
data, the adaptive average pooling he adaptive average pooling layer was added to the classification
model in the online SLR.

6.1.3. The Activation Function

The comparison of the experimental results using ReLU and Leaky ReLU activation functions is
shown in Figure 19. As can be seen from Figure 19a,b, there were significant differences in the iteration
effect and the accuracy rate between the two activation functions in the network training process. Sign
language data in this experiment had strong fluctuation characteristics, and the numerical values
changed frequently between positive and negative numbers. As the ReLU activation function had a
serious sparsity when its input value was negative, it was difficult to converge to good effect in the
training process. However, a Leaky ReLU activation function can overcome this problem. With a Leaky
ReLU activation function, the model can be trained well and achieve a high-precision classification of
sign language data. As can be seen in Figure 19c,d, the training and testing speed with the Leaky ReLU
activation function was slightly higher than those with ReLU, but there was no significant difference
between the two. Because of its good training effect and high accuracy rate, Leaky ReLU was applied
to the classification model.
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6.1.4. Batch Normalization

The BN renderings of the classification model training are shown in Figure 20:
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Figure 20. The effect diagram of BN. Each subgraph in this diagram has exactly the same meaning as
in Figure 18. Wherein the VGGD0 represents the use of BN and the VGGD3 represents unused.

The internal covariate shift problem can be overcome by BN, which greatly reduces the network
fluctuation in the training process and ensures the stability and rapidity of model training. In addition,
BN can standardize the different dimensions of sign language features extracted from each convolution
layer, and then make it subject to the same distribution, which makes iteration of model parameters
easier. As can be seen from Figure 20a, the fluctuation of loss in the networks with BN was significantly
reduced and faster than that without BN. From Figure 20b, it can be concluded that BN was helpful in
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achieving a higher accuracy rate. It can be seen from Figure 20c,d that the training and testing time
increased after using batch normalization. However, compared with the advantages of this operation
for model training, this disadvantage can be ignored. Because of its good training effect, BN was
applied to the classification model.

6.2. Verification Model

In the verification model, the training speed and the distinction between different types of
data pairs were selected to measure the quality of the model. Faster training speed can ensure that
developers and users of a sign language recognition system get a new model in less time. Better
distinction of data pairs can ensure that the verification model has higher reliability.

6.2.1. Loss Function

The experimental results using different loss functions are shown in Figure 21. Because of its
smooth function characteristics, the sigmoid modification function will not cause the sparsity problem
in the contrastive loss function. As can be seen from Figure 21a, in the process of training, the fluctuating
range of the contrastive loss function curve was higher. The sigmoid modification function not only did
not have severe fluctuation, but also had a fast convergence speed. Experimental results showed that
using the sigmoid modification function as the activation function for network training can effectively
overcome the sparsity problem in the contrastive loss function. As can be seen from Figure 21b,c, both
activation functions can be used to distinguish the same and different data pairs of tags. Because of the
good network training performance, the sigmoid modification function was used as the loss function
of the verification model in online recognition.

Sensors 2019, 19, x FOR PEER REVIEW 26 of 33 

 

model parameters easier. As can be seen from Figure 20a, the fluctuation of loss in the networks 
with BN was significantly reduced and faster than that without BN. From Figure 20b, it can be 
concluded that BN was helpful in achieving a higher accuracy rate. It can be seen from Figure 20c,d 
that the training and testing time increased after using batch normalization. However, compared 
with the advantages of this operation for model training, this disadvantage can be ignored. Because 
of its good training effect, BN was applied to the classification model. 

6.2. Verification Model 

In the verification model, the training speed and the distinction between different types of data 
pairs were selected to measure the quality of the model. Faster training speed can ensure that 
developers and users of a sign language recognition system get a new model in less time. Better 
distinction of data pairs can ensure that the verification model has higher reliability. 

6.2.1. Loss Function 

The experimental results using different loss functions are shown in Figure 21. Because of its 
smooth function characteristics, the sigmoid modification function will not cause the sparsity 
problem in the contrastive loss function. As can be seen from Figure 21a, in the process of training, 
the fluctuating range of the contrastive loss function curve was higher. The sigmoid modification 
function not only did not have severe fluctuation, but also had a fast convergence speed. 
Experimental results showed that using the sigmoid modification function as the activation 
function for network training can effectively overcome the sparsity problem in the contrastive loss 
function. As can be seen from Figure 21b,c, both activation functions can be used to distinguish the 
same and different data pairs of tags. Because of the good network training performance, the sigmoid 
modification function was used as the loss function of the verification model in online recognition. 

(b) (c)

(a)

 
Figure 21. Experimental results compared with different loss functions. (a) The variation diagram of 
loss with iterations in two ways, wherein the siamese0 represents the contrastive loss used as the 
loss function in the training process, while the siamese1 represents the sigmoid modification 
function used. (b,c) Histograms of test results in two ways, where each long column represents the 
number of samples within the range of Euclidean distance, in which the “same type” represents the 
same type of data pair and the “diff type” represents the different type of data pair. (b) shows the 
test results using the sigmoid modification function. (c) shows the test result diagram using the 
contrastive loss function. 

Figure 21. Experimental results compared with different loss functions. (a) The variation diagram of
loss with iterations in two ways, wherein the siamese0 represents the contrastive loss used as the loss
function in the training process, while the siamese1 represents the sigmoid modification function used.
(b,c) Histograms of test results in two ways, where each long column represents the number of samples
within the range of Euclidean distance, in which the “same type” represents the same type of data
pair and the “diff type” represents the different type of data pair. (b) shows the test results using the
sigmoid modification function. (c) shows the test result diagram using the contrastive loss function.
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6.2.2. Model Initialization

The convolution part with the convolution parameters of the classification model can effectively
extract sign language features. Therefore, using these parameters to initialize the verification model
can help the training process find the parameters with good performance faster. The experimental
results using different model initialization methods are shown in Figure 22. In the graph, it can be seen
that using the convolution parameters of the classification model to initialize the feature extraction
part of the network can significantly accelerate the training speed of the network. In the comparison
of test results, when distinguishing whether the labels of the data pairs were the same, the effect of
parameter initialization using only normal distribution was not as good as that with the classification
model parameters. Because of the faster training speed and the distinction between different types of
data pairs, the parameters of the convolution part of the classification model were used to initialize the
parameters of the verification model in online recognition.
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Figure 22. Comparison of experimental results with different initialization methods. Each of these
subgraphs has the same meaning as Figure 21. (a) The siamese0 represents the situation under the
normal distribution parameter initialization method used in the training process, and the siamese2
represents that under the parameters trained by the classification model for feature extraction. (b) The
test result diagram initialized with the classification model parameters. (c) A test result diagram that
only used normal distribution for parameter initialization.

6.2.3. Batch Size

The experimental results of training using different batch sizes are shown in Figure 23. It can be
seen from Figure 23a that the fluctuation amplitude of loss at batch size 128 was far larger than that of
the other two cases, and the gradient descent rate was the slowest. Thus, we can conclude that the
change in the batch size can affect the fluctuation of the gradient descent. Larger batch size makes
the distribution of the batch data closer to the distribution of total samples, making the distribution
difference between batches smaller, thus making the fluctuation of loss smaller. When the batch size
was 512, the fluctuation range of loss was the smallest. However, after a certain number of iterations,
the training situation of the batch size with 256 and 512 was basically similar. A large batch size will
cause problems. When the batch size is doubled, the number of iterations of the same epoch will also
be reduced by one time. It can be seen from Figure 23a that under the same epoch, the model training
effect of a batch size of 512 was not superior to that of a batch size with 256. It can also be seen from
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Figure 23b,c that when the batch size was 256 and 512, it was better to distinguish whether the data
were the same with labels. By comparing graphs Figure 23c,d the discrimination degree of different
data pairs was similar when the batch size was 256 and 128. The batch size of the verification model
was 256 in online recognition because of the better training effect and the distinction between different
types of data pairs.

Sensors 2019, 19, x FOR PEER REVIEW 28 of 33 

 

discrimination degree of different data pairs was similar when the batch size was 256 and 128. The 
batch size of the verification model was 256 in online recognition because of the better training 
effect and the distinction between different types of data pairs. 

(c) (d)

(a) (b)

siamese0

siamese3

siamese4

 
Figure 23. Comparison of the experimental results of network training using different batch sizes. 
Each of these subgraphs had the same meaning as Figure 21. (a) Siamese0 represents the situation of 
the batch size 512, siamese3 represents 256, and siamese4 represents 128. (b) The test results whose 
batch size was 256. (c) The test results whose batch size was 512. (d) The test results whose batch 
size was 128. 

6.3. Online Sign Language Recognition 

In this section, we analyze some important experimental results of the recognition–verification 
mechanism and the segmentation–recognition mechanism. In the recognition–verification 
mechanism, the parameters and experimental methods of the classification model and verification 
model are shown in Section 5.3.2. When the online sign language data passes the classification 
model and verification model, it needs to be compared with the threshold to determine whether the 
recognition was successful. The formula of threshold is chosen as shown in Equations (4) and (5) in 
Section 4.3, using 2.5 times the 80% quantile as the threshold of this class. Threshold selection 
results for different categories are shown in Table 4. 

Table 4. Sign language thresholds. Thresholds for each location in the table correspond to the 
location in Table 1. 

Sign Language Thresholds 
14.90 14.38 16.17 14.06 14.53  14.87 17.55 16.33 16.35 
15.23 14.58 14.42 15.06 15.42 14.38 14.83 14.93 17.26 
16.11 14.92 15.27 15.77 16.56 14.58 16.38 14.82 15.14 
19.03 17.28 14.62 15.25 17.24 15.23 14.27 16.46 14.12 
16.47 14.23 15.30 16.17 15.29 13.49 15.63 17.26 16.37 
14.67 17.93 16.88 15.19 12.99 15.16 13.22 14.62 21.99 
16.33 15.39 15.98 13.60 19.03 15.29 16.15 15.76  
16.59 14.64 14.98 15.10 14.18 15.29 15.38 16.45  
14.73 14.76 16.01 14.99 14.99 15.72 14.53 14.89  
14.96 14.26 14.72 16.32  13.76 14.58 15.76 15.34  
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6.3. Online Sign Language Recognition

In this section, we analyze some important experimental results of the recognition–verification
mechanism and the segmentation–recognition mechanism. In the recognition–verification mechanism,
the parameters and experimental methods of the classification model and verification model are shown
in Section 5.3.2. When the online sign language data passes the classification model and verification
model, it needs to be compared with the threshold to determine whether the recognition was successful.
The formula of threshold is chosen as shown in Equations (4) and (5) in Section 4.3, using 2.5 times
the 80% quantile as the threshold of this class. Threshold selection results for different categories are
shown in Table 4.

Table 4. Sign language thresholds. Thresholds for each location in the table correspond to the location
in Table 1.

Sign Language Thresholds

14.90 14.38 16.17 14.06 14.53 14.87 17.55 16.33 16.35
15.23 14.58 14.42 15.06 15.42 14.38 14.83 14.93 17.26
16.11 14.92 15.27 15.77 16.56 14.58 16.38 14.82 15.14
19.03 17.28 14.62 15.25 17.24 15.23 14.27 16.46 14.12
16.47 14.23 15.30 16.17 15.29 13.49 15.63 17.26 16.37
14.67 17.93 16.88 15.19 12.99 15.16 13.22 14.62 21.99
16.33 15.39 15.98 13.60 19.03 15.29 16.15 15.76
16.59 14.64 14.98 15.10 14.18 15.29 15.38 16.45
14.73 14.76 16.01 14.99 14.99 15.72 14.53 14.89
14.96 14.26 14.72 16.32 13.76 14.58 15.76 15.34
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As can be seen from the table, the number of thresholds distributed in the 14–18 range was 78,
accounting for 90.70%. According to experience, when the threshold is less than 14, it is difficult to
recognize the category correctly. When the threshold is greater than 18, misrecognition often occurs.
Thus, the range of threshold was limited to 14–18. When the threshold was greater than 18, we replaced
it with 18, and when it was less than 14, we replaced it with 14.

In the segmentation–recognition mechanism, referring to the data flow in Figure 3, the corresponding
experimental steps have been given in Section 5.3.3. In this mechanism, the segmentation method uses
the energy of sEMG to compare with the threshold to determine the start and end positions of the
effective region in SLR. The schematic diagram of the piecewise process is shown in Figure 24.
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Figure 24. Segmentation in the segmentation–recognition mechanism. The purple part in the red box
is the effective region of sign language “communication”. The green shadows are the blank region.
The shaded part with oblique lines in the blue box is the determining area for the beginning and ending
positions of the effective region. The red line is the contour of the energy threshold.

In Figure 24, we can see that in the case of the weak action interference, most of the energy of
the sEMG in the effective region of sign language was greater than the threshold, while most of the
energy of sEMG in the blank region was less than the threshold in the case of weak action interference.
Therefore, with less interference, the start and end positions of sign language can be determined
based on this threshold. In this mechanism, we used SVM to classify sign language. The average and
variance of the accuracy rate were 93.26% and 10.38%2 by 10-fold cross validation. Therefore, it can be
concluded that the trained SVM can achieve good classification results for offline sign language data
under the given feature types in this experiment.

In the experiment of online SLR, the pre-collected online sign language data were fed into
the recognition–verification mechanism and the segmentation–recognition mechanism, and the
experimental results of the two mechanisms were compared. The results of the online SLR experiment
are shown in Figure 24.

As is shown in Figure 25, we can find that the Siamese network in the recognition–verification
mechanism has a strong ability to judge the misrecognition results of the classification model.
Compared with the segmentation–recognition mechanism, the misrecognition frequency of “insert”,
“misalignment”, and “substitute” in the recognition–verification mechanism decreases. Because the
recognition–verification mechanism uses sliding windows to pull data from the original sign language
signals, there was misrecognition of “repeat” in the experimental results of the recognition–verification
mechanism that did not exist in the segmentation–recognition mechanism. At the same time,
the misjudgment of the correct results by the recognition–verification mechanism also made the
misrecognition frequency of “delete” slightly increased compared with the segmentation–recognition
mechanism. However, the error frequency of “correct” in the recognition–verification mechanism was
more than twice that of the segmentation–recognition mechanism.

Because of the different operation schemes of the two mechanisms, the calculation methods for the
average time of the two mechanisms were also different. The recognition–verification mechanism uses
sliding windows to recognize online data. In the process of processing online datasets, the number of
sliding windows pulling data was 15,263 times, and the total time was 117 s. The average processing
time for each sliding window was 7.67 ms. In the segmentation–recognition mechanism, 394 effective
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regions of sign language were recognized. This mechanism takes 13 s to process the whole online dataset.
For each online data segment recognized, the segmentation–recognition mechanism spent an average
of 32.99 milliseconds on sign language recognition. By comparing the average time, it can be concluded
that the delay of the two mechanisms in online SLR was not obvious, and the recognition–verification
mechanism had faster recognition speed than the segmentation–recognition mechanism.
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Therefore, on the whole, the performance of the recognition–verification mechanism was better
than that of the segmentation–recognition mechanism.

7. Conclusions and Future Work

In this paper, our main research content was online SLR using sEMG sensors and IMU. Before
putting forward our experimental scheme, we analyzed the possible difficulties in online SLR, and
classified basic misrecognition into five types: “insertion”, “misalignment”, “repeat”, “substitute”,
and “delete”. After that, we introduced the sign language database, based on which, we built
a recognition–verification mechanism for online SLR. In this mechanism, a CNN based on VGG
architecture was used as the classification model, and the model was optimized. The verification
model used the CNN-based Siamese network, and optimized the initialization of the model and the
selection of batch size, and proposed the Sigmoid correction function as the loss function for network
training. After determining the relevant configuration of the recognition–verification mechanism,
in order to verify the effectiveness of our method, we designed an online SLR experiment. In this
experiment, we saved a section of the online sign language data collected in advance, sending the
data to the recognition–verification mechanism for processing and analyzing results, and compared it
with the traditional segmentation–recognition mechanism. By analyzing the experimental results, the
effectiveness of the recognition–verification mechanism was verified.

Our study provides a reference method for online SLR, but more work needs to be done. In order
to apply online SLR to reality, we need a larger sign language dataset that includes more sign language
types. Based on more kinds of sign language, whether this method has good performance needs to
be further verified. The current method to obtain data is relatively inefficient, as each category of
sign language contains relatively few samples. In order to make the SLR scheme more robust online,
the dataset needs to include more samples that can be seen as the same kind of sign language, and it is
necessary to research a kind of sign language data generation method to expand the dataset. In the
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recognition–verification mechanism, the calculation of reference vectors and thresholds depends on the
current dataset. If data samples are added or deleted in the dataset, reference vectors and thresholds
need to be recalculated. Therefore, it is necessary to design an excellent reference vector and threshold
updating method to save computational effort and ensure that the system can be optimized steadily.
In addition, our research work of SLR is on the level of words now. In the future work, we can use
language model to translate the recognized sign words into sentences for output. In addition, we can
also try to use end-to-end method to recognize sign language at sentence level. In this way, sign
language recognition has greater practical value in practical application.
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