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Abstract: The infotaxis scheme is a search strategy for a diffusive source, where the sensor
platform is driven to reduce the uncertainty about the source through climbing the information
gradient. The infotaxis scheme has been successfully applied in many source searching tasks and
has demonstrated fast and stable searching capabilities. However, the infotaxis scheme focuses
on gathering information to reduce the uncertainty down to zero, rather than chasing the most
probable estimated source when a reliable estimation is obtained. This leads the sensor to spend
more time exploring the space and yields a longer search path. In this paper, from the context
of exploration-exploitation balance, a novel search scheme based on minimizing free energy that
combines the entropy and the potential energy is proposed. The term entropy is implemented as
the exploration to gather more information. The term potential energy, leveraging the distance to
the estimated sources, is implemented as the exploitation to reinforce the chasing behavior with
the receding of the uncertainty. It results in a faster effective search strategy by which the sensor
determines its actions by minimizing the free energy rather than only the entropy in traditional
infotaxis. Simulations of the source search task based on the computational plume verify the efficiency
of the proposed strategy, achieving a shorter mean search time.

Keywords: mobile sensor; infotaxis; exploration-exploitation; free energy

1. Introduction

Autonomous robots carrying appropriate sensors can be deployed to efficiently localize the
source of a biochemical or radiological contaminant leakage, such as an oil spill or a radioactive
dispersal, and track the contaminant dispersion in turbulent flows [1,2]. This issue of source search,
referred to odor or gas source localization, has received considerable research in recent years [3—6].
In general, variations in material concentrations from a source in a flow field are heavily dependent
on the Reynolds numbers. Gradient-based strategies, such as extremum seeking [7], Escherichia coli
algorithms [8], and Braitenberg algorithms [9], work well in a low Reynolds environment with smooth
variations in material concentrations. However, in a turbulent environment with high Reynolds,
the dispersion from a source is typically broken into unsteady, sparse, and disconnected patches [10,11].
It results in a sporadic and intermittent sensory landscape, with fluctuating variations without the
gradient pointing towards the source [12], rendering the gradient-based strategies ineffective or even
invalid [13]. This work focuses on the search for a diffusive source of unknown location in the open
wind field where turbulence can cause irregular gradients and intermittent sensory cues.
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The search problem in a turbulent environment can be formulated as a probabilistic search
to account for stochastic intermittent detections. A class of probabilistic search strategies referred
to as infotaxis [14] is used specifically for seeking the diffusive source in a turbulent medium,
which determines actions to reduce the uncertainty about the source through minimizing the entropy of
the source probability distribution. The infotaxis scheme has been effectively exploited and developed
for many search strategies. Masson [15] proposed an infotaxis scheme termed mapless, allowing the
search in complex varying environments with limited space perception based on the minimization
of free energy. Ristic et al. [16] investigated the performances of an infotaxis scheme based on three
different reward functions, developing an improved infotaxis scheme based on Rényi divergence as
well. Hutchinson et al. [17] developed the entrotaxis scheme that drives the searcher to the position
of the most uncertainty in the next detection, instead of the position of the minimum uncertainty in
the expected posterior source distribution. Mishra et al. [18] proposed the expected rate algorithm
and proved that both infotaxis and expected rate algorithms generate identical optimization steps in
most cases.

The exploration-exploitation balance is the key to maintain the search efficiency leveraging
these stochastic detections [19]. For the infotaxis method, the expected reduction of the entropy is
implemented as the exploration term (that is, gathering more information and obtaining a more
reliable estimate of the source distribution) and the maximum likelihood as the exploitation term
(that is, going to the estimated most probable source location) [20]. This work addresses the drawback
in the traditional infotaxis strategy [14] that tends to favor the exploration over exploitation of the
information, resulting in search behavior with more traverse motions and spending more search time.
There exists an exploitation term playing the role of the maximum likelihood. Nevertheless, it employs
the local probability around the sensor for the maximum likelihood, which prevents the chasing
behavior from being led off the track with the receding of uncertainty after acquiring more detections.
The problem lies in that the small divergence of the local probabilities is not available to produce
a significant gradient towards the most probable source. Moreover, we notice that the exploitation
by directly going to the global most probable source location is very risky because the estimated
probability distribution is multimodal and not reliable before obtaining adequate detections [21].
In fact, a maximum likelihood or maximum a posteriori strategy systematically fails far from the
source because of the misrepresentation of the environment by the unreliable probability distribution.
Thus, the balance between exploration and exploitation should be dynamically adaptive according to
the degree of the probability distribution’s reliability. In this case, Masson [15] has employed a local
probability with an extended domain to reinforce the maximum likelihood behavior that shifts the
balance toward exploitation.

To balance exploration-exploitation and speed up the search progress, we propose a novel
search scheme that minimizes the combination of entropy and potential energy, formalized as a form
of free energy [15,21,22], where the mobile sensor platform determines its search action towards
the minimization of the free energy. The entropy drives the sensor to accumulate the information
(as in the conventional infotaxis). The potential energy, involving the weighted sum of the sensor’s
distance to hypothetical sources, is added to reinforce the chasing behavior. The temperature actively
controls the relative value between the potential energy and the entropy. The varying temperature is
reduced by levering the trace of the covariance matrix of the probability distribution and so shifts the
balance toward exploitation with the receding of the uncertainty or the increasing reliable estimation.
Similar to [16,17,23], we employ a particle filter representation of the source probability distribution
to make the strategy computationally tractable for large complex spaces. Then, the potential energy
is computed by the spread of the particles and the distance between the current position and all the
particles. We demonstrate the efficiency of the scheme numerically, with a computational model of
odor plume propagation. The contribution of this paper is that free energy is introduced to replace the
entropy for decision making, which shifts the exploration-exploitation balance toward exploitation
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with the receding of the uncertainty about the source. It can lead to a faster search for a diffusive
source in a large space and result in a shorter path to reach the source for mobile sensor platforms.

The organization of the paper is as follows. The problem formulation is presented in Section 2.
The scheme of free energy infotaxis is described in Section 3. Section 4 presents the numerical results,
through simulations using a computational plume dataset characterized by a turbulent flow. Finally,
the conclusions are drawn in Section 5.

2. Problem Formulation

2.1. Infotaxis Scheme

Infotaxis was introduced in [14] for searching in complex environments with stochastic sporadic
detections. It is built around two core components: Bayesian estimation of the source position based on
detection history and greedy decision making based on entropy minimization. Bayesian estimation is
employed to construct the posterior probability distribution about the source location. Greedy decision
making is to choose the searcher’s motion direction gathering the information reward computed on
the probability distribution.

Suppose that the diffusive source is located at coordinates specified by ry = (xo,10)T € W,
where W € R? denotes a free two-dimensional search area. A spherical detecting sensor with
radius a is mounted on the mobile sensor platform, whose position is ¥ = (x,y). The status of
detection is identified as a binary variable & € {0,1} by a sensor: 1 = 0 indicates no dispersion at
the current position of the sensor, and & = 1 indicates otherwise. The counting positive detections
z = sum(h) during the time interval At at any location r are modeled by the Poisson distribution

as follows: (R(1, ro) A
r,to) At
RIS oxp (= (R ) M
where R(r,ry)At denotes the expectation of positive detections in time interval At. The mean rate
R(r,rp) is defined as the expected number of encountering the dispersion at the given position r with

respect to the source located at 7y. The mean rate is related to the distance from the source, the strength

2~ plz) =

of the source, the dynamics of the flow field, and the geometric structure of the environment.
The parameters of R(7, rp) including strength, wind velocity and direction, and diffusivity are generally
assumed to be the prior knowledge.

The detection events along the search trajectory carry the cues about the relative location of the
source with respect to the sensor. We assume dy = (7, zx) encapsulates the detection at position ;. for
zi encounters of the dispersions at time k. The posterior probability Py (o) for the unknown position
of the source utilizing Bayesian inference reads:

Pe(ro) = L=t b0k lro) @)
S Pe—1(r0)£(dx|ro)dro
where ((di|rg) = p(zx, R(r,19)) denotes the likelihood of the detection dj conditioned on the
source at rg.
In the context of information theory, the purpose of the sensor is to reduce the uncertainty of the
target through the interaction with the environments. Shannon entropy is introduced to measure the
uncertainty Sy = — [},, P(ro) log Pi(ro)dro. New detections can reduce the entropy and increase the

amount of information. The expected change in information results from any detection or non-detection
upon moving to one of the admissible locations r, as follows:

AEs(re — ru) = Pulran) (0— S¢) + (1~ Pe(rm)) Y. 09 AS) )
n=0
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where AS y is the change in the entropy of the estimation if the sensor receives y = {1, 2,3,... } new
positive sensor detections at the next step as it moves to the neighboring position. p, denotes the
probability of # hits by the Poisson model. The first term on the right side corresponds to expected
change in entropy upon finding the source at r,,;, and the second term accounts for the case when the
source is not at r,;. The targeted minimization of entropy drives the sensor to move in the direction
of the most entropy drop. When the entropy is reduced to zero, the uncertainty disappears, and the
source is found.

2.2. Deficiency in Infotaxis Scheme

The first term on the right-hand side of Equation (3) is the exploitative term, favoring motion to
maximum likelihood points. The second term on the right-hand side of Equation (3) is the explorative
term, favoring information gain to receive additional detections. Thus, it can be explicitly seen that the
infotaxis scheme naturally combines exploitative and explorative tendencies.

The drawback presented in the infotaxis scheme is that the exploitative term only works near the
end of the search. While the probability converges to the source, the searcher’s position is still far away
from the source because of sensing the far field via the hit rate. This leads to the searcher locating in
the zone of low probability, which cannot produce a significant gradient pointing towards the most
probable position. The values of Py (r,,) for all admissible neighboring locations 7 are small (as shown
in Section 4.1). It weakens the role of exploitation played by Py (7,;)(0 — Si) and consistently shifts the
balance of exploration-exploitation towards exploration during the search process. The sensor enters
into the zone of high probability only close to the source. Subsequently, the maximum likelihood
explicitly points toward the source and preforms its function at this time.

It should be noted that the probability distribution of the source is generated from the remote
estimation. As a result, the sensor always lays behind the convergence rate of the probability
distribution. Instead of maximum likelihood by P (r,)(0 — Si), chasing the global most probable
source can lead to very efficient searches. Nevertheless, directly chasing the peak position of
probability systematically fails because of the multimodal probability distribution. Moreover,
strengthening the exploitation before obtaining a more reliable estimation frequently leads to a self-trap
(over-exploitation). In fact, the mobile sensor platform should gradually favor the chasing behavior,
where the exploitation has more influence on the decision process with the improving reliability of
the probability distribution. In general, the problem is formulated as the requirement of the infotaxis
scheme where the exploration and the exploitation are combined and actively balanced during the
search process.

3. Free Energy Infotaxis Search Scheme

The details of the proposed free energy infotaxis scheme for improving the search are presented
in this section. We first present the construction of free energy in the context of thermodynamic
theory. Next, the particular design based on the particle filter and the computational form of POMDP
(Partially-Observable Markov Decision Process) by minimizing free energy are provided.

3.1. Construction of Free Energy

The entropy continues to be effective as the exploration term (as in the traditional infotaxis), i.e.,
driving the sensor to gather information to improve the accuracy of estimation. Meanwhile, another
new exploitation term that involves the attraction of the most probable source is presented with the
purpose to reinforce the behavior of chasing the most probable source.

In this work, the attraction function is defined as potential energy related to the weighted sum of
the distance between the current location 4 and all the hypothetical sources ry with different weights
expressed by the probability distribution. It avoids directly using the peak location of probability
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distribution Py (rg) as the most probable source because of the multimodal nature of the probability
distribution. The potential energy W is defined as:

Wi = / Py(ro)||rx — rol|"dro 4)
roeW

where ||ry — 79]| is the distance between the current location r; and a hypothetical source rp and y
is the exponent of the distance that determines the attraction strength by the hypothetical source.
The probability Py (ro) play the role of the weight of the attraction from the hypothetical source at the
location rg. The potential energy Wy describes the synthesized attraction of all the hypothetical sources
whose probability is continuously updated while acquiring new detections. This term is different from
the “work energy” of the free energy in [15], which depends on the gradient in the probability map.

The combination of the entropy as exploration and the potential energy as exploitation formalizes
the form of free energy. Hence, instead of the entropy in the infotaxis scheme, the free energy to be
minimized reads:

Pk = Wk+TSk

:/ pk(ro)||rk—ro||“rdro—a-tr(z)ﬁ/ Pe(r0) log Py(ro)dro
rgeW roeW

©)

where W is the potential energy and Sy is the Shannon entropy, while T = & - t(X)F is the temperature
that controls the relative value between the two previous terms. tr(X) is the trace of the covariance
matrix X of probability distribution Pi(rp), and « is a factor of proportionality, while B denotes its
exponent that determines the descending rate. The value of tr(X) declines as the probability Py (o)
contracts from the initial uniform distribution to the gathering distribution on the source, which
indicates the reduction of the uncertainty and a more reliable estimation of the source distribution.
In particular, the proportion of potential energy in free energy is adjusted by the reduction of
temperature. By comparison, the temperature of free energy is kept constant in [15,22], and the proposal
of varying temperature was mentioned in [15]. The reducing temperature avoids the over-exploitation
of moving toward the most probable source location for the high uncertainty of the environment or
low reliable probability distribution.

During the search, the term Sy drives the sensor to accumulate the information for the increasing
reliability of the estimation and reduce the uncertainty about the source. With the reduction of the
uncertainty (decreasing tr(X)), the term Wy gradually leads off the search and drives the sensor to chase
the estimated most probable source location. Therefore, the balance is shifted from exploration (S) to
exploitation (W) with the receding of the uncertainty (i.e., increasing reliability of the estimation).

3.2. Implementation Based on the Particle Filter

The processes of Bayesian estimation, decision making, and the weighted sum of distances all
rely on the probability distribution, which is represented on a grid map in the traditional infotaxis
scheme. However, the resolution of the grid map that covers the search area must be increased to
accommodate the accuracy of the probability distribution. The large number of the grid cells presents
additional challenges in computation on a sensor platform. To facilitate the computation intensity,
the sequential Monte Carlo method is employed to represent the probability distribution with a limited
and tractable amount of randomly-drawn particles. The use of a particle filter allows us to bound the
computational burden on the sensor platform [16,23], which determines the probability distribution to
cover the search area that is of interest.

Let us use the sequential Monte Carlo method to represent the posterior distribution Py (r() by
a random set {(ré;:),w,(cm))}m:l;M. Here, r(()tz) = (x(()'j,:),y(()';)
g

)T is the position of the random particle

sampled from probability map Py (rp) and w, "’ is the associated weight. The weights are normalized,
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ie, YM wk = 1, and M is the number of particles. The approximation of the sensor’s source
probability map can then be expressed as:

o (m) (m)
Pi(ro) = ) w;"6(ro — 1y ) (6)

m=1

where 4(-) is the Dirac delta function. By comparing with the grid-based method [14,15,22],
Monte Carlo approximation has simplified the numerical solution of complicated integrals and made
the representation of the probability map light.

Given the prior probability at time k — 1 represented by { (r(()rz) » w](cm)l)}m 1:M, One can compute

random samples {(r (()k)'wk )}m=1:m to approximate the posterior Py(rg) at time k, using the

7 ()

importance sampling technique [24]. The unnormalized particle weights @, are computed using
detections dy, as follows:
" = wi™ e(delrly) )

The particle’s weight is subsequently normalized, w,((m)

w (m) / Z LTJ . Im li
B 210 portance sampling
is carried out sequentially for k = 1,2,...,. In order to improve the resulting sample diversity,

the resampled particles are subjected to an MCMC move step. The condition of resampling is that the

2
effective size Mosr =1/ yM (w,((m)) of the particles becomes less than a threshold.

As the probability distribution Py (ry) is approximated by the sampled particles {r(()rz), w,((m) bn=1:M,

the entropy can be calculated as Sy = — Y M, w](( 'In wlgm). The hypothetical sources are represented

(m)

by the particles (not grid cells in [14]), i.e., each particle r;,” denotes a hypothetical source associated

with a weight w,((m). By the importance sample method and resample method, the number of particles

needed in this case is substantially less than the previous grid cells. Then, the free energy based on
particles can be calculated by:

:Wk+TSk

Z wk |rk—"0k |7 —a-tr(X)P le;(c )lnw,(( )
m=

where the potential energy W is the weighted sum of the distance between the current location 7 and
(m)

all the particles ;,” with the corresponding weight wlgm). The trace tr(X) in temperature T is measured

by the spread of the local positional particles {r(()’;?, w,(cm) Fm=1:m (X is the weighted covariance matrix
of the particles” distribution). Here, the level of uncertainty about the source and the reliability of
the estimations is indicated by the spread of particles. With acquiring more detections, the spread of
particles contracts to cover the area of the most probable source, which corresponds to the decrease of
trace tr(X).

3.3. Infotaxis Decision by Minimizing Free Energy

The sensor platform at r; autonomously decides on the control variable uj using the free
energy infotaxis strategy, which can be formulated as a partially-observed Markov decision process
(POMDRP) [16]. The elements of POMDP include the state, a set of admissible actions and a reward
function. The state at time t;_1 is the probability distribution P;_1(r) that specifies the sensor current
knowledge about the source. Admissible actions i/ can be formed with one or multiple steps ahead.
A decision in the context of the search is the selection of a control vector 1y € Uy. The reward function
maps each admissible action into an expected information gain.
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Based on the probability distribution represented by sampled particles {r(()'z), wlgm) Fm=1:M,
the POMDP decision is transferred to minimize the free energy rather than only the entropy Sy.

H = arg max {F—1 — E{R[dx(v)]}} ©)

where E {Fy[di(v)]} is the expected free energy, which is updated on the prior free energy F;_; with the
future detection di(v). EE is the expectation operator. The space of admissible actions Uy is continuous
with dimensions: linear velocity V, angular velocity (2, and duration of motion Ty,. In order to reduce
the computational burden of numerical optimization, I is adopted as a discrete set. If V, O, and T
denote the sets of possible discrete values of V, ), and Ty, respectively, then U is the Cartesian
product V x O x T (refer to [16]).

In the computation of E { Fy[dy(v)]}, we need the future detection dy(v) = {rx(v), zx(v)} for the
calculation of w,((m) (v). However, the reward must be computed before the mobile sensor platform
actually moves to r¢(v) and acquires the next measurements z;(v). In practice, for a given position

r, we compute the mean (v) = tg M, w,((m)R(r, r(()';)) and then find z,,, such that the distribution
function corresponding to Poisson probability p(z; u(v)) = e *®u(v)?/z! (refer to Equation (1))
is greater than a certain threshold 1 — 5, where < 1. The summation is then computed only
for z = 0,1,...,Zmax. Thus, the two terms of free energy F[dy(v)] are calculated based on the
particles {rétz), w,({m) (v)}, the sensor future position r¢(v), and measurements zx(v). The expected

value E {F;[di(v)]} with respect to the probability mass function p(z; i(v)) is:

Zmax

E {F[di(0)]} = ;) p(2; o) Fi[di (0)] (10)

The search continues until the global stopping criterion is satisfied, where the mobile sensor
platform falls into the local area of the source location within a certain radius for declaring the source.
If the distance between the sensor platform and the source is smaller than Rs, then the stopping
criterion is satisfied and is given a value of one, otherwise it is zero.

The basic steps for the algorithm of free energy infotaxis scheme on the search sensor platform
are summarized in Algorithm 1.

Algorithm 1  the free energy infotaxis scheme

1 Input: sensor’s position 7, particles {(rén]z): ” wl((":é) bm=1.M
4 while “source not found” do

5 Compute the free energy F,_; using Equation (8)

6 Create the admissible set U =V x O x T

7 for every v € Uy do

8 Compute the future sensor location r¢(v)

9 Determine Zpax s.t. 2% P(z;u(v)) > 1—1

10 Compute the future free energy Fy [dy(v)]

11 Compute the expected reward E(F; [dy(v)]) using Equation (10)
12 end for

13 Find uy in maximum {F,_1 — E {F[dy(v)]}}

14 Move to i and detect the dispersion as dj

16 Update the particles {(r(()?, w]((w ) }m=1:m using Equation (7)
17 end

18 Output: the estimated source position 7

4. Simulations

Simulations of the source search task based on computational plume were established to study the
effectiveness and efficiency of the proposed strategy. A typical run was first carried out to illustrate the
performances of the traditional infotaxis and the proposed strategy. Then, average search performance,
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expressed by the mean search time and the mean distance, was estimated via Monte Carlo runs. Lastly,
the effect of temperature T was investigated and discussed.
The following parameters (all physical quantities are arbitrary units (a.u.)) were used:

True source parameters: Xo = —200,Yp =0,Qp = 2;

Search area: WW = [—300,300] x [—150,150];

Motion model parameters: § = 0.25,V = {1},0 = {-3,-2,-1,0,1,2,3} « 7/180, T = {1};
Environmental and sensor parameters:a =1, D =1, 7 =400,V =0.5,A; = 1;

Algorithm parameters: @ = 0.01; § = 1.4 ; v = 3 and number of particles M = 600, M;,; = M/3;
Local search stopping threshold: Rs = 3.

SAINLN S

4.1. Typical Run

First, we investigated the trajectories and search process to demonstrate the performances using
the infotaxis scheme and the free energy infotaxis scheme, respectively. The results of typical runs on
the infotaxis scheme and the free energy infotaxis scheme are shown in Figures 1 and 2 respectively,
and Figure 3 presents the corresponding characteristics during the search.
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Figure 1. The trajectory (red line), detections (red solid circles), and particles (black dots) of the mobile
sensor platform at the times k = 300, 500, 1080, 1385 using the infotaxis scheme. The source location at
(—200,0) with the contour plot of the corresponding mean rate. The estimated source is indicated by
the weighted center of the particles marked by the red star.
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Figure 2. The trajectory, detections, and particles of the mobile sensor platform at the times

k =150, 350, 550, 764 using the free energy scheme. The source location at (—200, 0) with the contour

plot of the corresponding mean rate.

(@) 2 T T
—=o© free-energy infotaxis
—9© infotaxis
» L5F
=
[}
£
2 1
>
(%]
Iof
i}
=
0.5~
0
0 200 400 600 800 1000 1200 1400
4
(b) 5 x10 T
free-energy infotaxis
4 infotaxis 4
g st .
1
o
g Ll |
1k 4
0 Il Il Il Il
0 200 400 600 800 1000 1200 1400
(€) 250 \
free-energy infotaxis
8 200 infotaxis -
5
3
° 150 b
8
c 100 4
£
0
o 50 b
0 Il Il Il Il Il
0 200 400 600 800 1000 1200 1400
Time steps

Figure 3. (a) The measurements of sensor platform over time; (b) the trace of the covariance matrix

measuring the spread of the sampled particles; (c) the estimated source’s distance to the source over

time, marked in red corresponding to Figure 1 and marked in blue corresponding to Figure 2.
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Figure 1 displays the search area, the trajectory of the search sensor at k = 100,300,1050,1385
using the infotaxis scheme, as well as the source location at (—200,0) with the contour plot of the
(m)

corresponding mean rate. The random samples ro,z approximating the posterior Py (r() are shown as
black dots. Figure 1a shows the particles before meeting the re-sampling condition, where the particles
are placed on a regular grid, thus mimicking a grid-based approach, with the value of particle weights
indicated by the gray-scale intensity. After acquiring the positive detections, the particles {r(()iz) Ym=1:M
were resampled, and their corresponding weights were reset to the uniform 1/M (shown at k = 300).
At this time k = 300, the spread of the sampled particles contracted, but maintained a relatively high
level. This is indicated by the trace of the covariance matrix as shown in Figure 3b. Nevertheless,
the mobile sensor platform tended to explore the space and generated a spiral search behavior. Then,
the spread of the sampled particle contracted to a small area at k = 1050 as more detections were
acquired (the trace declined, as shown in Figure 3b), but the spiral search still appeared. The overall
search trajectory demonstrated many turns and winds. This would cost much of the limited time of the
sensor platform. The distance to the source in Figure 3c indicates the approaching rate of the sensor
towards the source. In general, the expected search should be that the sensor platform targets the most
estimated probable source location as the reducing spread of sample particles meets a certain level.

Figure 2 shows the search area, the trajectory of the mobile sensor platform at k = 100, 300, 500, 764
using the free energy infotaxis scheme, and its sampled particles. The trajectory is similar to that in
Figure 1 before the time steps k = 300, as shown in Figure 2a,b, and there were also similarities in
the curves of trace tr(X) and the distance to the source, as shown in Figure 3b,c. As more positive
detections were acquired, the spread of the particles contracted (shown at k = 500), i.e., more reliable
estimation or increased certainty about the source (the trace of covariance matrix declines in Figure 3b).
The exploitation in the search was gradually reinforced, and the mobile sensor platform gradually
tended to approach the intensive area of particles, as shown in Figure 2c. When the spread of particles
contracted to a small area, the exploitation behavior led the search off track, and the sensor platform
was driven to go straight to the most probable source (shown at k = 764). The distance to the source
shown in Figure 3c demonstrates that the chasing behavior gradually led the search off track with the
improvement of the estimation and made the mobile sensor platform go straight towards the source.

Figure 4 is presented to show the situation that the maximum likelihood method by Py () (0 — Sk)
in the infotaxis scheme cannot effectively reinforce the exploitation via the neighboring probability
or local probability. Obviously, the probability distribution contracted to cover the location of the
source and reached an appropriate level of reliability (r(X) declines in Figure 3b) to direct the search.
However, the sensor’s position was located in a low probability area, which is unavailable to produce
a significant gradient pointing towards the source. This led the term of exploitation Py(ry,)(0 — Sg) in
Equation (3) not to perform its function.
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Figure 4. The contour plot of the probability map (the particles fitted by Gaussian Mixture
Model(GMM)), the current position of the mobile sensor platform marked by a blue triangle at the time
k = 1020 using the infotaxis scheme.

The observed results by typical runs confirmed that the availability of potential energy in the free
energy infotaxis scheme is essential to improve the search performance on a given search task.

4.2. Monte Carlo Runs

Next, to evaluate the performance and efficiency of the proposed approach, 100 Monte Carlo
runs were performed. The search was performed using the source location at the top left of the space
and the initial position at the bottom right. Table 1 shows the mean search time when varying the
scale of the search area, comparing the free energy infotaxis scheme with the related infotaxis schemes.
These works provide improvements to the classical infotaxis method from varying perspectives.
Infotaxis II [16], Infotaxis III [16], and Entrotaxis [17] perused a more effective information gain for
decision making. Mapless infotaxis [15] and the proposed method based on the free energy shift the
behavior of gathering information to the behavior of exploiting the information. In our simulation,
we focused on the form of free energy employed by mapless infotaxis without taking incomplete space
information and odometry errors into account, as in [15].

Table 1. Mean search time (steps) for the infotaxis methods with varying scale of the search area.

Space Scale 100 x 100 150 x 150 200 x 200 250 X 250 300 X 300 350 x 350
infotaxis [14] 376.8 641.1 989.5 1156.9 1419.3 2136.5
the proposed method 335.7 483.6 821.1 993.5 1251.2 1982.0
mapless infotaxis [15] 347.9 535.2 864.5 1108.4 1391.3 2109.3
Infotaxis IT [16] 372.1 659.2 917.5 1225.8 2389.9 3340.2
Infotaxis III [16] 375.4 646.7 928.0 1103.4 1535.4 23729
entrotaxis [17] 381.5 625.6 901.4 1157.8 1554.3 2269.5

There was initially a significant increase in the mean search time for infotaxis schemes with
extending the search area for exploring more place to acquire the plume. By comparison, the mean
search time in the common space was shortened by the infotaxis schemes based on the free energy
(mapless infotaxis and the proposed method). In particular, the proposed method with the distance
potential energy and the adaptive temperature produced a slightly shorten time than the mapless
infotaxis with the local probability map and constant temperature. This is because the exploitation
dominated the search after obtaining a more reliable estimation. The results confirm that the proposed
free energy infotaxis scheme can speed up the search progress.
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It should be noted that the mean search time in varying scales was almost shorter than the classical
infotaxis by a uniform step (the interval 154-168), except the scale 100 x 100. This came from the
fact that the acceleration of the search appeared in the phase of the exploitation. To illustrate this,
Figure 5 shows the distance between the sensor and the real source, as well as the distance between
the estimated source and the real source over the spread of the particles. First, the estimated source
was verified to converge to the real source with the contraction of the particles, as shown in Figure 5a
(the distance declined to zero with the reduction of tr(X)). This ensured the validity of chasing the
estimated most probable source leading the sensor to the real source by the free energy infotaxis
scheme. Second, with the reduction of the spread, the distance between the sensor and the source
decreased, and this progress was accelerated after the spread, meeting a certain level, as shown in
Figure 5b. From the comparison, the decreasing rate obtained by the free energy infotaxis scheme
was faster than that of the infotaxis scheme. The results demonstrate that the sensor reinforced the
behavior of going straight to the source by the free energy infotaxis scheme.
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Figure 5. (a) Q-Q plot of the distance between the estimated source and the real source versus the
inverse of the spread of the sampled particles. (b) The distance of the sensor position and the real
source using the infotaxis scheme versus the free energy infotaxis scheme (curve fitting the data).
The source location was fixed at [-250, 0] and the initial sensor position at [200,—100].

4.3. Effect of the Temperature T

Temperature T controls the relative value between the potential energy and the entropy, which
allows active control of the exploration-exploitation balance during the search. With the reduction
of uncertainty indicated by the trace tr(X), temperature T dropped, and the proportion of potential
energy in free energy was strengthened, shifting the balance towards the exploitation. We ran the
search simulations by setting two extreme values to investigate the effect of temperature T.

Figure 6 shows that the search failed with setting the temperature T = 0, and the sensor platform
was eventually self-trapped around the estimated source, deviating from the real source. With the
temperature T = 0, the free energy only maintained the term of the potential energy. As a result,
the sensor platform driven by the potential energy directly chased the estimated source. The probability
distribution of the source was updated passively along the path approaching the estimated source.
When the sensor reached the estimated source, the further update of the probability distribution of
the source was not available (the expected source indicated by the red star hardly moved). In general,
the exploitation driving the mobile sensor platform toward the most probable source is risky without a
reliable estimation (requiring exploration to improve the reliability).

Figure 7 shows that the search can be accomplished by the free energy infotaxis scheme with
temperature T = 10*. As T = 10* is big enough, the free energy was principally dominated by the
term of entropy. The minimization of entropy drove the sensor to gather information and actively
update the probability distribution of the source. Wherever the source was located, the sensor platform
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explored the space up to acquiring the positive detections to resample the particles. Thus, the mobile
sensor platform was not trapped and kept improving the probability distribution.

(a) Time = 200 steps _

—

X X

Figure 6. The trajectory (red line), detections (red solid circles), estimated source (red star), and particles
(black dots) of the mobile sensor platform using the free energy scheme (T = 0). The source location at
(—250,100) with the contour plot of the corresponding mean rate.

(b) Time = 700 steps

-~ N

300 200 100 0 100 200 300 -300 -200 -100 0 100 200 300

X X

Figure 7. The trajectory (red line), detections (red solid circles), estimated source (red star), and
particles (black dots) of the mobile sensor platform using the free energy scheme (T = 10*). The source
location at (—250,100) with the contour plot of the corresponding mean rate.

To maintain the efficacy of the free energy infotaxis scheme starting with no prior knowledge
about the space, the temperature T should make the value of entropy reduction dominate at the
initial stage so that the sensor explores the workspace first. In general, the terms of exploitation and
exploration should be combined and balanced in the search context. The exploration is principal to
drive the search (gathering information and improving the estimation), and the exploitation can speed
up the search progress. The potential energy and the entropy is unified in the free energy, and an
adjusted temperature T actively controls the relative value between them.

5. Conclusions

This work deployed a mobile binary sensor platform to search for a diffusive source in turbulent
flows. To solve the problem of the exploration-exploitation getting out of balance in the infotaxis
scheme, we proposed a free energy infotaxis scheme that combines the potential energy and the
entropy into free energy to be minimized as the reward of POMDP. The reduction of entropy maintains
the role of exploration, which gathers information and increases the reliability of source estimation.
The exploitation of chasing the most probable source location was carried out by the reduction of
potential energy, which employed the weighted sum of the distance between all the hypothetical
source locations and the sensor’s position. An adaptive internal temperature actively controlled
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the relative value between the potential energy and the entropy by leveraging the spread of the
sampled particles measured by the trace of the covariance matrix. Thus, the exploitation-exploration
balance was implemented by the fact that the exploration dominated the search in the stage with high
uncertainty about the source, and then, the exploitation dominated the search with the receding of the
uncertainty. The simulation results verified that the free energy infotaxis search scheme sped up the
search for a diffusive source based on the sporadic binary detections.
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