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Abstract: Mobile edge caching is regarded as a promising way to reduce the backhaul load of the
base stations (BSs). However, the capacity of BSs’ cache tends to be small, while mobile users’ content
preferences are diverse. Furthermore, both the locations of users and user-BS association are uncertain
in wireless networks. All of these pose great challenges on the content caching and content delivery.
This paper studies the joint optimization of the content placement and content delivery schemes in the
cache-enabled ultra-dense small-cell network (UDN) with constrained-backhaul link. Considering
the differences in decision time-scales, the content placement and content delivery are investigated
separately, but their interplay is taken into consideration. Firstly, a content placement problem is
formulated, where the uncertainty of user-BS association is considered. Specifically, different from
the existing works, the specific multi-location request pattern is considered that users tend to send
content requests from more than one but limited locations during one day. Secondly, a user-BS
association and wireless resources allocation problem is formulated, with the objective of maximizing
users’ data rates under the backhaul bandwidth constraint. Due to the non-convex nature of these
two problems, the problem transformation and variables relaxation are adopted, which convert the
original problems into more tractable forms. Then, based on the convex optimization methods, a
content placement algorithm, and a cache-aware user association and resources allocation algorithm
are proposed, respectively. Finally, simulation results are given, which validate that the proposed
algorithms have obvious performance advantages in terms of the network utility, the hit ratio of
the cache, and the quality of service guarantee, and are suitable for the cache-enabled UDN with
constrained-backhaul link.

Keywords: mobile edge caching; content placement; user association; resources allocation

1. Introduction

The mobile data traffic has increased dramatically in the recent decades, which puts a great strain
on the mobile network [1]. To meet the ever-increasing traffic demand, the small-cell, especially ultra
dense network (UDN) is regarded as one of the most effective ways to boost the mobile network
throughput [2,3]. Considering the huge number of small-cell base stations (BSs) in UDN, to equip
each small-cell base station (SBS) with a high capacity backhaul link, such as optical fiber, would be
a huge monetary cost for mobile network operator [4]. Furthermore, with the advance of wireless
transmission technologies such as massive Multiple-Input Multiple-Output (MIMO) and millimeter
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wave (mmWave) communication, the backhaul link instead of the wireless link, is more likely to
become the bottleneck of the data transmission link [5]. Hence, how to reap the benefits of UDN
without the constraint of high-capacity backhaul link is a critical problem.

Notably, the explosive growth of mobile traffic mainly derives from the ever-increasing demand
for mobile video [1]. Meanwhile, a large portion of the mobile traffic is contributed by the duplicate
transmission of the same contents, especially the popular video contents. Mobile edge caching, which
means that the BS is equipped with a storage device cache of the popular content and serves users
locally without backhaul transmission [6,7], has great potential to reduce the backhaul traffic burden.
Due to the relatively low cost of installing storage device, mobile edge caching would be a cost-effective
substitute solution to the high-speed backhaul link. It is anticipated that the mobile edge caching would
be able to save up to 35% on backhaul usage for the mobile network, and reduce the latency in mobile
services by 50% [4]. Furthermore, considering that the mobile traffic of each BS always has temporal
fluctuation property, the BSs can prefetch the video contents during the off-peak hours, and provide
simultaneous video transmission with low backhaul requirements during the peak hours. As a result,
to equip the SBSs with caching capability has great benefits for the UDN with capacity-constrained
backhaul link.

Generally, the introduction of mobile edge caching would lead the video content transmission to
two phases: the content placement phase and the content delivery phase. The content placement phase
usually occurs in off-peak hours. Utilizing the light-load backhaul link, the SBSs would proactively
fetch the contents based on users’ demand. The content delivery phase occurs when users send content
requests. If the content requested has been cached (which is called as cache hit), it would be delivered
to the user from the SBS’s cache directly without the backhaul transmission. However, if the content
has not been cached (which is called as cache miss), it would be fetched from the remote server through
the backhaul link and then delivered to the user.

Considering the characteristics of the cache-enabled UDN with constrained-backhaul, it is not
easy to fully reap the mobile edge caching benefits. Specifically,

1 The cache capacity of each SBS in UDN is limited, which means that the traditional content
placement scheme proposed for wired networks (e.g., content distribution network (CDN) [8])
can not be applied directly. Considering the great volume of the video contents, it becomes more
critical for the caching strategy to achieve high cache hit ratio in cache-enabled UDN.

2 The coverage of each SBS in UDN is likely to be small and overlapping with each other. This
means that there are likely multiple SBSs that the user can be associated with. For cache-enabled
UDN, the user-SBS association decision can be made based on not only the signal strength and the
load of the SBS, but also the local availability of the content requested by users. But the flexibility
of user-SBS association also introduces uncertainty for predicting the content demand of each SBS.

3 The content popularity reflects the overall preference of a large number of users. At the same time,
each user has its own specific preference. Considering each SBS in UDN only serves a limited
number of users, and the aggregation of such a few users’ demand is not always consistent with
the global popularity [9], the content popularity-based caching schemes can not be applied to the
cache-enabled UDN scenario directly.

4 The users in UDN are mobile, and can send content requests from any locations in the network.
This gives further uncertainty in characterizing the probability of certain content to be requested
in each SBS.

In general, the limited cache capacity of each SBS, the uncertainty of users’ location, the diverse
content preference of each user, and the flexible user-SBS association relationship, make the content
placement and content delivery become a challenging problem remaining to be solved.
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1.1. Related Work

Caching techniques have been studied extensively in wired CDN scenarios [8,10]. However,
different from the BSs’ cache in wireless networks, the CDN always has large-sized cache and can
store millions of videos. Moreover, the network topology of CDN is fixed and the transmission link is
stable, which has discrepancies with the wireless networks. As a result, the caching schemes proposed
for CDN are not suitable for the cache-enabled wireless networks. On the other hand, the user-BS
association is a topic that has been studied by a lot of papers [11]. Instead of Max-SINR-based schemes,
the load-balance-based user-BS association scheme is investigated for wireless networks, especially the
heterogeneous networks (HetNet), and can improve the network performance significantly [12–14].
However, most of these existing works do not consider the local availability of the contents enabled by
the mobile edge caching, which is also not suitable for the cache-enabled wireless networks.

Considering the interplay of caching and user-BS association, a few papers investigate the
optimization of the caching strategy and user association schemes jointly. The pioneering paper [15]
validates the effectiveness of the mobile edge caching, and demonstrates that up to 500% of the
system throughput gain can be achieved by the joint optimization of caching and user association
scheme. In [16], based on a weighted sum utility of the data rates and backhaul traffic reduction, a
content placement and user association algorithm is proposed, which could achieve load balancing
and backhaul saving. In [17], the total time to satisfy users’ demand is minimized by joint optimization
of caching and interference coordination in a cache-enabled HetNet with wireless backhaul. In [18],
the traffic served by Macro BSs (MBSs) is minimized by the user association and caching optimization.
In [19], the transmission time required to satisfy all users’ demand is minimized by joint optimization of
caching, routing, and channel assignment. In [20], the caching and user association policy is optimized
to minimize the average download delay, where both the wireless link delay and the backhaul link
delay are considered.

The papers mentioned above investigate the content caching and user-BS association schemes,
based on the objective of minimizing user-perceived delay, MBSs’ traffic load, or maximizing user data
rates and BSs’ backhaul traffic reduction. However, there are two aspects that have been neglected
by all of them. (1) Specifically, all the papers assume that users would request contents from one
fixed location in the network, which is not in line with the practical request pattern of mobile users.
Indeed, the statistical results in [21,22] show that most of the users periodically initiate content requests
from certain set of cells, rather than from only one specific location. If users’ multi-location request
pattern is not considered in the caching scheme optimization, the network performance would be
deteriorated. (2) In addtion, most of these works do not account for the backhaul bandwidth constraints.
However, the users of cache wrongly associated with the same SBS would have to share the limited
backhaul bandwidth of the SBS to transmit their contents. Without proper allocation of the wireless
and backhaul resources, there is a high probability that network performance would be constrained by
the backhaul link during the content delivery phase. Consequently, the proposed schemes without
backhaul constraint cannot be applied to the backhaul-constrained UDN scenario.

The papers [21,23] integrate the multi-location request pattern into the problem formulation and
design multi-location-aware content caching schemes, respectively. However, paper [21] adopts a
Max-SINR-based user-BS association, and paper [23] assumes that each user would be associated
with the nearest SBS that has cached the requested content. This kind of fixed user-BS association
scheme reduces the flexibility and limits the performance gain of caching. Hence, it is still a
challenging problem that how to optimize the content caching and delivery schemes by considering
the user-association, users’ location uncertainty, as well as the wireless and backhaul resources
constraints jointly.

1.2. Contribution and Organization of the Paper

In this paper, we investigate the optimization of content placement and content delivery schemes
in cache-enabled UDN with constrained-backhaul. Due to the differences in decision time-scales,
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the content placement and delivery problem is formulated and investigated separately, but their
interaction is integrated into each other. Specifically, during the content placement phase, the
content placement is optimized based on the probability of user’s location and the probability of
user requesting specific content. During the content delivery phase, given the fixed content cache
status, the user-SBS association and resources allocation are optimized. The major contributions of this
paper are summarized as follows:

1 A content placement problem is formulated, which aims to optimize the hit ratio of each SBS’s
cache. Different from the existing works which assume users would request the video from
one specific location, this paper considers the more realistic multi-location request pattern of
mobile users. Taken into account the uncertainty of user-SBS association, the content placement
problem is optimized in conjunction with the user-SBSs association probability. Considering
the mix-integer nature of the problem, a content placement solution is derived based on the
iterative scheme.

2 A cache-aware joint user association and resources allocation optimization problem is formulated,
of which the objective is to maximize the sum of logarithmic each user’s data rates. Considering
the NP-hard nature, a variable relaxation technique is adopted to convert the original problem into
a convex optimization problem. Based on Lagrangian dual method, an optimal user-association
and resources allocation solution is derived, and its property is also analyzed.

The remainder of the paper is organized as follows: Section 2 presents the system model, and
the content placement and user-SBS association optimization problem are formulated, respectively.
Section 3 proposes the content placement algorithm and cache-aware user association and resources
allocation algorithm, respectively. In Section 4, the simulation results are presented to evaluate the
performance of the proposed algorithms. Finally, Section 5 gives the conclusions of this paper.

2. System Model

The downlink transmission of a cache-enabled UDN scenario is considered, where M SBSs are
densely deployed to serve K users. The set of users and BSs are denoted as K= {1, 2, · · · , K} and
M= {1, 2, · · · , M}, respectively. Assume that both the SBSs and users are equipped with only one
antenna. Meanwhile, the backhaul links of the SBSs are bandwidth-limited, but all the SBSs are
equipped with the mobile edge caching devices. The system bandwidth is BW, which is divided into
N resource blocks (RBs). The system bandwidth is reused by all the SBSs in the UDN.

2.1. User Behavior of Requesting Contents

Different from most of the existing works, in this paper the multi-location request pattern of users
is considered, which means that each user is likely to send the requests from any locations of the
network. Specifically, the probability of user k ∈ K issuing requests from SBS m ∈ M is denoted as Prk

m.
Without loss of generality, the overall possibilities of user k sending requests over all the small-cells
can be denoted as Prk =

{
Prk

1, · · · , Prk
m, · · · , Prk

M

}
. Note that the possibilities Prk can be predicted

based on each user’s request logs by the operators or the video service providers. Combined with the
techniques of human movement predication or point of interest (PoI) recommendation system [24,25],
the fine-grained location information where a mobile user sends the requests can even be predicted. As
a result, this paper assumes that each user would send the requests from multiple small-cells, and there
would be one specific location for each small-cell that the user would send the requests. Specifically,
the Prk

m can also be used to denote the probability that user k would send the content requests from
the specific location in the coverage of SBS m.

Assume that the overall contents library consists of F contents, which can be denoted as set
F = {1, 2, · · · , F}. For ease of illustration, all contents are assumed to have the same size. The capacity
of each SBS’s cache is denoted as CMAX , which means that at most CMAX contents can be stored. If a
content requested by the user has been cached by the associated SBS, the content would be delivered
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to the user directly from the SBS’s cache. Otherwise, the content would be fetched from the remote
content server via the backhaul link.

Denote pk, f ∈ [0, 1] as the probability of user k sending requests for content f ∈ F . It should be
noted that the value of pk, f reflects the user’s individual preference for contents, which is not the same
with the content popularity.

{
pk, f
}

could be predicted based on machine learning techniques [26], and
is assumed to be known a priori during the content placement phase.

2.2. Wireless Transmission Model

If user k located in the coverage of SBS n ∈ M is associated with SBS m and allocated with one
RB, the maximum data rates of user k can be calculated based on Shannon capacity, i.e.,

Rk
m,n = Blog2(1 +

pmhk
m,n

σ2 + Ik
m,n

), (1)

where B is the bandwidth of each RB, pm is the transmit power of SBS m, hk
m,n is the channel power

gain from SBS m to user k located in the coverage of SBS n, σ2 is the power of the additive white
Gaussian noise, Ik

m,n = ∑
m′∈Mk

I

pm′hk
m′ ,n is the power of inter-cell interference suffered by user k, and

Mk
I represents the set of SBSs that would generate interference to user k.

3. Problem Formulation

The overall goal of this paper is to design content caching and delivery schemes that can take full
advantages of the limited storage resources (i.e., the cache) and communication resources (including
the wireless links and the backhaul links) to improve users’ data rates. However, considering the
differences in the decision time-scales, the corresponding content placement optimization problem
and content delivery optimization problem are investigated separately and respectively.

3.1. Content Placement Problem

For backhaul-constrained UDN, there is a high probability for the backhaul link to be the
bottleneck of the transmission link, especially during the peak traffic hour. Thus, how to improve the
percentage of the traffic offloaded by the cache, i.e., to maximize the hit ratio of the cache, is the main
objective for the content placement scheme.

Denote x f
m ∈ {0, 1} as an indicator variable, which denotes whether the content f is cached by SBS

m or not. Then, taking into consideration the uncertainty of users’ location and each user’s individual
preference on the content, the hit ratio of SBS m can be calculated as

Um= ∑
k∈K

∑
n∈M

ãk
m,nPrk

n ∑
f∈F

pk, f x f
m, (2)

where the ãk
m,n is the auxiliary variable indicating the association probability that user k located in the

coverage of SBS n would be associated with SBS m. Even though the user k is located in the coverage
of SBS n, it can be associated with any one of the SBSs.
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Then, the content placement problem is formulated as

P1 : max{
x f

m ,ãk
m,n

} ∑
m∈M

logUm

s.t. :

C1 : ∑
f∈F

x f
m = CMax, ∀m ∈ M,

C2 : x f
m ∈ {0, 1} , ∀m ∈ M, f ∈ F ,

C3 : ∑
m∈M

ãk
m,n=1, ∀k ∈ K, n ∈ M

C4 : ãk
m,n ∈ [0, 1] , ∀k ∈ K, n ∈ M, m ∈ M,

C5 : ∑
k∈K

∑
n∈M

Prk
n ãk

m,nRk,Th

Rk
m,n

=N, ∀m ∈ M.

(3)

The sum of logarithmic hit ratio of each SBS is adopted as the objective function in problem P1. The
improvement of the hit ratio means more backhaul traffic reduction, which would contribute to the
improvement of users’ data rates, especially for the backhaul-constrained UDN scenarios. Furthermore,
the maximization of the sum of logarithmic hit ratio would give a proportional fairness guarantee for
each SBS in terms of hit ratio. To some extent, more fair hit ratio means more fair backhaul reduction
among SBSs, which results in more balanced backhaul traffic during the content delivery phase. The
constraints C3 and C4 mean that there is not a unique BS association constraint. This is because
that ãk

m,n only denotes the probability of user-SBS association, and is not the realistic user association
solution for the content delivery phase. The Rk,Th in constraint C5 denotes each user’s minimum data
rates requirement, and the constraint C5 means that the sum of the expected RB cost to satisfy all the
associated users’ quality of service (QoS) requirements should not be larger than the overall available
RBs. In other words, the constraint C5 ensures that the wireless link would not be the bottleneck
during the content delivery phase.

It should be noted that ãk
m,n is the auxiliary variable for obtaining the optimal content placement

solution. Based on
{

ãk
m,n

}
, the interplay of content caching and the content delivery is integrated into

the content placement problem.

3.2. Content Delivery Problem

After the content placement phase, the caching states of the contents, i.e.,
{

x f
m

}
would be

determined. It is assumed that the content delivery would operate in a time-slot manner and would
be optimized slot by slot in this paper. In one time slot, each user would send one content request
from one specific location.Because the locations from which the users send the requests would be
fixed in one time slot, the n in the subscript of Rk

m,n can be omitted without ambiguity. As users’ data
rates would be impacted by the traffic load of SBSs’ wireless link and the backhaul link, the user-SBS
association and wireless/backhaul resources should be considered jointly to provide high data rates
for users.

Denote ak
m as the user-SBS association variable, which indicates whether user k is associated with

SBS m or not. Meanwhile, denote bk
m as the resources allocation variable denoting how many RBs are
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allocated to user k by SBS m. With the objective of improving each user’s data rates during content
delivery, a user-SBS association and resources allocation problem is formulated as

P2 : max
{ak

m ,bk
m}

∑
k∈K

log ∑
m∈M

ak
mbk

mRk
m

s.t. :

C6 : ∑
m∈M

ak
m ≤ 1, ∀k ∈ K,

C7 : ak
m ∈ {0, 1} , ∀m ∈ M, k ∈ K,

C8 : bk
m ∈ {0, · · · , N} , ∀m ∈ M, k ∈ K,

C9 : ∑
k∈K

bk
m ≤ N, ∀m ∈ M

C10 : ∑
k∈K

ck
mak

mbk
mRk

m ≤ BBH
m , ∀m ∈ M,

(4)

where BBH
m is the backhaul bandwidth of SBS m, and ck

m ∈ {0, 1} is a parameter indicating whether
user k would cost the backhaul link if it is associated with SBS m. Specifically, if the content requested
by user k has been cached by SBS m, then ck

m=0. Otherwise, ck
m=1. It should be noted that the ck

m
would be a known parameter in each content delivery slot. The constraints C6 and C7 are the unique
association limit, which means that each user must associate with only one SBS. The constraint C8 and
C9 guarantee that the total number of RBs allocated by each SBS to all the associated users should not
exceed the maximum number of available RBs. The constraint C10 is the backhaul bandwidth limit,
ensuring that each SBS’s backhaul traffic should not be larger than its backhaul capacity.

The sum of the logarithmic user’s data rates is used as the objective function of P2, in order to
provide proportional fairness among users. Moreover, a deterministic QoS guarantee for each user is
not adopted in the problem P2. This is because the backhaul link is very likely to become the bottleneck
of the transmission in backhaul-constrained UDN. In that case, the deterministic QoS guarantee for all
the users cannot be achieved, and the problem with QoS constraint would have no solutions.

4. Solution to the Optimization Problem

Both the problem P1 and P2 have integer variables and are non-convex optimization problems,
which are generally NP-hard and make it difficult to obtain the optimal solutions. As a result, we
would convert the original problems into more tractable forms and design low-complexity algorithms,
as described in the following.

4.1. Iterative Content Placement Algorithm

In order to solve the mixed-integer optimization problem P1, an iterative scheme is adopted
that optimizes content placement and the user-SBS association probabilities iteratively and separately.
Specifically, by fixing the user-SBS association probabilities, the content placement would be optimized.
Then, on the condition that the content placement is given, the user association probabilities would be
optimized. The process would be implemented iteratively until no performance improvement can
be achieved.
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On the condition that the content placement solution, i.e.,
{

x f
m

}
, is given, the problem P1 would

be transformed into the following form

P1.1 : max
{ãk

m,n}
∑

m∈M
logUm

s.t. :

C3 : ∑
m∈M

ãk
m,n ≤ 1, ∀k ∈ K, n ∈ M

C4 : ãk
m,n ∈ [0, 1] , ∀k ∈ K, n ∈ M, m ∈ M,

C5 : ∑
k∈K

∑
n∈M

Prk
n ãk

m,nRk,Th

Rk
m,n

≤ N, ∀m ∈ M,

(5)

It can be easily derived that the objective function of problem P1.1 is convex with respect to the variable{
ãk

m,n

}
. Meanwhile, the feasible set defined by constraints C3-C5 is also convex. Thus, problem P1.1 is

a convex optimization problem, and the optimal solution, i.e.,
{

ãk∗
m,n

}
can be obtained in polynomial

time based on convex optimization methods such as interior point method or ellipsoid method [27].
Fixing the user-SBS association probability variables

{
ãk

m,n

}
, problem P1 would be reduced to the

following form

P1.2 : max{
x f

m

} ∑
m∈M

logUm

s.t. :

C1 : ∑
f∈F

x f
m = CMax, ∀m ∈ M,

C2 : x f
m ∈ {0, 1} , ∀m ∈ M, f ∈ F .

(6)

Obviously the utility of each BS is not coupled with each other when the user-SBS association
probabilities are fixed. Consequently, to solve the problem P1.2 is equivalent to solve the following
sub-problem for each SBS

P1.3 : max{
x f

m

}Um

s.t. :

C1 : ∑
f∈F

x f
m = CMax,

C2 : x f
m ∈ {0, 1} , ∀ f ∈ F .

(7)

The optimal solution can be easily derived as

x f ∗
m =

 1, for f ∗ = arg max
f

∑
k∈K

∑
n∈M

Prk
n pk, f ãk

m,n,

0, else.
(8)

The optimal solution is straightforward, and means that each SBS should cache the contents that can
achieve the highest hit ratio.

Based on the derivation above, the overall content placement algorithm is designed, which is
shown in the following Algorithm 1. The Algorithm 1 is an iterative algorithm, which includes two key
steps, i.e., the step of calculating the ãk∗

m,n and the step of calculating the x f ∗
m . For each loop, if the optimal

ãk∗
m,n is obtained based on the interior point method, the corresponding computation complexity can be
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given byO
(√

MK log
(

MK
/(

t(0)ε
)))

, where t(0) is a parameter of interior point method and ε is the

tolerance of the solution. As for the step of calculating the x f ∗
m , its complexity can be given byO

(
MF2).

Let us denote Imax as the maximum number of iterations of the loop in Algorithm 1. We can give
the overall computation complexity of Algorithm 1 by O

(
Imax

(√
MK log

(
MK

/(
t(0)ε

))
+ MF2

))
.

Besides, Algorithm 1 is a centralized algorithm, where all the procedures are implemented in a central
entity, e.g., the remote server of the content provider. Specifically, the information of Prk

n, pk, f , and Rk
m,n

is required to calculate the solution of P1. Note that similar with the traditional CDN, when the user
sends request for certain content, the request would be sent to the server of the content provider firstly.
Then, the content provider would decide to response the request by the remote server or by the cache
of SBS the user associated with. Hence, the content provider would know all the information of the
request, including user’s ID, the requested content ID, the time and the location of the user sending
the request. Furthermore, all this information is known by the content provider in a real-time manner.
Moreover, as long as the average data rates of the wireless link could be uploaded in a real-time manner
by SBSs, the information based on which the content provider made the content placement decision,
would be comprehensive and up-to-date. Consequently, Algorithm 1 could avoid the duplicate cache
problem to some extent.

Algorithm 1 Iterative Content Placement Algorithm

Initialize
{

x f
m

}
based on the global popularity, that is each SBS caches the most popular contents of

the overall network;
repeat

Obtain the
{

ãk∗
m,n

}
based on interior point method or ellipsoid method;

Obtain
{

x f ∗
m

}
based on Equation (8);

T = T + 1;
until No performance improvement could be obtained or T ≥ Tmax.

4.2. Cache-Aware User Association and Resources Allocation Algorithm

The problem P2 is an integer programming problem, which is computationally prohibitive to find
the optimal solution. To make the problem more tractable, the following transformation is introduced.

Firstly, the
{

bk
m

}
is relaxed to be the continuous variables b̃k

m ∈ [0, N], which means that any

percentage of the radio resources can be allocated to one user. Then, the variable dk
m = ak

m b̃k
m

N is
introduced, of which the range can be derived as dk

m ∈ [0, 1]. Based on dk
m, the problem P2 can be

converted into the the following form

P3 : max
{dk

m}
∑

k∈K
log ∑

m∈M
dk

mNRk
m

s.t. :

C3.1 : ∑
k∈K

dk
m ≤ 1, ∀m ∈ M,

C3.2 : ∑
m∈M

dk
m ≤ 1, ∀k ∈ K,

C3.3 : dk
m ∈ [0, 1] , ∀m ∈ M, k ∈ K,

C3.4 : dk
mdk

m′ = 0, ∀m ∈ M, m′ ∈ M, k ∈ K,

C3.5 : ∑
k∈K

ck
mdk

mNRk
m ≤ BBH

m , ∀m ∈ M.

(9)
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The constraints C3.2, C3.3, and C3.4 specify that each user could be associated with at most one SBS
and be allocated with any fraction of the overall radio frequency resources. The constraints C3.1 and
C3.5 specify that the allocated wireless frequency bandwidth and backhaul bandwidth cannot be larger
than the overall available resources.

Notably, by replacing the variables
{

ak
m

}
and

{
bk

m

}
with

{
dk

m

}
, the objective function of problem

P2 is converted to be a convex function. Meanwhile, the feasible set defined by C3.1–C3.5 is also a
convex set. These mean that the problem P3 is a convex optimization problem.

Next the Lagrangian dual method is adopted to solve the problem P3. Specifically, a closed-form
optimal solution can be derived that is helpful to investigate the characteristics of the optimal user
association and resources allocation. The Lagrangian function can be denoted as

L
({

dk
m

}
, λ, β

)
= ∑

k∈K
log ∑

m∈M
dk

mNRk
m+ ∑

m∈M
λm

(
1− ∑

k∈K
dk

m

)
+ ∑

m∈M
βm

(
BBH

m − ∑
k∈K

ck
mdk

mNRk
m

)
(10)

where λ and β are non-negative Lagrangian multipliers for constraints C3.1 and C3.5, respectively.
Then, the Lagrangian dual function can be expressed as

g (λ, β) = max
{dk

m}
L
({

dk
m

}
, λ, β

)
s.t. : C3.2, C3.3, C3.4.

(11)

and the Lagrange dual problem is
min

λ�0,β�0
g (λ, β) (12)

According to the Karush–Kuhn–Tucker (KKT) conditions, the optimal solution of the problem P3
should satisfy

∂L
({

dk
m

}
, λ, β

)
dk

m
= 0. (13)

Based on Equation (13), the optimal solution for user k can be derived as

dk
m∗=

1
λm∗+βm∗NRk

m∗ck
m∗

(14)

for

m∗ = arg max
m′

log
NRk

m′

λm+βm′NRk
m′c

k
m′

, (15)

Otherwise, dk
m= 0.

The Lagrangian multipliers can be updated using the ellipsoid method or subgradient method
until convergence. Then the optimal solution of problem P3, i.e.,

{
dk∗

m

}
can be obtained easily.

At last, the solutions corresponding to the original problem P2 could be obtained based on the
following equations

ak∗
m =

{
1, if dk∗

m > 1,
0, else.

(16)

and

bk∗
m =

{
N · Round

(
ak∗

m

)
, if dk∗

m > 1,

0, else,
(17)

where Round (x) denotes the function that returns the nearest integer of x.
Based on the derivation, the cache-aware user association and resources allocation algorithm

could be proposed, which is shown in the following Algorithm 2. Because of the variables’ relaxation
and the rounding operations, Algorithm 2 is a heuristic algorithm. Therefore, it does not guarantee the
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globally optimal solution of problem P2. Specifically, if the subgradient method is adopted to obtain
the optimal Lagrangian multipliers, the computation complexity of Algorithm 2 can be characterized
by O

(
MK/

(
1/ξ2)), where the ξ is the tolerance of Lagrangian multipliers solution. Moreover,

Algorithm 2 is implemented based on two kinds of information: (1) the ID of the content requested by
each user, (2) the data rates that can be achieved by each user when it is associated with one specific
SBS. The users should upload the content ID and the channel power channel between itself to the
SBSs in a real-time manner. Besides, although Algorithm 2 is proposed based on the assumption that
users’ location would be fixed during one time slot, it is still able to cope with the dynamics due to
users’ movement. Specifically, for the scenario that users are with low mobility, the channel power
gain used in the decision process should be the average value over the following one time slot or
several time slots. Specifically, the channel power gain information can be predicted based on machine
learning techniques. For the scenario that users are with high mobility, the frequency of implementing
Algorithm 2 should be improved to cope with the rapid fluctuation of the wireless channel condition.

Algorithm 2 Cache-aware User Association and Resources Allocation Algorithm
Initialize {λ, β};
repeat

Obtain the
{

dk∗
m

}
based on Equation (14);

Update {λ, β} based on ellipsoid method or subgradient method;
T = T + 1;

until Convergence or T ≥ Tmax;
Obtain

{
ak∗

m

}
and

{
bk∗

m

}
based on Equations (16) and (17), respectively.

Furthermore, by combining the closed-form solution of problem P3, i.e., Equation (15), with the
complementary slackness conditions, we can obtain more insights into the characteristics of the user
association and resources allocation solution. Specifically, when the optimal user association and
resources allocation solution is obtained, the SBS would be in one of the three states which is shown in
the following:

• State One: The SBS has enough backhaul-bandwidth, but the available RBs are not sufficient for
all the associated user, i.e., 

∑
k∈K

ck
mdk∗

m NRk
m < BBH

m ,

∑
k∈K

dk∗
m = 1.

(18)

which can be called as a backhaul-sufficient and RB-constrained state.

Based on the complementary slackness conditions, it can be derived that{
β∗m = 0,
λ∗m ≥ 0,

(19)

Then, the optimal solution would be

dk∗
m =

1
λ∗m

, (20)

which means that each user associated with SBS m would be allocated with the same number of
RBs. This is consistent with the conclusion of paper [12], i.e., equal allocation of the frequency
bandwidth is optimal for load-aware user association problem where the backhaul capacity
is sufficient.
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• State Two: The SBS is backhaul-constrained but the available RBs are sufficient, i.e.,
∑

k∈K
ck

mdk∗
m NRk

m = BBH
m ,

∑
k∈K

dk∗
m < 1,

(21)

which can be called as backhaul-constrained and RB-sufficient state.

According to the complementary slackness conditions, the following can be derived, i.e.,{
β∗m ≥ 0,
λ∗m = 0.

(22)

Then, the optimal solution would be

dk∗
m =

1
β∗mNRk

mck
m

. (23)

Based on (23), two conclusions can be deduced for the SBSs in backhaul-constrained and
RB-sufficient state. Firstly, none of the contents requested by the associated users has been
cached. This can be proved as follows. If the SBS is RB-sufficient, i.e., ∑

m∈M
dk∗

m < 1, there would

be redundant RBs that are not allocated to any of the associated users. Suppose that there was
one user whose requested content was cached, the redundant RBs could be allocated to it and the
overall utility of the SBS could also be improved. This would lead to ∑

m∈M
dk∗

m = 1, which is in

contradiction with the RBs-constrained assumption. Consequently, it can be concluded that all
the requests of the associated users miss the cache. Secondly, the number of RBs allocated to the
associated users would be inversely proportional to their data rates of the wireless link, and the
backhaul bandwidth would be allocated equally among the associated users. This can be easily
derived based on Equation (23) and means that data rates of each user would be equal when the
backhaul link is the bottleneck of the transmission and the wireless link is sufficient.

• State Three: Consider the SBS is both backhaul-constrained and RB-constrained, i.e.,
∑

k∈K
ck

mdk∗
m NRk

m = BBH
m ,

∑
k∈K

dk∗
m = 1,

(24)

the following can be derived, i.e., {
β∗m ≥ 0,
λ∗m ≥ 0,

(25)

Then the optimal solution would be in the same form with Equation (14), i.e.,

dk∗
m =

1
λ∗m+β∗mNRk

mck
m

. (26)

Note that if there are requests hit the cache, a part of the available RBs would be equally allocated
among the corresponding users. The remaining RBs would be allocated to the associated users
of cache miss. However, different from state two, the fraction of the RBs allocated to the users
of cache miss is not adversely proportional to their wireless data data rates, except that all the
requests of the associated users miss the cache. In addition, the fraction of the overall RBS
allocated to users of cache hit is larger than that of the users of cache miss.
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5. Simulation Results

In this section, the performance of the proposed algorithms is evaluated based on simulation. The
simulation is implemented by MATLAB R2018 on a laptop with four 1.9 GHz CPU cores and 16 GB of
memory. Specifically, as shown in Figure 1, a UDN scenario with grid topology is considered, where
9 SBSs are deployed in a 60 m × 60 m area. The system bandwidth is 20 MHz, and is divided into
100 RBs. The transmit power of each SBS is fixed as 23 dBm. The user-SBS association is implemented
in a large time scale compared to the change of the channel, and the users are assumed to be fixed
without mobility during the slot of one content delivery. So only the pathloss and the shadowing are
considered in the channel model. The L(d) = 37 + 30log(d) is used as the pathloss model, where d is
the distance between the user and the SBS. The shadowing standard deviation between SBSs and the
users is 10 dB. The power density of noise is −174 dBm. The user number is fixed as 100, each with the
minimum data rates requirement of 5 Mbps. The main system parameters are summarized in Table 1.

Figure 1. Network scenario used in simulations.

Table 1. Simulation Parameters.

Parameter Value

Number of SBSs 9
Number of users 100

System bandwidth 20 MHz
The number of RBs 100

The number of contents 1000
SBS’s transmit power 23 dBm

The power density of noise −174 dBm

In order to reduce the simulation time, the total number of the contents in the library is set as
1000, i.e., F = 1000. The probability of user k requesting content f is modeled by Zipf distribution, i.e.,

pk, f=
(φ (k))−γ

∑
f∈F

f−γ
, (27)

where the shape parameter γ is 0.8. In particular, in order to characterize users’ different
content preferences, different rank is assumed for each user. This is enabled by the function φ (k) in
Equation (27), which would return a random permutation of [1, 2, · · · , F] [28]. Based on this, each
user would have different request probability for the contents.

Furthermore, it has been shown in [21] that 80% of the users send video requests from less than
four locations. So in the simulation there would be four SBSs for each user from which they would send
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the contents, and the probability of the user sending requests from one of the four SBSs is assumed to
be equal.

Baseline Algorithms Two baseline algorithms are also simulated simultaneously to make
comparison with the proposed algorithms of this paper (which would be called as PA in the following).

• Baseline 1 The local-popularity based content placement scheme, SINR-Max based user-SBS
association scheme and equal resources allocation scheme are adopted as baseline Algorithm 1
(which would be called as BA 1 in the following). Specifically, the local-popularity-based content
placement means that SBS m would cache the contents with the highest value of p f

m= ∑
k∈K

Prk
m pk, f

until the cache is full [29,30]. The SINR-Max user-SBS association means that each user would be
associated with the SBS with the highest SINR [12]. The fair resources allocation scheme means
that the wireless frequency bandwidth would be allocated equally among the associated users,
and the backhaul bandwidth would be allocated equally among the associated users of cache miss.

• Baseline 2 The iterative content placement and user association algorithm proposed in [16] is
adopted as the baseline Algorithm 2 and would be called as BA 2 in the following. Specifically, the
BA 2 can maximize the weighted sum of users’ data rates utility and the backhaul traffic reduction
(The value of the weight is set as 10 [16]). During the content placement phase, the iterative
content placement and user association procedures of BA 2 would be implemented. As the BA 2
is designed based on the assumption that each user has one specific location, it cannot be applied
to the scenarios where the users tend to have multi-location request patterns. Thus, one of the
possible locations would be chosen randomly and fixed as the user’s location during the content
placement phase. As for the content delivery phase, only the user association procedure would
be implemented and the backhaul bandwidth would be allocated equally among the associated
users of cache miss.

Performance Evaluation Metrics Three performance metrics are evaluated, which are listed
as follows:

• The users’ data rates utility, which is the sum of the logarithmic user’s data rates (i.e., the objective
function of P2) and can be calculated by U = ∑

k∈K
log ∑

m∈M
ak

mbk
mRk

m.

• The percentage of QoS satisfied users, which is the ratio of the users whose data
rates are larger than their minimum data rates requirements. It can be calculated

based on η= 1
K ∑

k∈K
Γ
(

∑
m∈M

ak
mbk

mRk
m > Rk,TH

)
, where the function Γ (•) is defined as

Γ (x > y) =

{
1, if x > y,
0, else.

• The hit ratio, which is the ratio of users of cache hit, and can be calculated based on

γ= ∑
m∈M

ck
mak

m

/
K.

5.1. Impact of the Backhaul Bandwidth

Firstly, the performance of the algorithms is evaluated with different backhaul bandwidth
constraints. Specifically, the cache capacity is fixed as 100, which means 10% of the overall contents
could be cached by each SBS. The simulation results are averaged over 100 instances, and every user
would send 10 content requests in each instance. During the delivery of one content, users’ locations
are fixed, however, their locations may be different from one content delivery to the other.

The users’ data rates utility is shown in Figure 2. It can be seen that the utilities of all the
three algorithms grow with the increase of the backhaul bandwidth. This validates that with low
backhaul bandwidth, the backhaul link would be the bottleneck that limit both users’ and network’s
performance. With the alleviation of the backhaul bandwidth strain, the potential of the network
performance could be utilized more sufficiently, and users’ performance can be improved. Besides,
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the performance of the PA is larger than any one of the baseline algorithms, which verifies PA’s great
advantage over the existing algorithms. Furthermore, the performance of BA 2 is better than that of
the BA 1 when the backhaul bandwidth is below 20 MHz, but becomes lower than that of the BA 1
when the backhaul bandwidth is larger. This verifies that the BA 1 is more suitable to cope with the
backhaul-constrained scenarios.
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Figure 2. The network utility.

The performance in terms of the percentage of QoS-satisfied users is shown in Figure 3. Similarly
to users’ data rates utility, the percentage of QoS satisfied users improves with the increase of the
backhaul bandwidth for all the three algorithms. Moreover, it is obvious that the PA has the better
performance all the time, compared with the BA 1 and BA 2. However, in contrast with the users’
data rates utility, the percentage of QoS-satisfied users of PA increases very slowly when the backhaul
bandwidth is smaller than 25 Mbps. This is because PA tends to achieve a proportional-fair user
association and resources allocation solution, and the data rates of most of the users’ would approach
the minimum data rates simultaneously. However, if their data rates are not larger than the minimum
data rates requirements, this increase would not improve the percentage of QoS-satisfied users. When
the backhaul bandwidth is between 30 Mbps to 50 Mbps, the percentage of QoS-satisfied users increases
sharply. This means that a large number of users exceed the minimum data rates requirements, with
the continuous improvement of backhaul bandwidth. When the backhaul bandwidth is larger than
55 Mbps, the percentage of QoS-satisfied users returns to a slow increase. This is consistent with the
trend of data rates utility shown in Figure 2. The stalled increase means that the backhaul bandwidth
is large enough and the backhaul link is not the bottleneck of the content delivery any more.
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Figure 3. The percentage of quality of service (QoS)-satisfied users.
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The hit ratio performance of the three algorithms is shown in Figure 4. It can be seen that the
hit ratio of both BA 1 and BA 2 does not change when the backhaul bandwidth increases. This is
because the user association and content placement of the baseline algorithms have no dependency
on the backhaul bandwidth constraint. As a result, the corresponding hit ratio of the BA 1 and BA 2
is not impacted by the backhaul bandwidth. In contrast with the intuition, the Figure 4 shows that
the hit ratio of PA decreases when the backhaul bandwidth becomes larger. This is due to the fact
that the user association and resources allocation of PA is backhaul bandwidth-aware. When the
backhaul bandwidth is not large enough, the backhaul link would be the bottleneck limiting users’
performance. Without sufficient backhaul bandwidth, the users tend to be associated with the SBSs
which are not close to them but have cached the requested contents to reduce the backhaul traffic. This
would lead to good performance of hit ratio, but the users’ data rates utility would not be improved
significantly. However, with the increase of the backhaul bandwidth, the backhaul link can deliver
more traffic and the dependency of content delivery on SBSs’ cache is reduced. This means that the
users would be associated with neighboring SBSs but can still get good data rates utility. Consequently,
with the growth of the backhaul bandwidth, the hit ratio would decline but the data rates utility would
increase. Based on this, it can be deduced that the PA has the flexibility of making full use of the (1)
communication resources of both the wireless and backhaul links, and (2) the storage resources of
SBSs’ cache, to improve the users’ performance.
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Figure 4. The hit ratio.

5.2. The Impact of the Cache Capacity

The impact of the cache capacity on the algorithms’ performance is evaluated in this subsection.
Specifically, as this paper focuses on the backhaul-constrained scenario, the backhaul bandwidth of
each SBS is fixed as 5 Mbps. The simulation results are also averaged over 100 instances, and each
user would request 10 contents in one instance. During the delivery of one content, users’ locations are
fixed, however, their locations may be different from one content delivery to the other.

The users’ data rates utility, the percentage of QoS satisfied users, and the hit ratio for different
cache capacity are shown in Figures 5–7, respectively. It can be seen that the users’ data rates utilities,
the percentage of QoS-satisfied users, and the hit ratio for all the three algorithms increase with the
expand of the cache capacity. This is consistent with the intuition that with larger cache capacity, more
contents can be cached by each SBS, and the probability of cache hit would be improved. This is
critical for the backhaul-constrained UDN scenarios, which would relieve the backhaul burden and
improve users’ data rates. Additionally, it can be seen that the PA outperforms the BA 1 and BA 2 in
terms of users’ data rate utility and the percentage of QoS satisfied users all the time, which shows the
advantage of the PA over the existing algorithms.
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Figure 5. The network utility.
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Figure 6. The percentage of QoS-satisfied users.

100 200 300 400 500 600 700 800 900 1000

Cache Capacity of Each SBS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 R

a
ti
o

PA

BA 2

BA 1

Figure 7. The hit ratio.

Interestingly, the performance of BA 2 in terms of hit ratio is better than that of the PA, except the
scenario where the cache capacity is 1000 (i.e., all the contents can be cached by each SBS). However,
the users’ data rates utility and percentage of QoS-satisfied users of BA 2 are always smaller than those
of PA’s, which means that the high hit ratio of BA 2 brings no performance improvement from the
perspective of users data rates. The performance gap between the PA and the BA 2 is caused by two
facts. The first one is that BA 2 is designed based on the assumption that each user would send requests
from one specific location, which can not adapt to users’ multi-location requests pattern. This verifies
the necessity of considering users’ multi-location property in the content placement scheme, which
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is one of our main contributions in this paper. The second one is that the BA 2 has a weighted sum
utility function, of which the weight is fixed and lacks the the flexibility to adapt to different network
scenarios. On the other hand, the PA proposed in this paper is a backhaul bandwidth-aware and
cache-aware user association and resources allocation scheme, which is adaptive to diverse network
scenarios with different cache capacity and backhaul bandwidth constraints.

5.3. The Impact of SBSs’ and Users’ Number

In this subsection, the impact of the users’ and SBSs’ number on the network performance is
evaluated. Specifically, two grid network scenarios with 9 SBSs and 16 SBSs are simulated, respectively,
where all the SBSs are distributed in a 60 m × 60 m area. Besides, the users’ number is varied from 50
to 100. The cache capacity is fixed as 100. The backhaul bandwidth of each SBS is set as 5 Mbps. The
simulation results are averaged over 100 instances, and every user would send 10 content requests in
each instance. During the delivery of one content, users’ locations are fixed, however, their locations
may be different from one content delivery to the other.

The average utility of user’s data rates and the percentage of QoS-satisfied users are shown in
Figures 8 and 9, respectively. It is obvious that with the increase of users’ number, both the metrics
decrease for all the algorithms no matter how many SBSs there are. This is intuitive because with limited
cache capacity and backhaul bandwidth, the more users, the less backhaul and wireless bandwidth
could be shared by each user. As a result, the average user’s date rates, as well as the percentage of
QoS-satisfied users would be smaller. Besides, when the number of SBSs is increased from 9 to 16,
the average utility of each user and the percentage of QoS-satisfied users are also improved. This is
because when there are more SBSs, the available cache storage resources, as well as the wireless and
backhaul bandwidth would increase. As a result, the users can benefit from this and the average data
rates would be improved. Moreover, Figures 8 and 9 show that the PA achieves the best performance
in terms of both average utility and the percentage QoS-satisfied users no matter there are 9 SBSs or 16
SBSs in the network. This reveals the advantage of the PA in utilizing the limited cache storage and
communication resources to improve each user’s utility.
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The hit ratio performance for different number of users and SBSs is shown in Figure 10. It can be
seen that for all the three algorithms, the hit ratio performance decreases slightly with the increase of
the number of users. This is because that the cache capacity of each SBS is fixed and limited but the
users’ preferences are diverse. It would be more difficult to utilize the limited cache capacity to store
the proper contents when the users number becomes larger. Consequently, the hit ratio performance
would deteriorate. Furthermore, note that when the number of SBSs increases from 9 to 16, the
corresponding hit ratio performance of all the three algorithms increases. This is intuitive because
more SBSs would lead to more storage resources for the network. Hence, there would be higher
probability for each user to be served by SBSs’ cache. Besides, note that the BA 2 achieves the highest
hit ratio among all the algorithms, no matter how many users and SBSs there are. But combined with
the Figures 8 and 9, it can be derived that the highest hit ratio performance of BA 2 is at the cost of
each user’s data rates degradation.
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Figure 10. The hit ratio.

6. Conclusions

In this paper, the proactive content caching and content delivery problem is investigated for the
cache-enabled UDN with constrained-backhaul link. Specifically, the content placement problem is
formulated for the proactive caching phase, where the multi-location request pattern of mobile users is
considered. Meanwhile, the user-SBS association and resources allocation problem is formulated for
the content delivery phase, where the wireless and backhaul link resources constraints are considered.
Due to the non-convex nature of the problems, the two problems are transformed and converted
into tractable forms, and then the content placement algorithm, user-SBS association and resources
allocation scheme are proposed, respectively. Finally, the simulation results show that the proposed
algorithms have obvious performance advantage in terms of network utility, the hit ratio, and
QoS provisioning.
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