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Abstract: High spatial and temporal resolution remotely sensed data is of great significance for the
extraction of land use/cover information and the quantitative inversion of biophysical parameters.
However, due to the limitation of sensor performance and the influence of rain cloud weather,
it is difficult to obtain remote sensing images with both high spatial and temporal resolution.
The spatiotemporal fusion model is a crucial method to solve this problem. The spatial and temporal
adaptive reflectivity fusion model (STARFM) and its improved models are the most widely used
spatiotemporal adaptive fusion models. However, the existing spatiotemporal adaptive reflectivity
fusion model and its improved models have great uncertainty in selecting neighboring similar pixels,
especially in spatially heterogeneous areas. Therefore, it is difficult to effectively search and determine
neighboring spectrally similar pixels in STARFM-like models, resulting in a decrease of imagery
fusion accuracy. In this research, we modify the procedure of neighboring similar pixel selection of
ESTARFM method and propose an improved ESTARFM method (I-ESTARFM). Based on the land
cover endmember types and its fraction values obtained by spectral mixing analysis, the neighboring
similar pixels can be effectively selected. The experimental results indicate that the I-ESTARFM
method selects neighboring spectrally similar pixels more accurately than STARFM and ESTARFM
models. Compared with the STARFM and ESTARFM, the correlation coefficients of the image fused
by the I-ESTARFM with that of the actual image are increased and the mean square error is decreased,
especially in spatially heterogeneous areas. The uncertainty of spectral similar neighborhood pixel
selection is reduced and the precision of spatial-temporal fusion is improved.

Keywords: remote sensing; spatiotemporal fusion; ESTARFM; spectral mixture analysis; neighboring
similar pixel

1. Introduction

With the development of remote sensing applications, many studies about land use/cover change
monitoring, cropping estimation, and flood mapping require remotely sensed data with high spatial
and temporal resolution [1–3]. Although a substantial number of satellites are available in obtaining
many types of remotely sensed images, it is still difficult to obtain remote sensing images with both
high temporal and spatial resolutions due to the limitations of sensor technology, coupled with the
influence of rain or cloud weather when remote sensing data is acquired [4].

To this end, the image fusion technology and algorithm for constructing remotely sensed data
with high spatial and temporal resolution are of intense interest in current remote sensing applications.
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For example, Gao et al. (2006) proposed a spatial and temporal adaptive reflectance fusion model
(STARFM), which can blend Landsat and MODIS (moderate-resolution imaging spectroradiometer)
data to generate Landsat-like imagery with a higher temporal resolution [5]. A large number of
studies have proved that the STARFM model is effective in blending high spatial resolution data with
high temporal resolution data and applied the blended data in monitoring land use/cover change,
vegetation, and crop [6,7]. However, the STARFM model has some shortcomings. Firstly, the fusion
images cannot capture the information about land cover’s abrupt changes in predicting period by using
the STARFM model [5]. For that reason, Hilker et al. (2009) proposed a Spatial Temporal Adaptive
Algorithm for mapping Reflectance Change (STAARCH) for the change of reflectivity [8]. This model
extracts the spatial and temporal changes of the images and improves the fusion accuracy by using
the best phase high resolution reference images. Secondly, for the impact of bidirectional reflectance
distribution function (BRDF) effect on image, Roy et al. (2008) proposed a fusion method based on a
semi-physical model and effectively solved the problem of the BRDF effect [9]. Thirdly, for the impact
of landscape heterogeneity on the fusion accuracy of the STARFM model, Zhu et al. (2010) proposed
an enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). By introducing two
pairs of reference images, the fusion accuracy was improved in the area of heterogeneity landscape, and
the detection ability of the surface cover mutation region was enhanced in ESTARFM [10]. Research
shows that this model can be applied not only to the fusion of Landsat and MODIS images, but also to
images of other sensors [11], indicating that STARFM and its improved methods have great potential
in the applications of spatiotemporal fusion.

In the STARFM and its improved methods, a key step of image fusion is to select neighboring
similar pixels for the central pixel in the moving window, which can provide significant auxiliary
information for prediction. This process is crucial in calculating final predicted reflectance in any
STARFM-like fusion method; its identification is influenced by the method used, the number of classes,
and the moving window size [12]. The existing STARFM-like fusion models use the standard deviation
of the pixel reflectivity of the entire image and the estimated number of land cover type as the spectral
threshold for selecting similar pixels [5,8–10], which has a large uncertainty in selecting similar pixels,
especially in spatially heterogeneous areas, decreasing the accuracy of spatiotemporal fusion. Fu et al.
(2013) introduced an m-ESTARFM using accurate land cover data to improve the similar pixel selection,
and their result showed that an accurate similar pixel selection could effective enhance the fusion
quality [13]. However, the land cover map is hard to obtain in general cases. Zhu et al. (2016)
proposed a Flexible Spatiotemporal Data Fusion (FSDAF) model introducing ISODATA cluster method
to improve the similar pixel selection and proved it to be a successful improvement [14]. Knauer et al.
(2016) also modified the similar pixel selection process in ESTARFM using an automated clustering
method [15]. However, the cluster method can only determine the accuracy to a pixel level, thus there
still is room for improvement in accuracy.

In order to overcome this shortcoming, we modified the procedure of neighboring similar pixel
selection in ESTARFM and proposed an improved ESTARFM method (I-ESTARFM), combining the
spectral mixture analysis method and the spectral threshold to generate more accurate similar pixel
results for image fusion. The I-ESTARFM was tested using three geographic regions. In this paper,
we firstly introduce the procedure of neighboring spectrally similar pixels selection and evaluate the
performance of improved spatiotemporal fusion approach, followed by comparing the fusion results
obtained by STARFM and ESTARFM models in the three study areas. Finally, some discussions and
conclusions are provided.

2. Description of IESTARFM

The improved ESTARFM method (I-ESTARFM) combines the spectral mixture analysis method
and the spectral threshold to generate more accurate similar pixel results for image fusion based on
ESTARFM. The flowchart of I-ESTARFM is illustrated in Figure 1.
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Figure 1. The flowchart of the Improved ESTARFM.

2.1. The Similar Pixel Selection Method in ESTARFM

The ESTARFM models assume that the difference in reflectance between low- and high-resolution
images of the same phase is only caused by systematic errors, so it assumes the relation between
reflectance of low- and high-resolution image is linear. However, in actual images, there are inevitable
noise and the deviation of the geographic coordinate registration between the images acquired from
different sensors. Therefore, the ESTARFM models select the similar pixels that are adjacent to the
central pixel in moving window using the spectral threshold that is determined by the standard
deviation of the reflectivity of the entire image and the estimated number of land cover type, as shown
in Equation (1). ∣∣∣∣F(xi, yi, t0, B) − F

(
x w

2
, y w

2
, t0, B

)∣∣∣∣ ≤ σ(B) × 2/m (1)

where F represents the reflectivity of high-resolution image, t is the image acquisition time, B is the
band, (xi, yi) is the coordinate pair of the neighboring pixels, (x w

2
, y w

2
) is the central pixel coordinates,

σ(B) is the standard deviation of the reflectivity of the image in B band, and m is the number of land
cover classes. Pixels that satisfy the above relationship will be identified as spectrally similar pixels.
In Figure 2, the black polyline is the spectral curve of the central pixel, and all pixels whose spectral
values within the red polyline are selected as similar pixels. A correct selection of spectrally similar
pixels is of great significant for the fusion process, which ensures the accuracy of spectral information
for predicted central pixel [5].
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Figure 2. Spectral curves of the similar pixels selected by the threshold method.

Due to the existence of the phenomenon that the same land objects may have different spectral
characteristics in remote sensing images [16], selecting similar pixels only based on the spectral
threshold will cause a certain degree of error. Further, mixed pixels in remote sensing images, especially
in heterogeneous areas, tend to cause bigger uncertainties in the selection of similar pixels based on
the mixed pixel spectral reflectance [17]. As illustrated in Figure 3, this simulated image contains three
areas of different types of land cover, that is, forest, crop in growing season, and bare soil (the spectra
is derived from actual Landsat OLI image). The cross areas are mixed pixel with 50 percent of each
neighboring land cover type. The spectra of each pure and mixed pixel are shown in Figures 4 and 5.
The simulated image shows that the spectral threshold cannot separate the mixed pixels of different
land cover type in moving window. As shown in Figure 5, the central pixel is a mixed pixel consists of
forest and bare soil, while the mixed pixels comprised crop and bare soil within the moving window
and can be selected as spectral similar pixels with the central mixed pixel according to the spectral
threshold (spectral threshold is calculated based on the simulated image). If we calculate the threshold
using the complete remote sensing image as ESTARFM does, the threshold would be larger and cause
more wrong selection.
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2.2. Improved Selection of Similar Pixels

In view of the aforementioned shortcomings of the spectral threshold for the selection of similar
pixels, we proposed an approach for selecting the similar pixels using spectral mixture analysis, and
the research aims to improve the ESTARFM and reduce the level of uncertainty in image fusion.

The basic assumption of spectral mixture analysis is that the land surface is composed of a few
features (i.e., endmember) whose spectral features are stable [18]. Each pixel can be represented as
its endmember spectrum and its proportional fraction in pixels. By spectral mixture analysis, the
spatial information can be obtained at the sub-pixel level so that the pixel components can be identified
more accurately.

The endmember fraction of each mixed pixel is obtained by using constrained least squares
solution model (Equation (2)).

R =
N∑

i=1

firi + ε0 (2)

where fi is the endmember fraction value, ri is the end element reflectance, ε0 is the residual value, and
N is the number of endmember. The endmember fraction value satisfies the following constraints.

N∑
i=1

fi = 1, fi ≥ 0 (3)

In previous studies [19,20], the commonly used spectral mixture analysis model is a fixed
endmember mixture analysis model, that is, each type of ground object uses the same endmember
spectrum, ignoring the phenomenon that the same object may have different spectra, so it is limited.
The multiple endmember spectral mixture analysis (MESMA), proposed by Roberts et al., is a linear
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unmixing model [21], which employs the variable endmember spectra and uses the endmember
judgment rule to select a mixture model for each pixel.

The MESMA model is used to decompose mixed pixel of Landsat OLI image. Firstly, based on
Vegetation (V)-Impervious surface (I)-Soil (S) (V-I-S) model [22], the vegetation, impervious surface, and
bare soil are selected as the basic endmember, among which the impervious surfaces are anthropogenic
features, such as rooftops, roads, driveways, sidewalks, and so on. Secondly, the original endmember
spectral library is obtained using the pure pixel index (PPI) and image scatter plot [23]. Thirdly, the
values of three indexes—Count-Based Index (CoBI), endmember Average RMSE (EAR), and Minimum
Average Spectral Angle (MASA)—are calculated. Finally, according to the rules of the maximum CoBI
and minimum EAR and MASA, the spectral curves of each endmember are selected from the images,
and the vegetation, impervious surface, and bare soil spectral library are established.

CoBI =
in_CoB

out_CoB× n
(4)

CoBI determines the number of spectra modeled by an endmember within the endmember’s class
(in_CoB) and outside of the endmember’s class (out_CoB). n is the number of endmember models.

EARi =
1

n− 1

n−1∑
j=1

RMSEi j (5)

MASAi =
1

n− 1

n−1∑
j=1

Spectral Anglei j (6)

where i is the serial number of an endmember and j is the modeled spectrum; the spectral angle is
expressed as follows

Spectral Angle = cos−1

∑N
λ=1 ρλρ

′

λ

LρLρ′
(7)

where ρλ is the reflectance of an endmember, ρ′λ is the reflectance of a modeled spectrum, Lρ is the
length of the endmember vector and Lρ′ is the length of the modeled spectrum vector.

In MESMA, the unmixing process is based on the Equation (2) and Equation (3) as well, while a root
mean square error (RMSE) (Equation (8)) is employed as an evaluation index for pixel decomposition:

RMSE =
λ∑

k=1

(
ε2

k/λ
)1/2

(8)

where εk is the fitted residual of the k band, and λ is the total number of spectral bands. For each pixel,
the inversion of different endmember combinations is performed and the result with smallest RMSE
value is selected as the final result. Thus, each pixel has its corresponding endmember mixture model
which is the combination of the most suitable endmember. For instance, in Figure 3, the two kinds of
mixed land are classified as different endmember model (vegetation (crop) and bare soil, vegetation
(forest) and bare soil). Compared with the fixed endmember mixture analysis, this method can better
recognize the phenomenon that different spectra characteristics with the same object in the actual
image and obtain accurate estimated fraction value. The MESMA can effectively solve the issues that
the same object may have different spectrum [24].

For implementation process of the I-ESTARFM, firstly, the quantitative information of the
endmember mixture model and the fraction value of high-resolution image (Landsat image) are
obtained based on the spectral mixture analysis by using MESMA. Then, the endmember type structure
and the fraction value of the mixed pixel are used as the basis for searching the neighboring spectrally
similar pixels in moving window.
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The similar pixels are selected preliminarily according to the endmember mixture model of the
central mixed pixel in moving window. All the pixels in the moving window that have the same
endmember mixture model with the center pixel are initially selected as the similar pixels. The mixture
model consists of different type of endmember derived from V-I-S model, and the most suitable
spectrum is selected from each kind of land object (V-I-S); meanwhile, at most one spectrum of a
kind of land object is selected for single model. The similar pixels are further identified based on the
endmember fraction values, the fraction standard deviation of the whole image and the number of
endmember (Figure 6, Equations (9) and (10)).

D(xi, yi) −D
(
x w

2
, y w

2

)
= 0 (9)∣∣∣∣f(xi, yi, D) − f

(
x w

2
, y w

2
, D

)∣∣∣∣ ≤ σ(D)/k (10)

where D is the end-member type, f is the image end-member fraction value, (xi, yi) is the coordinate
pair of the neighboring spectrally similar pixels, (x w

2
, y w

2
) is the central pixel coordinates, σ(D) is the

fraction standard deviation of the whole image, and k is the endmember number.
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Figure 7. The selected results. (a) spectral threshold; (b) improved approach.

Figure 7 illustrates the different results of similar pixel selection by the spectral threshold method
and the improved method. The crop land in the left lower corner is a wrong selection and when
the predicted time is not in the crop’s growing season, the fusion image would have obvious bias.
In contrast, the improved method can eliminate the wrong similar pixel in the first step (Equation (9))
since the different mixed pixels are allocated different endmember mixed model, which can improve
the fusion result’s accuracy.
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2.3. Fused Data Generation

After determining the similar pixels, the following steps are to weight the spatial information
from neighboring pixels and to estimate reflectance of the central pixel. The fused high-resolution
images can be obtained by the following image fusion model [10].

F
(
x w

2
, y w

2
, tp, B

)
= F

(
x w

2
, y w

2
, t0, B

)
+

N∑
i=1

Wi ×Vi × (C
(
xi, yi, tp, B

)
−C(xi, yi, t0, B)) (11)

where, F and C represent the reflectance of high- and low-resolution images, respectively. t is the image
acquisition time, B is the band, (x w

2
, y w

2
) is the central pixel coordinate pair, N is the number of similar

pixels, (xi, yi) is the coordinate pair of the neighboring spectrally similar pixels, Wi is its weight, and Vi
is the conversion coefficient, among this

Wi = (1/Di)/
N∑

i=1

(1/Di) (12)

Di = (1−Ri) × di (13)

di = 1 +

√(
x w

2
− xi

)2
+

(
y w

2
− yi

)2
/(w/2) (14)

The conversion coefficient Vi can transfer the reflectance changes between the MODIS scenes (pair
dates−prediction date) to the Landsat scene at the prediction date and is based on the slope of the
regression between inputted Landsat and MODIS data. For more information on the original fusion
algorithm, see Zhu et al. [10].

3. Data and Pre-Process

To verify the suitability of the I-ESTARFM, three study areas were selected, with each having
an area of ~144 km2 (400 × 400 Landsat pixels). Study area 1 is located in Shanxi Province, China.
The center coordinates of the area are (107◦52′34′′E, 34◦29′37′′N). The main land use types are cultivated
land and residential area. The landscape is relatively simple. Study area 2 is located in Qinhai Province,
China. The central coordinate of the area is (94◦47′60′′E, 36◦23′60′′N). The main land use types are
cultivated land, forest land, and bare land. The landscape is more fragmented and complex in study
area 2 than that of study area 1. Study area 3 is located in Hubei Province, China, and the central
coordinates of the area are (114◦32′32′′E, 30◦04′11′′N). The main land use types are cultivated land and
forest land. The landscape is more fragmented and complex in study area 3 than that of study area 2.
The three study areas represent different types of landscape from simple to complex, respectively.
The true color images of study areas are shown in Figure 8.
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Landsat8 OLI and MOD09GA data were downloaded from the United States Geological Survey
(USGS) (see Table 1 for the information about the data) and were used in this study. The differences of
acquisition times between Landsat and MODIS images do not exceed one day, which can be considered
obtained at the same time. The image quality is good and the cloud coverage is less than 5%.

The geometrically corrected Landsat8 OLI image has a resolution of 30 m and contains 9 spectral
bands. In this study, three visible light bands, one near-infrared band, and two short-wave infrared
bands were used (Table 2). The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
method was used for radiometric calibration and atmospheric correction [25]. MOD09GA is a daily
surface reflectance product with a spatial resolution of 500 m. The tool from the MODIS Conversion
Toolkit was used to read MODIS images and converted them to the UTM projection, to be consistent
with Landsat images. The 6 bands whose bandwidth is similar to that of Landsat were selected, using
the nearest neighbor algorithm to resample the image to 30 m resolution, which is the same as Landsat
image and preserves its radiometric quality.

In order to ensure the locational accuracy of pixel pair of Landsat and MODIS image, a co-register
process was performed on the MODIS pixels to each pixel by using a correlational optimized
algorithm [26]. According to previous studies, the BRDF effect in MODIS image exerts inconspicuous
error on STARFM-like models, and the related BRDF adjust models are semi-empirical models so it is
hard to insure its accuracy [27,28]. We directly used the daily reflectance as inputted data.

Table 1. Image data and acquisition time.

Data Type Row and Column Study Area Image Function Acquired Date

Landsat8 OLI

127/36 Study area 1
basis 2014/12/5

validation 2014/12/21
basis 2015/1/22

136/35 Study area 2
basis 2016/3/12
basis 2016/6/16

validation 2016/9/20

122/39 Study area 3
basis 2016/8/1
basis 2016/8/17

validation 2016/9/2

MODIS09GA

h27v05 Study area 1
basis 2014/12/5

predict 2014/12/21
basis 2015/1/22

h25v05 Study area 2
basis 2016/3/12
basis 2016/6/16

predict 2016/9/20

h27v06 Study area 3
basis 2016/8/1
basis 2016/8/17

predict 2016/9/2

Table 2. Landsat8 OLI and MODIS data band comparison table.

Landsat OLI Band Wavelength (nm) MODIS Band Wavelength (nm)

Landsat8 OLI Band2 450–510 MOD09GA Band3 459–479
Landsat8 OLI Band3 530–590 MOD09GA Band4 545–565
Landsat8 OLI Band4 640–670 MOD09GA Band1 620–670
Landsat8 OLI Band5 850–880 MOD09GA Band2 841–876
Landsat8 OLI Band6 1570–1650 MOD09GA Band6 1628–1652
Landsat8 OLI Band7 2110–2290 MOD09GA Band7 2105–2155
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4. Result and Analysis

4.1. Spectral Mixture Analysis

Based on the endmember spectral library, the unmixing analysis was performed, and the
endmember fractions and RMSE were obtained (see Figures 9–11). In study area 1, the RMSE values
are between 0 and 0.03, and are mainly distributed around 0.007. In study area 2, the RMSE values are
between 0 and 0.02, and are mainly distributed around 0.001, while in study area 3, the RMSE values
range from 0 to 0.02, and are mainly distributed around 0.003. The RMSE values of all experimental
areas are at a low level and meet the needs of subsequent experiments.
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4.2. Fusion Results and Analysis

The moving window size should be set before the fusion process. According to previous studies,
the moving window size should be large enough in order to obtain sufficient similar pixels, while
an overlarge window will decrease the computing efficiency [5,13]. In this research, considering
the size of the study areas and ensuring the image fusion experiments are conducted in the same
condition, the moving window size of all of the three methods is set as 31 × 31 pixels. The fusion
results by using STARFM, ESTARFM, and I-ESTARFM are shown in Figure 12, Figure 13, and Figure 14.
The comparison analyses indicate that all of the three models could obtain better fusion results in
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simple landscape areas such as the case in study area 1 (Figure 12). However, the fusion results of the
I-ESTARFM are better than that of the STARFM and ESTARFM models (Figures 13 and 14) in more
fragmented and complex landscape areas such as in study areas 2 and 3.
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In study area 2, the fusion results of three methods have obvious difference. The enlarged area
(Figure 13e–h) mainly consists of desert, with some desert vegetated cover. From Figure 13e, we
can find that the desert vegetation has some phenology change (red box area). However, the fusion
results of STARFM and ESTARFM have various degrees of bias and both of them cannot reflect the
phenology change. As we can see in Figure 13h, the result of I-ESTARFM clearly captures the reflectance
change, and the result is most similar to that of STARFM and ESTARFM. In study area 3, the spectral
difference between the cultivated land and forestland of fusion image by the STARFM and ESTARFM
is significantly reduced. As can be seen in Figure 14e, the cultivated land and the forest in actual
Landsat image have different reflectance in this region, while the cultivated land and forest have the
similar spectrum in the fusion images of STARFM and ESTARFM. This indicates that the STARFM and
ESTARFM models are easy to confuse the spectrum of forestland and cultivated land when selecting
spectral similar neighborhood pixels in regions with more fragmented and complex landscapes, which
leads to the deviation between the fusion results and the actual situation. The I-ESTARFM can clearly
distinguish forestland and cultivated land, and the spectral information is closer to the actual situation
(Figure 14h). This is because the I-ESTARFM uses sub-pixel quantitative information to select spectrally
similar neighborhood pixels, avoiding using wrong auxiliary neighboring spectral information for the
central pixel prediction. For example, if the central pixel of moving window is crop land, which is
harvested in the predicted time, while the based image is acquired in growing season of the crop, the
spectral threshold method may select a large substantial of forestland pixels as similar pixel since the
spectra of growing crop and forest are similar (see in Figure 4), especially when there are many mixed
pixel existed which would increase the spectral similarity of different land objects. This wrong spectral
information would cause large deviation in image fusion.

We further quantitatively assessed the fusion results of the STARFM, ESTARFM, and I-ESTARFM
models. The correlation coefficient (r) and root mean square error (RMSE) between the fused and
actual images are shown in Tables 3–5.

Table 3. Accuracy assessment results of study area 1.

Band
STARFM ESTARFM I-ESTARFM

r RMSE r RMSE r RMSE

red 0.88530 0.01895 0.90969 0.01812 0.92767 0.01769
green 0.83601 0.02431 0.93395 0.02283 0.94859 0.02236
blue 0.89573 0.02800 0.94181 0.02707 0.95345 0.02669
NIR 0.97119 0.07007 0.97123 0.06893 0.98162 0.06757
SWIR 1 0.95649 0.04105 0.95477 0.04088 0.96558 0.04005
SWIR 2 0.94699 0.03801 0.95653 0.03752 0.96634 0.03676

Table 4. Accuracy assessment results of study area 2.

Band
STARFM ESTARFM I-ESTARFM

r RMSE r RMSE r RMSE

red 0.82264 0.04239 0.83780 0.04076 0.86990 0.03919
green 0.81513 0.04930 0.84313 0.04788 0.86412 0.04519
blue 0.80664 0.05665 0.81788 0.05521 0.85654 0.05158
NIR 0.83907 0.06435 0.88136 0.06392 0.89616 0.06287
SWIR 1 0.72223 0.05237 0.74327 0.05057 0.76800 0.04860
SWIR 2 0.69582 0.04804 0.73173 0.04585 0.75836 0.04226
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Table 5. Accuracy assessment results of study area 3.

Band
STARFM ESTARFM I-ESTARFM

r RMSE r RMSE r RMSE

red 0.80609 0.01420 0.81288 0.01403 0.85434 0.01296
green 0.83983 0.01709 0.84642 0.01575 0.90146 0.01482
blue 0.87306 0.02589 0.87751 0.02522 0.91762 0.02361
NIR 0.90136 0.05373 0.90889 0.05243 0.93467 0.04983
SWIR 1 0.87413 0.04916 0.88579 0.04853 0.92770 0.04502
SWIR 2 0.86640 0.03700 0.87866 0.03631 0.91614 0.03540

The quantitative evaluation shows that the r between the image fused with the I-ESTARFM and
the actual image improved, and the RMSE decreased. In study area 1, compared with the results of
STARFM, the r of the fused images based on the I-ESTARFM with that of the actual images increased
by 3.53% on average and the root mean square error reduced by 4.78% on average; compared with
ESTARFM, the r value of I-ESTARFM increased by 1.33% and the RMSE decreased by 1.98%. In study
areas 2 and 3, the accuracy of the fusion images is improved more significantly by using the I-ESTARFM
model. In study area 2, compared with the STARFM, the r of the image fused by the I-ESTARFM
with that of the actual image increased by 6.68% and the RMSE decreased by7.72%. Compared with
ESTARFM, the r increased by 3.28% and the RMSE decreased by 4.89%. In study area 3, the r value of
I-ESTARFM increased by 5.66% and 4.67, and the RMSE decreased by 8.48% and 5.77%, compared
with the STARFM and ESTARFM models, respectively.

The quantitative analysis indicates that the STARFM and ESTARFM models based on pixel spectral
values often find it difficult to capture spectral similar neighborhood pixels in moving windows,
especially in complex landscape areas with large number of mixed pixels (as in study areas 2 and
3). The I-ESTARFM model can effectively search spectral similar neighborhood pixels in complex
landscape areas with a large number of mixed pixels, so that higher precision fusion results can
be obtained.

For model evaluation, the computing efficiency should be taken into consideration [29].
The computing time of different models are recorded (Table 6). As the result shows, the proposed
I-ESTARFM method needs more time than that of STARFM and ESTARFM, since it needs more
calculation for the additional data. However, compared with the ESTARFM model, the computing
efficiency of proposed method is acceptable, since the time cost only increases by 10.3%. However,
because of the accuracy improvement of I-ESTARFM, the additional time taken for the fusion process
is acceptable.

Table 6. Average computing time of three methods.

Method STARFM ESTARFM I-ESTARFM

Costing time (s) 180 290 320

5. Conclusions

The spatial and temporal fusion technology of remote sensing data has been widely used. A large
number of studies have shown that the accuracy of fusion images can meet the needs of current
applications. In this paper, we proposed an improved ESTARFM method (I-ESTARFM) for multisource
remote sensing data fusion. The performance of proposed method is evaluated using three pieces of
study area and the fusion accuracy of proposed method is compared with STARFM and ESTARFM
methods. The experimental results show that the I-ESTARFM model has great potential in remote
sensing data fusion and can produce a fusion image with higher accuracy than that of STARFM and
ESTARFM method.
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(1) The proposed I-ESTARFM effectively selects and determines spectral similar neighborhood
pixels based on the structure and type of endmember mixture model and the fraction of mixed pixels.
The uncertainty of spectral similar neighborhood pixel selection is greatly reduced and the precision of
spatial-temporal fusion is improved, especially in spatial heterogeneity area.

(2) Comparing the fusion results of proposed model with actual images, the correlation coefficient
of I-ESTARFM model is higher than that of the ESTARFM model. Specially, in areas with complex land
cover, fragmented landscape, and large spatial heterogeneity, the fusion accuracy is improved when
using the I-ESTARFM model. It shows that the selection of spectral similar neighborhood pixels based
on the structure and type of mixed pixels and the fractions of mixed pixels are more effective than that
based on spectrum threshold.

Although the proposed I-ESTARFM can improve fusion accuracy, there are still some shortcomings.
When there are transient land cover changes in the period of predicting image and the high-resolution
reference images do not contain these changes, the fusion model cannot accurately predict the changed
objects. Besides, those small changes that cannot be captured in a low-resolution image will not be
expressed in fusion result. Further, the fusion efficiency of I-ESTARFM is slightly lower compared
with the ESTARFM method, which will be further studied in follow-up research.
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