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Abstract: For existing wireless network devices and smart phones to achieve available positioning
accuracy easily, fingerprint localization is widely used in indoor positioning, which depends on the
differences of the Received Signal Strength Indicator (RSSI) from the Wireless Local Area Network
(WLAN) in different places. Currently, most researchers pay more attention to the improvement of
online positioning algorithms using RSSI values, while few focus on the MAC (media access control)
addresses received from the WLAN. Accordingly, we attempt to integrate MAC addresses and RSSI
values simultaneously in order to realize indoor localization within multi-story buildings. A novel
approach to indoor positioning within multi-story buildings is presented in this article, which includes
two steps: firstly, to identify the floor using the difference of received MAC addresses in different
floors; secondly, to implement further localization on the same floor. Meanwhile, clustering operation
using MAC addresses as the clustering index is introduced in the online positioning phase to improve
the efficiency and accuracy of indoor positioning. Experimental results show that the proposed
approach can achieve not only the precise location with the horizontal accuracy of 1.8 meters, but also
the floor where the receiver is located within multi-story buildings.

Keywords: indoor localization; media access control address; floor identification; multi-story
buildings; fingerprint localization

1. Introduction

Nowadays, as many people spend about 80% of their life indoors [1], indoor location is becoming
more and more important to our daily life. The Global Positioning System (GPS) is a typical localization
technology that has been used in various fields. However, various indoor localization techniques are
required because GPS signals cannot be received in indoor environments. How to realize high-precision
and high-practical indoor positioning technology has become a research hotspot in academia and
industry [2]. Currently, the popular indoor positioning technologies can be classified into three
categories: the first is indoor positioning technologies based on mobile phone sensors [3,4] such as
accelerometer, gyroscope, barometer; the second is indoor positioning technologies based on radio
frequency signals [5] such as WLAN, Bluetooth, cellular mobile signals; the third is multi-source
fusion localization methods [6] which integrate a variety of positioning technologies based on mobile
phone platforms. Generally, indoor positioning methods based on sensors, e.g., PDR (Pedestrian
Dead Reckoning) [7], are limited by the sensor accuracy of the mobile phone and the positioning
principle of pedestrian calculation, so they inevitably produce accumulated errors. Although the
indoor positioning method based on radio frequency signal has better positioning accuracy and low
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cost, its positioning accuracy is unstable [8]. Meanwhile, the multi-sensor fusion localization method,
such as WiFi-PDR (Pedestrian Dead Reckoning) indoor positioning, has become a new trend [9], but the
heterogeneity of all kinds of sensors makes the fusion calculation challenging. Accordingly, indoor
localization dependent on WLAN is still widely used in many applications because of low cost and
low difficulty [10].

Besides the plane position of moving receivers, their floor position is necessary to locate them
perfectly within multi-story buildings. Some researchers have done some work on floor identification.
Deng et al. [11] proposed a WLAN indoor floor identification method based on the k-means algorithm
that classifies floors according to the relationship between RSSI value and distance and takes the
nearest class of subordinate floors as the final result. Alex et al. [12] proposed another method based on
GSM (global system for mobile communications) fingerprint to identify the floor and studied different
methods to reduce the amount of fingerprint collection effectively under the condition of ensuring
a high identification accuracy rate. Li et al. [13] introduced prior information, such as an indoor
environment map, to help the RSSI of WLAN to realize floor identification. Literature [14] applied
WKNN (Weight K-Nearest Neighbor) and neural network respectively to floor judgment, which was
also based on the RSSI. In contrast to the above, [15,16] used differential barometric altimetry to assist
with floor identification and achieved a judgement rate of 98%. In addition, in order to improve the
matching efficiency of online positioning, different clustering algorithms were introduced [17–23],
such as interior geometric clustering algorithm. Some researchers considered APs (access points) as
Voronoi diagram’s generators to create Voronoi cells and used these cells to cluster fingerprints of
database [22,23]. After that, the location area of mobile nodes was determined by using the strongest
access point, and finally used the dynamic KNN (K-nearest neighbor) algorithm to implement the
fingerprint clustering algorithm.

The major innovation of this article is that MAC addresses of APs are applied to indoor localization
within the multi-story buildings. Firstly, MAC addresses and RSSI from WLAN in multi-floor indoor
environment are collected and stored into fingerprint database. Secondly, the floor where the receivers
are located is identified through matching the similarity between the received MAC address vector
of receivers and that pre-stored in the fingerprint database. Thirdly, the further localization results
on the same floor are obtained through the coarse positioning and the precise positioning. In the
proposed method, MAC addresses are fully used and clustering reference points taking MAC as the
classification index can largely reduce the search space of RSSI matching, which will improve the
efficiency of RSSI matching.

The rest of the paper is organized as follows. In Section 2, the main idea and design of indoor
localization of multi-story indoor environment is proposed. Section 3 shows the data collection and
the establishment of fingerprint database. Section 4 gives the detailed introduction about the proposed
approach. A case study used to test the proposed method is shown in Section 5. Finally, discussion
and concluding remarks are given in Section 6.

2. Main Idea of Proposed Approach

Generally, the positioning process of wireless fingerprint localization based on WLAN is divided
into two phases: the establishment of fingerprint database and real-time positioning [24]. However,
considering the possibility of improving positioning precision by adding MAC addresses to the indoor
localization, we proposed a novel indoor localization approach. Compared with the existing methods,
the proposed one adds the floor identification phase. The detailed positioning procedure is shown in
Figure 1.
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classified into many sub-classes by the clustering algorithm that takes MAC addresses as the 
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secondly, precise positioning is achieved by using the similarity matching between the real-time 
RSSI value vector of the receivers and those pre-stored in the fingerprint database [25]. These 
phases above will be introduced separately in the following parts. 

3. Data Collection and Database Establishment 

3.1. Data Collection 

It is the first step of Wi-Fi fingerprint localization to collect the signals of APs inside the 
buildings, which includes layout of reference points and the following collection of MACs and RSSIs 
of all available APs in each reference point. The interval of two neighboring reference points should 
be planned reasonably for it will impact the localization accuracy largely. 

Figure 1. The proposed flowchart of indoor localization within multi-story buildings based on Wi-Fi.

The process of the proposed indoor localization approach is divided into three phases: offline phase,
online floor identification phase, and online positioning phase. The third one includes clustering-based
coarse positioning by MAC addresses and precise positioning by RSSI. In the offline learning phase,
a number of planned reference points are laid out in the location area, and RSSI values and MAC
addresses from APs are collected at those points by our developed collector on Android platform to
establish the fingerprint database. After that, all reference points are classified into many sub-classes
by the clustering algorithm that takes MAC addresses as the classification index. In the phase of floor
identification, the repetition rate of MAC addresses is used to identify the floor where the receiver is.
In the phase of two-step online positioning, firstly, coarse positioning is implemented by matching
MAC addresses based on offline clustering results; secondly, precise positioning is achieved by using
the similarity matching between the real-time RSSI value vector of the receivers and those pre-stored in
the fingerprint database [25]. These phases above will be introduced separately in the following parts.

3. Data Collection and Database Establishment

3.1. Data Collection

It is the first step of Wi-Fi fingerprint localization to collect the signals of APs inside the buildings,
which includes layout of reference points and the following collection of MACs and RSSIs of all
available APs in each reference point. The interval of two neighboring reference points should be
planned reasonably for it will impact the localization accuracy largely.
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Our experiment was carried out in a real scenario (our office building). It directly utilized many
existing Wi-Fi hotspots installed in the corridors and rooms of the building, which were specially
designed for building wireless networks. The test area includes the second and third floors of the
building. Figure 2 shows one of the two floors. The location testing area of each floor was divided
into a number of grids. The intersection of grids was called reference points with the interval of
1.2 m, the number of which on each floor was 160 groups. Then, the information of all available APs
installed in the building were collected at each reference point by a signal acquisition software that
was developed on Android using the java programming language. The software was designed mainly
to collect RSSIs and MACs at each reference point and to obtain the acceleration, direction and attitude
of a smartphone, whose main interface was shown in Figure 3a.Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 
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When the Wi-Fi mode was checked, the information of APs could be collected that included service
set identifier (SSID), MAC addresses, the lowest RSSI value and the highest RSSI value. Figure 3b
shows the actual environment of data collection. RSSI of each AP changes in real time and is not a
constant value. For this reason, we collected the RSSI values and MAC addresses 30 times at every
reference point of two floors. The sampling frequency was 10 Hz and the sampling time was 3 s.
After that, all original information was saved to support the following work.

3.2. Database Establishment

Due to the large quantity of APs and reference points and the times of collection, the data of MAC
addresses and RSSI values are huge [26]. It’s necessary to extract eigenvalues in order to establish
the fingerprinting database [27]. In order to make efficient use of the collected AP (Access Point)
information, AP optimization is required [28]. The reasonable selection of APs can not only improve
the accuracy of positioning, but also reduce the computation time. As dozens of APs (the statistical
results are 19–129, as shown in Figure 4) can be available to the receiver at each sampling point, the top
10 APs ranking by RSSI are selected to establish the fingerprinting database. Besides having the
strongest signals, the top 10 APs must have long-term and stable availability.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 21 

 

When the Wi-Fi mode was checked, the information of APs could be collected that included 
service set identifier (SSID), MAC addresses, the lowest RSSI value and the highest RSSI value. 
Figure 3b shows the actual environment of data collection. RSSI of each AP changes in real time and 
is not a constant value. For this reason, we collected the RSSI values and MAC addresses 30 times at 
every reference point of two floors. The sampling frequency was 10 Hz and the sampling time was 3 
s. After that, all original information was saved to support the following work. 

3.2 Database establishment 

Due to the large quantity of APs and reference points and the times of collection, the data of 
MAC addresses and RSSI values are huge [26]. It’s necessary to extract eigenvalues in order to 
establish the fingerprinting database [27]. In order to make efficient use of the collected AP (Access 
Point) information, AP optimization is required [28]. The reasonable selection of APs can not only 
improve the accuracy of positioning, but also reduce the computation time. As dozens of APs (the 
statistical results are 19–129, as shown in Figure 4) can be available to the receiver at each sampling 
point, the top 10 APs ranking by RSSI are selected to establish the fingerprinting database. Besides 
having the strongest signals, the top 10 APs must have long-term and stable availability.  

 
Figure 4. The number of APs received at each reference point on the second floor. 

The specific process is as follows: for all reference points in the fingerprint database, the mean 
of each AP’s 30 RSSI values during the period of data collection is firstly computed, and then the 
fingerprints of all APs are sort in descending order based on the RSSI means, lastly the top 10 APs 
are selected to establish the fingerprinting database that stores RSSI values and MAC addresses of all 
selected APs. In order to realize the floor identification and the location on the same floor, the 
fingerprinting database must store horizontal position, received RSSI vector, received AC vector and 
floor of each reference point. Data of each reference point is stored in the database as one record. 
Taking data on one floor as an example, their organization is shown as Table 1. 

Table 1. Organization of the fingerprint database. 

Reference Points 𝑿 𝒀 𝑹𝑺𝑺𝑰 𝑴𝑨𝑪 Floor 𝐴  𝑋  𝑌  𝑅 , 𝑅 , … , 𝑅  𝑀 , 𝑀 , … , 𝑀  𝐹  𝐴  𝑋  𝑌  𝑅 , 𝑅 , … , 𝑅  𝑀 , 𝑀 , … , 𝑀  𝐹  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐴  𝑋  𝑌  𝑅 , 𝑅 , … , 𝑅  𝑀 , 𝑀 , … , 𝑀  𝐹  

where 𝐴  represents the ID of the reference point 𝑖 on the floor 𝐹 ; 𝑋 , 𝑌  denote the coordinates 
of reference point 𝐴 ; 𝑅  and 𝑀  denote respectively the top 𝑚 of RSSIs and corresponding 

Figure 4. The number of APs received at each reference point on the second floor.

The specific process is as follows: for all reference points in the fingerprint database, the mean
of each AP’s 30 RSSI values during the period of data collection is firstly computed, and then the
fingerprints of all APs are sort in descending order based on the RSSI means, lastly the top 10 APs
are selected to establish the fingerprinting database that stores RSSI values and MAC addresses
of all selected APs. In order to realize the floor identification and the location on the same floor,
the fingerprinting database must store horizontal position, received RSSI vector, received AC vector
and floor of each reference point. Data of each reference point is stored in the database as one record.
Taking data on one floor as an example, their organization is shown as Table 1.

Table 1. Organization of the fingerprint database.

Reference Points X Y RSSI MAC Floor

At1 Xt1 Yt1 {Rt11, Rt12, . . . , Rt1m} {Mt11, Mt12, . . . , Mt1m} Ft
At2 Xt2 Yt1 {Rt21, Rt22, . . . , Rt2m} {Mt21, Mt22, . . . , Mt2m} Ft
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Ati Xti Yti {Rti1, Rti2, . . . , Rtim} {Mti1, Mti2, . . . , Mtim} Ft

where Ati represents the ID of the reference point i on the floor Ft; Xti, Yti denote the coordinates of reference point
Ati; Rti j and Mti j denote respectively the top m of RSSIs and corresponding MAC addresses received by reference
point Ati; j ranges from 1 to m with the maximum of 10, that is to say, m is 10; Ft is the floor number.
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4. Indoor Localization Based on MAC and RSSI

Based on the fingerprinting database, we proposed a new approach to implement multi-floor
indoor localization, which mainly includes two steps: the identification of floors and the indoor
localization on the same floor. While users enter the indoor environment, the characteristic vector of
signals of all accessible APs will be extracted to match the fingerprint database. Floor identification
can be carried out by calculating the repetition rate between MAC addresses of received APs and those
of reference points stored in the fingerprinting database. Furthermore, on the same floor, the moving
receivers’ position can be obtained by matching RSSI, which includes two steps: clustering-based
coarse positioning and precise positioning. Clustering-based coarse positioning divides the area where
the reference points cover into many sub-regions according to the MAC repetition rate. With respect
to precise positioning, the accurate position of the receivers can be achieved by WKNN positioning
algorithm based on RSSI match in the sub-regions.

4.1. Floor Identification

In order to identify the floor where the receiver is, the relationship between the floor number
and received signals of APs on it need to be discovered. First of all, we need to know one AP’s RSSI
values distribution on different floors. Taking one AP on the west side of the second floor of the testing
building as an example, marked with a black circle in Figure 5, the distribution of RSSI values on the
second and third floors was tested. The vertical distance between the two floors is 3 m. The lower
color strip represents the distribution of the AP’s RSSI on the second floor and the upper represents
that on the third. The legend on the left represents the relationship between the color and RSSI values.
According to Figure 5, we can infer that the received RSSI values of the AP are not only related to the
distance away from the receiver (smartphone), but also influenced seriously by the building structure.
The received signal strength (RSS) of the AP on the upper floor is obviously weaker than that on the
lower floor because the AP’s signal is blocked by the building walls or floors.
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Figure 5. The RSSI distribution of the test AP on two different floors in which the red part indicates
that the signal intensity is high.

Since RSSI values have a corresponding relationship with MAC addresses and MAC addresses
are more fixed than RSSI values relatively, we attempt to take the MAC address vector as the matching
index instead of the RSSI value vector to identify the floor more accurately. A test point p was laid
on the third floor, and its RSSI value and MAC addresses were received. The MAC repetition rate is
calculated based on the received MAC vector of point p and that of each reference point. The dimension
of the MAC address vector is 10. The MAC repetition rate of p and reference points can be obtained by:

Cti = MACStrCmp
(
Mpm, Mtim

)
/m

Mtim = {Macti1, Macti2, Macti3 · · · · · ·Mactim},
Mpm =

{
Macp1, Macp2, Macp3, · · · · · · · · ·Macpm

} (1)

where t is 2 and 3, m is 10, Mtim and Mpm are represented as character vectors composed of MAC
addresses of APs received by the receiver. MACStrCmp() is the function to get the number of MAC
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repetition by comparing string Mpm with each element of Mtim. Cti denotes the MAC repetition rate of
p and reference point Ati. In order to improve the comparison efficiency of searching for the same MAC
addresses in two vectors, MAC addresses expressed as strings can be represented by integers. Figure 6
shows that MAC repetition rate between the MAC address vector of p and that of each reference point
on the second and third floors.
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Figure 6. Comparison of MAC repetition rate chart of the second floor and that of the third one.

As shown in Figure 6, the horizontal axis denotes the number of points on the floor, and the
vertical one denotes the MAC repetition rate of p and reference points. For p, the MAC repetition
rate on the second floor is mostly 4, and some of them are 5, with the maximum value of 6. On the
third floor where p is, the MAC repetition rate is mostly greater than 5, with the maximum value of
10. This experiment shows that MAC addresses received at reference points on different floors have
strong correlation and obvious difference. The MAC addresses of reference points in the fingerprint
database can be used to achieve the floor number where the moving receivers are. The procedure of
floor identification is as follows:

1. Obtain APs’ signal collected by the receiver at real-time test point B j, extract the characteristic
values according to the method in Section 3.2 and record them in the following format:{

RSSI j1, RSSI j2, · · · , RSSI jm, Mac j1, Mac j2, · · · , Mac jm
}

where j denotes the numbers of real-time test points passed by the moving receiver, m is 10. R ji and
M ji denote respectively the ith RSSI and the ith MAC of the top m of RSSIs and corresponding MAC
addresses received at the point B j.

2. Get the relevant information of all reference points stored in the database. The format of a piece
of information is as below:

{Ati, Xti, Yti, {RSSIti1, RSSIti2, · · · , RSSItim}, {Macti1, Macti2, · · · , Mactim}, Ft}

3. Calculate the MAC repetition rate between B j and all reference points to achieve floor
identification. The detailed process is as follows:

(a). Firstly, the MAC repetition rates between reference points on the floor Ft and the test point B j
are calculated according to the following equation:

C ji = MACstrcmp
({

Mac j1, Mac j2, · · · , Mac jm
}
, {Macti1, Macti2, · · · , Mactim}

)
/m (2)

(b). Secondly, given the threshold δ of C ji, the number of reference points where the MAC
repetition rate is greater than the threshold is counted as follows:

N = Num (C ji > δ) (3)
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(c). Thirdly, the proportion of reference points meeting the threshold requirement on the same
floor is calculated as follows:

P jt = N/Num(Ft) (4)

where Num(Ft) is the total number of reference points on the floor Ft.
(d). Finally, after the proportion on each floor is calculated, the floor with the maximum proportion

is regarded as the floor where the point B j is and can be obtained by the following equation:

Floor = index (max (P jt) (5)

where index( ) is used to get the floor number with the maximum proportion.

4.2. Two-Step Positioning on The Same Floor

4.2.1. Clustering-Based Coarse Positioning

Generally speaking, a clustering algorithm can achieve information aggregation by classifying
process according to the similarity between sample points. In this paper, the clustering algorithm
is used to realize the division of fingerprints and coarse location. Comparing with the clustering
algorithm by RSSI, we take the MAC addresses of APs as the clustering index. In order to verify whether
the Mac addresses of APs can be used as clustering index, a test was conducted in the experimental
area as shown in Figure 7. The process of collecting AP’s signal starts from the westernmost point
(the blue point) in the indoor space, and continues from west to east until the easternmost one (the red
point). It is worth noting that reference points are numbered from the west to east.
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Figure 7. The distribution of test points and reference points: the red point is the starting point and the
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After that, the two points farthest from each other are selected as test points to calculate the MAC
repetition rate between them and all reference points on the testing floor respectively. A comparison of
MAC repetition rate between the two points is shown in Figure 8.
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Figure 8. The distributions of MAC repetition rate of two test points on the same floor.

We can infer that the distribution of MAC repetition rate between the test point and the reference
points has strong spatial autocorrelation. On the left chart, for example, because the blue test point
is located in the west and close to the reference points numbered in the former part such as 1–100,
the MAC repetition rate between the blue test point and the former part of the reference points is in
upper part and it’s greater than that numbered in the later part such as 100–180. On the contrary,
on the right chart, because the red test point is close to the reference points in the east and their MAC
repetition rate is higher than that in the west. The distribution feature of MAC addresses can be used
as clustering index to cluster the MAC Addresses of indoor APs.

As we all know, one AP’s MAC address is a fixed value as long as the receiver can get its signal.
Compared with using RSSI as clustering index, using Mac address as clustering index is more stable
and applicable because RSSI is easy to be influenced by the surrounding magnetic field and the ability
of receiving signals of the receiver. The core work of the clustering algorithm is to determine the
clustering center and the clustering number. K-Means algorithm that is used normally belongs to hard
classification. However, hard classification does not take into account whether correlation between
categorical data. In addition, MAC addresses between reference points have a certain correlation
with distance, so that the traditional K-Means algorithm does not apply to the proposed clustering
algorithm that is based on MAC repetition rate. Accordingly, we proposed an adaptive method for the
clustering center selection that will choose m reference points as far as possible from each other as the
clustering centers. That is, firstly, a random reference point as the first initial cluster center is chosen,
the reference point farthest from the first point is selected as the center of the second initial cluster,
the reference point farthest from the first two points is selected as the center of the third initial cluster,
and so on, until m cluster centers are selected. The procedure of clustering reference points by MAC
address is as follows:

1. Determine the clustering centers and clustering number according to the method above;
2. Calculate the MAC repetition rate between each reference point and all clustering centers

as follows:

Rik = MACStrcmp({Mack1, Mack2, . . . , Mack10}, {Maci1, Maci2, . . . , Maci10})/10 (6)

where k is the cluster number and i is the number of reference points.
3. Add the reference point i into the cluster k whose center has the highest MAC repetition rate

with it. As a result, all reference points in the fingerprint database are divided into m sub- regions.
According to the procedure above, clustering experiments were carried out. Figure 9 shows the

clustering results of all reference points in the testing region. Reference points belonging to the same
class are represented in the same color. We can see that the partition results conform basically to the
spatial distribution of indoor reference points. Here, we should note that this process is done before
online positioning.
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Figure 9. The clustered results of reference points on two floors.

After clustering reference points at the offline stage, we can use clustering results at the online
stage to determine which class the test point (namely estimated point) belongs to. The procedure of
clustering-based coarse positioning is as follows:

1. Calculate MAC repetition rate between the test point j and clustering centers

Qjk = MACStrcmp
({

Macj1, Macj2, . . . , Macj10

}
, {Mack1, Mack2, . . . , Mack10}

)
/10 (7)

2. Find out the clustering region whose clustering center has the highest MAC repetition rate with
the test point to determine which category Lk the test point j belongs to.

L jk = index
(
Max

(
Q jk

))
(8)

4.2.2. Precise Positioning

After clustering-based coarse positioning, the test point is located in the specified sub-region.
The following work is to determine its precise position in the sub-region. The WKNN algorithm based
on RSSI vector is used to implement the precise positioning in the sub-region. The detailed procedure
is as follows:

1. Calculate Euclidean distance between the RSSI vector of the test point j and those of reference
points in the sub-region L jk as follows:

D ji =

√√ n∑
i=1

(
RSSI j − L jk(RSSIin)

)2
(9)

where j is the number of the test point and n is the number of reference points in the sub-region L jk.
2. Select K reference points with the smallest Euclidean distance from the test point to calculate

the mean of their coordinates as the final position of the receiver.

(
X j, Y j

)
=

K∑
i=1

1
D ji∑K

i=1
1

D ji

(Xi, Yi) (10)

5. Experimental Evaluation and Discussion

In order to verify the proposed method of indoor three-dimensional localization, an indoor
three-dimensional positioning test was carried out. We collected the RSSI and MAC information of
referenced points placed from the first floor to the third floor of the teaching building J6 of College
of Geomatics of Shandong University of Science and Technology. The collected data were processed
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according to the method introduced in Section 3, and the fingerprint database was established. And then
we tested the proposed algorithm for indoor three-dimensional localization. Figure 10 shows the floor
identification results of the moving receiver. As shown in Figure 10, the proposed method of floor
identification based on MAC repetition rate can accurately identify the floor where the moving receiver
is located (the height of each floor is 3 m).
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Figure 10. The results of floor identification.

In order to get the accurate position of the moving receiver within the single floor, we used the
two-step method to locate the moving receiver. Here, we sampled 18 test points along the central line
of the corridor. These test points were selected in the sites where the location characteristics were more
obvious, for example, the corners of floor tiles, the points aligned with the edge of the door. Half of
them were densely placed at a shorter distance and half were scattered at a longer distance to make test
points have a more reasonable distribution. Figure 11 shows the comparison of the planned test path
and the real-time estimated path on the same floor. The blue one is the planned test path. The red is
the real-time estimated path of the moving receiver. It can be seen that the orientation of the estimated
path is consistent with the orientation of the test path. Table 2 shows that the average of localization
errors between planned test points and real-time estimated points is 1.8 m, with a minimum of 0.4 m.

Table 2. The errors between 18 planned test points and their corresponding estimated points.

Testing Point P1 P2 P3 P4 P5 P6 P7 P8 P9
Localization Error (m) 1.3 1.3 0.4 1.2 0.6 3.6 0.6 2.8 1.3

Testing Point P10 P11 P12 P13 P14 P15 P16 P17 P18
Localization Error (m) 0.6 3.2 3.1 3.0 2.5 0.6 3.7 0.6 1.5
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Figure 11. Comparison of the planned test path and the estimated path in indoor environment.

5.1. Threshold Determination of MAC Repetition Rate

When identifying the floor based on MAC repetition rate, the threshold of MAC repetition rate is
crucial for the correct identification, with the range of 1 to the dimension of the MAC vector in the
database. In order to study the impact of the threshold on floor identification’s accuracy, we let the
dimension of the MAC vector be 10 and tested the variation of the floor identification accuracy with the
threshold range of [10%, 100%]. We can see from Figure 12 that the accuracy of floor identification can
be 100% correct when the threshold is 60%, 70% or 80%. The floor identification rate decreases when
the threshold is other values, which makes some test points be identified to wrong floors. As shown in
Figure 13, 11 of 19 test points located on the third floor are judged to be on the third floor while the rest
to be on the second floor when the threshold is 40%. Therefore, on the stage of floor determination by
using the MAC repetition rate, the threshold should be between 60%–80% to ensure the right floor
identification completely.Sensors 2019, 19, x FOR PEER REVIEW 13 of 21 
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Figure 13. Floor identification results of the moving receiver when the threshold is 4.

5.2. Impact of Clustering Number on Positioning Accuracy

In order to find whether the clustering number of coarse positioning has an impact on final
positioning accuracy, we implemented a test with different clustering numbers with the range of values
between 1–10. The test results are shown in Figure 14. When the clustering number is 1, the average
position error is 3.3 m. With the increase of the clustering number, the average positioning accuracy
improves significantly. When the number of clusters is 5, the positioning error is up to the lowest
value of 1.8 m. However, when the number of clusters increases again, the positioning errors begin to
increase and the positioning accuracy becomes worse. This is because the reference points near the
boundary between two adjacent sub-regions may be clustered into the wrong sub-region.Sensors 2019, 19, x FOR PEER REVIEW 14 of 21 
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Figure 15 shows the CDF (Cumulative Distribution Function) diagram of errors when the clustering
number is in the range of [3,10]. In the DCF chart, M denotes the clustering number. The more the
curve approaches to the upper left, the higher the accuracy of the curve is, on the contrary, the lower
right curve has the worst positioning accuracy. When M 4, 5 and 6, the CDF curves of them almost
overlap each other. Their probability of location error within 3 m is up to 90% and that within 2 m is up
to 70%. When M value is 10, its CDF curve is far away from others, and its probability of location error
is only 61% within 2 m. This indicates that the positioning accuracy does not always improve along
with the increase of the number of clustering. In addition, theoretically, the increase of the clustering
number will increase the complexity of position matching. Therefore, we proposed that the most
suitable clustering number is 5 when positioning in real indoor environment.
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Figure 15. The CDF diagram of positioning error under different clustering numbers.

5.3. Impact of Number of APs on Positioning Accuracy

The first factor to consider in determining the number of APs () is the number of APs acceptable
to each location point in the location scene, which is affected by the density of AP layout. Only when
there are more APs available, can we adopt more APs to locate the receiver. However, according to the
principle of the fingerprint localization algorithm, the increase of AP number will increase the storage
space requirement of the fingerprint database and reduce the computing efficiency of localization
algorithm. In our test area, the receiver at each reference point could access 19 to 129 APs, so we
choose the top 10 APs in signal intensity. Based on our established fingerprint database, we tested the
number of APs and positioning accuracy, and found that reducing the number of APs will reduce the
positioning accuracy as shown in Figure 16. Because our testing fingerprint database only stored 10 of
the strongest APs at each reference point, it was given that the change of positioning accuracy when
the number of APs varies only from 3 to 10.
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5.4. Impact of Reference Point Density on Positioning Accuracy

In order to explore the relation between the positioning accuracy and the density of reference
points, we laid out a test court in the open area of the first floor of the teaching building J14 with the
reference point density of 0.6 m, and then fingerprinting databases of 1.2 m, 1.8 m and 2.4 m were
obtained by resampling that of 0.6 m. Figure 17 shows the average positioning accuracy under different
reference point densities. When the reference point density is 2.4 m, the positioning error reaches 3.7 m.
When the reference point density increases to 1.2 m, the positioning accuracy is greatly improved,
with the positioning error of 2.1 m. When the reference point density is 0.6 m, the positioning accuracy
is slightly improved, with the positioning error of 1.8 m.
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Figure 18 shows the CDF diagram of the positioning error under different reference points
densities. When the reference point density is 2.4 m, the CDF curve is at the bottom and only 50% of
the positioning errors are within 2 m. When the reference point density reaches 0.6 m, the CDF curve
is located at the top with 71% of the positioning error within 2 m, and the ratio of the positioning
error within 3 m is up to 90%. In addition, we can observe that although the reference point density
has a positive association with the positioning accuracy, its impact on the positioning accuracy will
be unobvious when the reference point density is high to a certain extent. In terms of efficiency,
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the increase of the reference point density will make the establishment of the fingerprint database
complex, so it is the most appropriate choice to set the reference point density as about 1 m.
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5.5. Change of the MAC Repetition Rate at the Same Point during a Day

In order to test the MAC repetition rate for the same point during different periods of day, we have
collected RSSIs and MAC addresses of APs at one-minute intervals, totaling 1440 sets of data. Firstly,
let’s see the changes in RSSI over a day shown in Figure 19. From the figure, we can draw some
conclusions: (1) The RSSIs of all APs fluctuate greatly from 8:00 am to 23:00 pm while the other time
periods are relatively stable for the period from 8:00 am to 23:00 pm is working time and RSSIs are
affected greatly by the human activities; (2) The weaker the signal of AP is, the more greatly its RSSI
fluctuates, which is related to the path length between the AP and the receiver; (3) The signal intensity
of the top 4 APs differ greatly, while the average signal intensity differences of the latter six APs
become smaller.
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Figure 19. The changes of the RSSIs of the top 10 APs in a day.

Secondly, let’s see the change of the MAC repetition rate for the same reference point during
different periods of the day. Here we give two test results.

One is the change of the MAC repetition rate for the same reference point in a day. The mode of
the MAC addresses in an hour at the beginning of 0:00 am is taken as datum. The datum vector is
composed of MAC addresses of the top 10 APs with the largest occurrence. The change of the MAC
repetition rate in a day is as shown in Figure 20a. In addition, to examine the impact of datum selection
on results, we also take the mode of the MAC addresses in an hour at the beginning of 12:00 am as
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datum, and the change of the MAC repetition rate is as shown in Figure 20b. Figure 20c,d shows that
the majority of the MAC repetition rates are between 60% and 90%.
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Figure 20. The changes of the MAC repetition rate in a day: (a) the datum is at the beginning of 0:00
am; (b) the datum is at the beginning of 12:00 am; (c) the histogram of the MAC repetition rate of (a);
(d) the histogram of the MAC repetition rate of (b).

When the datum is at the beginning of 0:0 am, the number of the MAC repetition rates of 60%,
70%, 80% and 90% is up to 1408 that accounts for 97.78% of the total 1440. When the datum is at the
beginning of 12:00 am, the number of the MAC repetition rates of 60%, 70%, 80% and 90% is up to 1417
that accounts for 98.40% of the total 1440. Detailed statistical results are shown in Tables 3 and 4.

Table 3. The statistical results of MAC repetition rate when the datum is at the beginning of 0:00 am.

MAC Repetition Rate 40% 50% 60% 70% 80% 90% 100%
Count 2 14 206 650 419 133 16

Table 4. The statistical results of MAC repetition rate when the datum is at the beginning of 12:00 am.

MAC Repetition Rate 40% 50% 60% 70% 80% 90% 100%
Count 1 9 107 535 543 232 13
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According to the test results above, we can infer that the change of the MAC repetition rate for the
same point is related to that of RSSI during different periods of day, but the detailed relation of them
and their impact on indoor positioning accuracy by the change need to be studied further.

The other is the change of MAC repetition rate between the test point and reference points on the
third and second floor at four different times of a day, which shows the stability of floor identification
shown as in Figure 21. The test point is on the third floor.
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Figure 21. Comparison of MAC repetition rate chart of the second floor and that of the third one: (a) at
8:30 am; (b) at 9:00 am; (c) at 2:30 pm; (d) at 3:00 pm.

From Figure 21, it can be seen that at four time points of the day, the Mac repetition rate between
the test point and each reference point on the second floor is almost less than 50%, and that between
the test point and each reference point on the third floor is almost more than 60%. For the range of the
MAC repetition rate changes slightly at these different time points, the results of floor identification are
the same at these time points according to Section 5.1.

6. Conclusions

As opposed to the existing methods of indoor positioning, the innovation of the proposed method
in this paper lies in the introduction of floor identification and the innovative use of MAC addresses of
APs, which enables us able to obtain the three-dimensional position of moving receivers in buildings.
As MAC addresses of APs are more stable than their RSSI, matching MAC vector is introduced to
identify the floor where the moving receiver is located. As long as the appropriate threshold is given,
we can obtain higher accuracy in floor identification.

Meanwhile, MAC addresses are also used as the clustering index on the stage of offline clustering
reference points to obtain better classification results on the same floor. Clustering reference points
based on MAC addresses can not only improve the indoor positioning accuracy for the stability of
MAC addresses but also greatly reduce the computational complexity for the reduction of search
space of RSSI matching. Our test shows that compared with the case without clustering, the system
time consumption is reduced by 29.2% when the number of clusters is 3. In addition, we should
choose suitable parameters when implementing the proposed positioning algorithm because the final
positioning accuracy is subject to many factors such as clustering number, matching algorithm and
reference point density. The positive spatial correlation of spatial distribution of MAC addresses of APs
is the key used as the clustering index and significantly benefits indoor three-dimensional positioning.

Although the proposed method in this paper can achieve the indoor three-dimensional location
based on fingerprinting database, there are still some aspects deserving further discussion. The biggest
challenge is the need to build the fingerprint database beforehand. If the building is very large, it will
be a huge task to collect and process MAC and RSSI data of all reference points. Furthermore, it is
necessary to modify the fingerprint database in time when APs are changed. Another key problem is
the best measurement of the similarity of two vectors. A suitable measurement index can highlight
the fingerprint difference of reference points to improve the final location accuracy. In addition, more
complex deployments need to be tested such as in multi-floor open atriums where the dispersion of the
radio signals across floors or from adjacent buildings would present substantial challenges. Impacts on
indoor estimated results by the change of MAC addresses and RSSIs of APs during different periods of
day are also a major concern. All those above need to be studied deeply in the future.
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