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Abstract: A wireless seismic network can be effectively used as a tool for subsurface monitoring
and imaging. By recording and analyzing ambient noise, a seismic network can image underground
infrastructures and provide velocity variation information of the subsurface that can help to detect
anomalies. By studying the variation in the noise cross-correlation function of the noise, it is possible
to determine the subsurface seismic velocity and image underground infrastructures. Ambient
noise imaging can be done in a decentralized fashion using Distributed Spatial Auto-Correlation
(dSPACQC). In dSPAC over sensor networks, the cross-correlation is the most intensive communication
process since nodes need to communicate their data with neighbor nodes. In this paper, a new
communication-reduced method for cross-correlation is presented to meet bandwidth and cost of
communication constraints in networks while ambient noise imaging is performed using dSPAC
method. By applying the proposed communication-reduced method, we show that energy and
computational cost of the nodes is also preserved.

Keywords: sensor networks; communication-reduced; subsurface imaging; cross-correlation;
spatial autocorrelation; ambient noise

1. Introduction

Over the last years, ambient noise imaging, a well-known subsurface imaging approach, has
become one of the fastest growing research areas in seismology and exploration geophysics. Compared
to earthquake-based seismic tomography methods, ambient noise imaging is particularly useful in
imaging shallow earth structures [1,2]. Moreover, because of the persistent nature of the seismic
background noise, temporal variation of the earth structure can be studied and monitored by studying
the variation in the noise cross-correlation function [3,4]. Ambient noise methods have the advantage
of resistant repeating sources, low cost, and minimum environmental disturbance.

Seismic sensors are currently used for gathering seismic data that are later processed to
obtain subsurface images using ambient noise methods [5]. Current approaches employ image
reconstruction methods that rely on a centralized approach for processing the raw data captured
by these seismic sensors. A solution can be the use of wired sensor communication approaches;
however, the length limitation in cable communication represents a problem in large deployments.
In addition, the centralized processing and computing style is not capable of being implemented
in-situ and real-time subsurface imaging in all circumstances, especially in harsh environments [6].
It seems that a good solution for introducing in-situ and real-time imaging on sensors is wireless
communication. For example, wirelessly connected sensors are deployed using an air-dropped way
to monitor live volcano activities, where communication and computation become bottlenecks [7].
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Recently, seismic tomography has been implemented using advanced wireless sensor networks with
distributed computing algorithms [8-10]. The distributed style has advantages in reducing the data loss
risk in the case of node and cable failures, because the sensing, computing, and data storage tasks can
be operated in the sensor nodes. Instead of collecting data into a processing center, distributed seismic
data processing and computing can be performed on individual sensors with communications among
the local sensor array. Even though system-level challenges of deploying wireless sensor networks
exist, focusing on distributed in-network signal processing and computation can help support real-time
tomographic imaging.

We have been pioneers in developing such kind of systems [9-11]. Sensors are deployed in the
field (Figure 1a is a illustrative example of deployment at meter scale, and Figure 1b at kilometers scale
(the based method used in this paper (SPAC) has been tested in deployments in the range of few meters
to several kilometers [12-14])) in a mesh network to work cooperatively and image the subsurface.
Every node gathers independently ambient noise raw data, computes in-situ signal preparation [15],
communicates with immediate neighbors to share its narrow-data recording, performs cross-correlation
with the signals that receives from its neighbors [1], applies spatial auto-correlation methodology [11]
to estimate subsurface velocity, and talks again with neighbors to aggregate the final velocity maps that
illustrate subsurface wave-speed variations [16]. A friendly user-interface helps scientists to visualize
real-time seismic images and interprets results. For example, velocity variations in the final velocity
map may help to locate underground pipelines and water leakages, as shown in Figure 1.
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Figure 1. Concept of ambient noise seismic imaging on distributed sensor networks: (a) small array (m);
and (b) large array (km).

In distributed ambient noise imaging, the most intensive communication process is the transfer
of data for cross-correlation [10]. To cross-correlate data, every node has to send its own data to the
neighbor nodes. Even though some communication-reduction techniques can be applied (reduction of
data using a pre-specific narrow band of frequencies, compression techniques, etc.), sending data to
all neighbors can be inefficient. Furthermore, some nodes waste computational performance doing
cross-correlations that can be done in other nodes.

In this paper, besides utilizing distributed and in-network computing to imaging shallow
subsurface, we propose a new communication-reduced method that can be applied in ambient
noise imaging based on Distributed Spatial Auto-Correlation (dSPAC). The method is designed
as a combinatorial optimization problem that first transforms the topology of the mesh network in
a suitable graph for a transportation problem [17]. Then, the optimization problem is solved to get
the best nodes for computing cross-correlation to meet network limitations. Constraints regarding
bandwidth are added. Furthermore, constraints regarding the energy of the sensors can also be
added to make a more energy-efficient selection. By applying the proposed communication-reduced
method, we show that energy and computational cost of the nodes is also preserved. We show in our
experiments that it is possible to image buried pipelines using our method, and potentially detect
water leakage.
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The main contributions of this paper can be summarized as:

e  The in-situ and real-time computing of shallow subsurface imaging using a proposed distributed
spatial autocorrelation technique and ambient noise is introduced.

e A novel communication-reduced method for neighborhood communication between nodes that
allows them to estimate the correlation between signals of neighbor nodes using less energy and
meeting bandwidth constraints is proposed.

o A field deployment illustrates the usability of the method for detecting shallow infrastructures.
The small array was selected only for validation purposes. We emphasize that the same
methodology can be used in large arrays since wireless communication can reach several meters,
even kilometers with gain antennas.

e An analysis of bandwidth, energy, and communication cost of our method compared to other
centralized approaches that require all data to be sent to a central unit is presented.

The rest of the paper is organized as follows: Section 2 provides an overview of distributed
ambient noise imaging based on dSPAC and highlights the limitation of this approach without a
communication-efficient method. Section 3 introduces the proposed communication-reduced model
for dSPAC and algorithm. Experimental results and a deep analysis regarding communication,
computation, and energy cost are conducted in Section 4. We present a real deployment experiment
for studying ambient noise with dSPAC in Section 5. A discussion regarding robustness and
communication limitation of the proposed approach as well as a comparison with the centralized
approach is presented in Section 6. Finally, future work and conclusions are presented in
Sections 7 and 8, respectively.

2. In-Situ Cross-Correlation and dSPAC for Ambient Noise Imaging

The work-flow of in-situ cross-correlation and dSPAC for estimating ambient noise imaging is
described in Figure 2. The process consists of two main sections: cross-correlation and subsurface
imaging. The main idea of the methodology is every sensor cross-correlate its data with the data of its
neighbors in a time window A. To do so, nodes broadcast their data. However, instead of broadcasting
their raw data, nodes broadcast prepared and selected data to diminish the communication cost.
The cross-correlation process is continuous. Once a time T is complete, nodes perform the subsurface
imaging by estimating the velocity variation using dSPAC method. Then, a collaborative image is
produced by aggregating in a collaborative and distributed way the velocity estimation of each node.
In this section, we introduce the complete overflow by presenting the mathematical framework and
algorithm that includes each step. Then, we discuss why, even though the method produces promising
results, the communication cost needs to be improved.
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Figure 2. System methodology for distributed Spatial Autocorrelation (dSPAC) subsurface imaging.
2.1. System Model

Each sensor is provided with a radio system to communicate with the rest of the network,
but each radio system has only a limited range for transmissions and receptions. It is assumed that the
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transmission range and the reception range are the same, and it is referred to as communication range.
Consequently, each node is able to communicate with a restricted number of other sensors, i.e., the
ones deployed within its communication range. In this work, we use an undirected graph G = (V,€)
to model the topology of the network. Each node in V represents a sensor node, and the link (i,j) € £
represents that nodes i and j are in communication range and they are considered as neighbors. Let us
denote with N (i) the set of neighbors of node i. Let |V| denote the number of nodes in the network.

Let x;(t) be the raw signal of sensor node i in the time t. Every node in V gathers x;(t) and
starts the preparation for cross-correlation. Here, x is a vector that contains the readings of ambient
noise for a time A; e.g., A can be equal to 1 min, 2 min, 5 min, etc. (Note that, because we are doing
continuous monitoring, we chose non-overlapping time, following the authors of [15,18,19]. If the
seismic survey is time-limited, only 1 or 2 h, we can use overlapping to improve the convergence of
the cross-correlations.)

2.2. Signals Cross-Correlation

After gathering x;(t), every sensor performs a data preparation. The purpose of this preparation is
to accentuate ambient noise by attempting to remove earthquake signals and instrumental irregularities
that tend to hide the ambient noise [15]. To remove instrumental irregularities, we withdraw the mean
and the trend of the signal [20]. Then, we apply running-absolute-mean method [15] for temporal
normalization. For the raw data x;(t), the normalization weight is

1 9 .
:mquxi(’“—]) form=qg+1,9+2,..,t—¢ )

Wi(t)

and the normalized data are X;(t) = x;(t)/W(t). The width of the normalization window is 2g + 1.
Finally, spectral normalization [15] is applied to reduce broad imbalances in single-station spectra to aid
in the production of a broad-band dispersion.

Once data have been prepared, a data selection process is conducted. In the data selection,
a narrowed band-pass filter is applied to keep only a range of frequency components we need to study.
This process is known as narrow frequency selection. Let

Y ={fi, . fu} € {0,1,..,N—1}

denote the indices of the narrowed frequency components, which is the same across all sensors. Sensor
i only transmits the subset of frequency samples {X;(f;)}, where f; € ¥. Assuming that m = |¥|
frequency samples are selected; then, the amount of data to be transmitted is reduced from O(N) to
O(m). In this case, N > m because we have to observe long enough noise sequence and the frequency
band we are interested is usually narrow. Most importantly, if the time ¢ of stacking cross-correlation is
not large (for example 1-10 min), and the frequency band is narrow, for example, 80-100 Hz (refer to
Section 5.4 for details of frequency selection), we are able to achieve 80-90% reduction, and the data to
transmit can be sent in only one UDP or TCP packet. This achievement significantly reduces the total
communication overhead.

Node i then broadcasts X;(fx) to V(7). Note that, at the same time, node i receives data that come
from every node that belongs to N\ (i). For each node j € N (i), node i computes

T
Cax, = % QX = % /7T)A‘i(T))A‘j(T+ tydt = X;i(fi) - X;(fx) 2)

where T is the total time of cross-correlation and X indicates the complex conjugate of X.
The cross-correlation is Cgi;(j, which is stacked with itself every time nodes send and receive data from
their neighbors. The stacking process is usually employed to increase the signal-to-noise ratio (SNR) of
the signal [21]. In this case, we stack the cross-correlation results every time it is performed every A
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min, where A can be 1, 2 or 5 min depending on the system configuration, until completing T time.
For instance, if A is 5 min, the node correlate the data and then stack them with the previous stacked
5 min and so on.

We use the symmetric component of the cross-correlation that is the average of the
cross-correlation at positive and negative lags [15]. Thus, note that Cgig’. = C,;jgi. In addition, note
that, since nodes broadcast to all their neighbors, the cross-correlation C,z,.,z]. is calculated in both node
i and node j, which implies a wasting of computation. When the system has complete T time that
involves multiple cross-correlations and stacking processes, the subsurface imaging section begins the
distributed calculation of the velocity variation structure.

2.3. Subsurface Imaging

After cross-correlation, every node in V' estimates locally the SPAC coefficients [22]. The SPAC
method has exhibited a good performance in heterogeneous and isotropic media [23], and has shown
a comparable output with other tomography methods such as interferometry [24]. Even if we use
high frequencies study, the SPAC method holds even for a non-isotropic wavefield, because the
normalized cross-spectrum can be averaged with respect to various incident directions by using the
wavefield at the center of a circle and the wavefields on a circumference of the circle [24]. We called
the method dSPAC because it is the distributed version of SPAC. The dSPAC method can extract the
phase velocities of surface waves from microtremor array observations. The basic theory of the spatial
auto-correlation method [23] is summarized as follows. Having an array of sensors (called receivers)
equally spaced on a circle of radius r and having an extra receiver at the center, as shown in Figure 3,
the phase velocities (¢(w)) can be calculated.

If microtremors are observed, the complex coherencies COH between a central and a
circumferential receiver can be defined as:

COH(r, w, 8, ¢) = exp{irkcos(w — ¢)}, ©)

where i is the imaginary number, w is the angular frequency, k is the wavenumber, 8 is the azimuthal
angle and ¢ is the azimuth propagation of a single plane wave across the array. The dSPAC coefficients,
also called azimuthal average, is defined then by:

27
p(r,w) = %/0 exp{irkcos(6 — ¢)}d0 = o {wr}, (4)

c(w)
where | is the Bessel function of the first kind of zero order. Here, r must be fixed. Because of the
cos(w — ¢) symmetry in Equation (4), we can switch w with ¢ and obtain the same result. This means
that dSPAC coefficient can be estimated as the average of the cross-correlation between every node pair
in a fixed geometry with the same ratio r, which remedies the biases in phase velocity measurements
caused by a non-isotropic or directional wavefield. In other words, Equation (4) can be rewritten as:
1 WO w

pi(r,w) = Gl ]; Cxix = Jo Ll(w)r} ©)
where i is the central sensor of the circular array. The phase velocities are estimated by fitting the
observed dSPAC coefficients to the Bessel function. Note that a larger array in a circular topology can
have multiple circular sink nodes, as shown in Figure 1a.

After the velocities ¢;(w) are estimated, the sink nodes at each ring broadcast the velocity
information to the other sink nodes, and they perform an interpolation process to form a 3D map of
the subsurface with all frequencies in consideration. Each layer of the 3D map represents a subsurface
depth. With this information, we can analyze the velocity variations and determine the presence of
structures, such as pipelines, within the subsurface.
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Figure 3. Geometry of sensor nodes and an incident plane wave. Filled black circles represent
the sensors.

2.4. Limitations of Broadcasting to All Neighbor Nodes

The main limitation of distributed subsurface imaging [10] is the broadcasting to all neighbors
without distinguishing between them, and the multiple and needless computation of the same
cross-correlation in different nodes. If Cgigj = nggi, it should be convenient to process the
cross-correlation only one time. Furthermore, if we propose a mechanism to select the best nodes
to compute cross-correlation meeting the bandwidth and communication constraints, some nodes
can help others by computing cross-correlation between neighbor nodes too. In the next section,
we introduce the proposed communication-reduced model for subsurface imaging using dSPAC to get
the best nodes for computing cross-correlation to meet network limitations.

2.5. Scope of the Proposed Model

The proposed communication-reduced method focuses the attention in the cross-correlation
section. We aim to reduce the number of cross-correlation and select the best nodes to compute them.
Our results and analysis are based on the performance of the distributed system during this correlation
section. The subsurface imaging section results are discussed in the Section 5. The idea is to present
a model that can improve the communication cost and bandwidth utilization in the first part of the
ambient noise process, which is the most communication intensive. In the next section, we detail the
proposed model and define the main mathematical framework of the solution.

3. Communication-Reduced Model for dSPAC

In this section, we present the communication-reduced model for dSPAC in ambient noise imaging.
Specifically, we improve the communication cost and bandwidth utilization in the correlation section of
the system, where the communication for cross-correlation and stacking is the most intensive process.
First, we explain why, even though a reduction of the data is performed in dSPAC methodology,
the communication is still inefficient. Furthermore, the computation cost is high on all nodes in the
network. Later, we present the model for selecting the best nodes to compute cross-correlation, and the
optimization model to guarantee an appropriate solution.

The naive communication pattern (Figure 4a) may include each sensor broadcasts its
narrowed-data to its neighbors, and each one of them performs cross-correlation. However, after
stacking cross-correlation, the result is symmetric [1]. This means the cross-correlation coefficients will
be the same from Sensor 1 to Sensor 2, and vice-versa.

By taking advantages of symmetric cross-correlation [25], we can assume that one node (A) may
compute the cross-correlation of its neighbor (B), and then forward the results. That means A does not
send narrowed-data, only receives from B and computes C4p. Furthermore, if K is neighbor of A and
B, Sensor A may also compute the Cpx among B and K. Figure 4a shows the current communication
and computation pattern to perform cross-correlation. Each sensor is represented as an independent
“node”. Every t time (¢ could be equal to 5 min, for example), nodes broadcast their data to their
neighbors. For example, Node 1 receives data from Nodes 2 and 3 every 5 min. Node 1 computes
the cross-correlation between itself and Nodes 2 and 3. The process is the same in Node 2 and 3.
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Notice that Node 2, for example, also computes Cross-Correlationa 1 and 2. This is also a waste of
computation. If only Node 1 receives and computes, the communication cost and computation cost
would be reduced significantly.

.Communication .Communication

C1-2

2and3 (EEESUR . Computation . Computation
-
from 2 and 3 C1-3

Send data to
1

Send data to Se:!daggtg to
1and8 .

1

_ Receive
Result

(a) (b)

Figure 4. (a) Current communication pattern; and (b) proposed communication-reduced
method example.

The proposed method for solving this problem is illustrated in Figure 4b, where Nodes 2 and 3
send data only to Node 1. Furthermore, to compute the cross-correlation between Nodes 2 and 3, there
is no need for communication between those nodes because Node 1 can compute this cross-correlation
too. The number of packets sent over the network is significantly reduced. Node 1 continues receiving
data from Nodes 2 and 3 and stacking the cross-correlations until completing time T, which is the time
to begin the subsurface imaging section. At that moment, Node 1 forwards back the results to Nodes 2
and 3.

However, in larger mesh networks, with more complex topology, finding the solution is not
straightforward. An optimization scheme has to be formulated to solve the problem in the most
efficient way. We designed a new communication-reduced method for cross-correlation. The method
is designed as a combinatorial optimization problem that first transforms the topology of the
mesh network in a suitable graph for transportation problem. Then, the optimization problem is
solved to get the best nodes for computing cross-correlation. Constraints regarding bandwidth are
added. Furthermore, constraints regarding the energy of the sensors can also be added to make an
energy-efficient selection.

3.1. Problem Definition

In our model, we have a mesh network of sensors represented as a weighted graph G = (V, &, 1),
where each edge (u,v) € £ has a transmission cost A,,. The network G is assumed to have a suitable
topology for dSPAC computation. Figure 5 shows an extended topology example that can be deployed
for dSPAC-based ambient noise imaging. Note that other kinds of topologies, such as hexagons or
triangles, can also be used. Nodes can only communicate directly with their direct neighbors, and the
data they send should be computed at most in one hop of distance. We consider the data that each
node sends during the correlation section.

Figure 5. dSPAC topology example. Green circles are sink nodes and red circles are leaf nodes.
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Assumption 1 (Fixed Packet Size). We assume without loss of generality that the size of the packets generated
at the data producers have the same size and we consider each packet as a data element.

3.2. Network Transformation

Before we can find the optimal solution to our problem, we need to transform our original
network graph G into a flow network G’. We propose using neighborhood information for this network
transformation. A series of steps have to be performed to transform G — G”:

o  We set up every node in V as a transport node. The set of transport nodes is represented as P
(Figure 6, Layer 1). The transport nodes are considered to be the nodes that may compute the
cross-correlations, and they can be constrained with the maximum number of cross-correlations to
compute on it (maxC; where i € P). If we assume that the computational cost is unimportant, then
maxC; can be infinite. However, that is not the case for many nodes due to energy consumption.
Every transport node produces a cost of A for every unit that sends to the second layer of nodes. By default,
nodes in P send one unit to Layer 2.

o  We set up a set of intermediate nodes with gain Z as the Layer 2 of the flow network (Figure 6, Layer
2). This layer is composed for the neighbors of each node i € P. For example, if in the original
network, Node 2 (i = 2 and i € P) has two neighbors (Nodes 3 and 5), then two new nodes will
be added to Layer 2 (Z), called r3 and r5, which are going to be directly connected to Node 2 in
Layer 1 (P). Every node in Z receives one unit from the transport nodes, and it generates half unit
(0.5) for each connection with the Layer 3, or they generate 0 units if they do not have neighbors.
There is no cost of transporting data from Layer 2 to other layers.

o  We set up the Layer 3 as the set of intermediate nodes without gain ). This layer of nodes (Figure 6,
Layer 3) is composed by the neighbors of node j € Z in Layer 2 that also are neighbors of i € P in
Layer 1. This layer is used to analyze the neighbors that are able to compute the cross-correlation
of other neighbors but not more than one hop of difference. For instance, Node 73 from Z that is
connected to Node 2 from P is, itself, neighbor of Node 5 in the original network. Node 2 is also a
neighbor of Node 5 in the original network. Then, we add Node 375 to the Layer 3 because Node
3 is neighbor of Node 5 and both are neighbors of Node 2 in the original network. This layer does
not generate any cost for unit.

e The Layer 4 is composed of all the possible cross-correlations between neighbors the system
needs to compute. For example, in the original network of Figure 6, we need to compute the
cross-correlations Cy_5, Co_5, Co—3, Ca_5, C3_4, and C4_5 because those are the neighbors (there
is exists a edge) of the nodes in the network.

After the node transformation, we can set the optimization problem over G’ by minimizing the
communication cost in that network. An important comment regarding Layer 2 is that, as mentioned,
those nodes generate 1/2 or 0.5 unit for each connection to Layer 3. To clarify this issue, consider
the following example: In Figure 6, Node 2 (Layer 1) is connected to Nodes 3 and r5 in Layer 2 and
transfer one unit at a cost A. Then, Node 3 generates 1/2 unit and send it to Node r3r5 (Layer 3);
similarly, Node 5 generates 1/2 unit and send it to Node r3r5 too. This makes a total of 1 unit to Node
r3r5 and guarantees that the optimization problem can study this possible solution.

After graph transformation, we can set up the optimization problem for minimizing the
communication cost between the nodes by selecting the best nodes to compute cross-correlations.
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Figure 6. Network transformation example.
3.3. Model Design

We want to minimize the cost of transmission (A) of the number of packets (B) requires
cross-correlation. The idea is to perform all the needed cross-correlation with the minimum cost
of transmission. Let A,, be the cost of transmission from node u to node v, and B, the number of
packets to transmit from node u to node v. The maximum number of packets to transmit simultaneously
by a node u is defined by x, = O, /S, where (), is the available bandwidth in node u and S, is the
size of the packet.

Table 1 summarizes the main variables of our optimization problem. We define the optimization
problem as:

minimize Z AwoBuv (6a)
uveE
s.t:
- Z Bul < Xu (6b)
lely,
Z h,Bku - Z ﬁul =0 (6C)
keYy leT,
Z IBku - Z ,Bul >0 (6d)
keYy leTy,

1
Bru = EVk cer,ucyg
Y Bru=1 (6e)

keYy

The objective function (6a) is to minimize the communication cost between nodes in the
network to meet bandwidth specifications. The constraint in Equation (6b) is established for Layer 1
(transport nodes), and it guarantees that the number of packets to be transmitted will be less or equal to
the maximum number of packets to transmit simultaneously in the edge. Note that / in ,; belongs
to the set of nodes connected by output edges with node u where u is the node in consideration in
Layer 1. The constraint in Equation (6¢) is established for Layer 2 (Intermediate nodes with gain). This
constraint guarantees that the inflow packets will be the same than the outflow packets, but it will be a
gain of h, where h is 1/2 for each connection to Layer 3, and it is calculated using:

h:1+\N(k)f;N(u)l. @)

Note that N(k) is set of neighbors of k, and N(u) is the set of neighbors of u; consequently,
IN(k) N N(u)| represents the number of neighbors of k that also are neighbors of u.
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The constraint in Equation (6d) is established for Layer 3 (Intermediate nodes without gain).
This constraint guarantees that the inflow packets will be equal or greater than outflow packets
in this layer. The inflow is equal to the inflow when the node in Layer 3 receives packets from its two
connection with Layer 2 (that means that the cross-correlation can be done); otherwise, the outflow is
0. Note that, in this case, for all intermediate nodes without gain, the input should be 1/2 for all k € 7,
where r is the set of intermediate nodes with gain, and u € g where g is the set of intermediate nodes
without gain. Finally, the constraint in Equation (6e) is established for Layer 4 (computation nodes). This
is equal to 1 because we want to compute only one cross-correlation per pair.

Table 1. Communication model variables.

Variable Description
Auo Communication cost between nodes u and v.
Buov Number of Packets between nodes # and v.

Maximum number of packets to transmit
Xu simultaneously by a node u. (x,, = Qu/Su).
Oy Available bandwidth.
Su Size of the packet to be sent by u.
1 Gain for each node connection between Layer 2

. !

and Layer 3in G’.
Iy, Set of nodes connected by output edges with node u Outflow.
Yy Set of nodes connected by input edges with node u Inflow.
r Set of intermediate nodes with gain.
g set of intermediate nodes without gain.

4. Experiments and Evaluation

We conducted a series of experiments to test our communication-reduced model. In this
section, we explain the main results and improvements in terms of bandwidth, energy consumption,
and computational cost.

4.1. Topology Design

Because dSPAC-based method requires a ring topology, we used this kind of arrangement in our
experiment. We show that this topology is also suitable for real-world experiments below. The used
topology is shown in Figure 7.

To execute the dSPAC method with this specific topology, the total number of cross-correlation
that needs to be calculated is 24. This number is based on the number of neighbors that are formed in
the mesh network. The list of needed cross-correlations is shown in Table 2. For the sake of space, we
do not show the graph transformation of the topology in Figure 7.

Table 2. Needed cross-correlations for the Figure 7 topology.

Needed Cross-Correlations

C3 Gy C7 Coo Cr1 Ciponn
Ciys G Cig GCs10 Cg11 Cip-13
G353 Gy Gg Cg Cgr2 Ci-12
G Cs5 Co7 Croip Co1p Cri-13
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Figure 7. Communication pattern without the proposed communication-reduced method. Nodes
broadcast data to their neighbors.

4.2. Experiment 1: Unlimited Bandwidth

If we assume all nodes have unlimited bandwidth, and they can send and receive from/to any
neighbor node, the proposed communication-reduced model estimates the optimal solution such as
the one shown in Figure 8. Note that all 24 cross-correlations were calculated in the “best node” and
the communication cost was minimum for this scenario. In the figure, red nodes were selected to be
just sender of data, and blue nodes are nodes that computed cross-correlations. Note also in Table 3
that only five nodes used computational resources. However, some nodes, such as Nodes 8 and 10,
compute more than seven or eight cross-correlations from its neighbor nodes, which may imply a
bottleneck and affect the energy consumption of those nodes. The advantage of this solution is the
main sink node (Node 7), which is the one that computes the 3D interpolation of the subsurface image,
do not waste computation time and energy during the cross-correlation process.
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Figure 8. Communication pattern using the proposed model when we considered unlimited
bandwidth (blue nodes are nodes that computed cross-correlation; red nodes only sent data to the

corresponding network).

To further measure the bandwidth constraint in the performance of the proposed model, we
performed two more experiments by limiting the number of neighbor nodes data that a node can
receive to compute cross-correlations. We present the results in Experiments 2 and 3 below.
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Table 3. Number of cross-correlations for each selected node (unlimited bandwidth).

Node Computed Node Computed
Number Cross-Correlation Number Cross-Correlation

2 Cyr_3 10 Ce_7
C26 Ce—9
Cs-6 Ce-10

4 Ci-3 Cr-10
Ci_4 Cr-11
C34 Co_10
Cs—7 Cro-11
Cy_s Ci0-13
Cy7 Cii-13
Cy-8 11 Cs-11
Cs_g Cs-12
Cr_s Cii-12

4.3. Experiment 2: Limited Bandwidth

12 of 26

We performed two different tests with limited bandwidth considering that one node only can
receive data from up to: (i) four neighbor nodes; and (ii) two neighbor nodes.

4.3.1. Maximum Four Neighbors

We conducted an experiment by considering that one node could only receive data from up to
four neighbor nodes to compute cross-correlation. Figure 9 shows the optimal solution when we added
this new constraint. Note that, in this case, the communication cost continued being the minimum
possible under the constraints, and the computational cost was more evenly balanced between the

nodes in the network, as shown in Table 4.
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Figure 9. Communication pattern using the proposed model when we considered that one node only

can receive data from up to four neighbor nodes (blue nodes are nodes that computed cross-correlation;

red nodes only sent data to the corresponding network). Nodes that computed cross-correlations.
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Table 4. Number of cross-correlations for each selected node (limited bandwidth up to 4 neighbors).

Node Computed Node Computed
Number Cross-Correlation Number Cross-Correlation

4 Ci-3 3 Ca-3
Cig Ca-6
Cs_4 Cs—6
Cz_7 7 Cr—s
Cy7 10 Co—9

6 Co—7 Ce-10

8 Cys Co—10
Cy-8 11 C7-10

Cs_g Cr11

Cs—11 Cio-11

Cs-12 Ci0-13

C11-12 Ci1-13

4.3.2. Maximum Two Neighbors

We also conducted another experiment by increasing the bandwidth limitations. We considered
that one node could only receive data from up to two neighbor nodes to compute cross-correlation.
Figure 10 shows the optimal communication pattern for this scenario. Note that the number of nodes
that computed cross-correlations increased with this bandwidth limitation. As shown in Table 5, we
could confirm that, for this specific topology and cross-correlation requirements, the maximum number
of cross-correlation that a single node needed to compute was four. Note also that the computational

cost for sink nodes was relatively low.
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Figure 10. Communication pattern using the proposed model when we considered that one node could

only receive data from up to two neighbor nodes (blue nodes are nodes that computed cross-correlation;

red nodes only sent data to the corresponding network). Nodes that computed cross-correlations.
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Table 5. Number of cross-correlations for each selected node (limited bandwidth up to 2 neighbors).

Node Computed Node Computed
Number Cross-Correlation Number Cross-Correlation

1 Ci-3 6 Ce—9
Ci4 Cs-10
C3—4 Co_10

2 Ca-3 8 Cr-s
Ca—6 10 C7-10
Cs-6 Cr11

3 Cs—7 11 Cs-11
Css Cs-12
Cy7 Cii-12
Cys 13 Cio-11
Cs_g Ci0-13

7 Ce—7 Ci1-13

4.4. Experiment 3: Variable Bandwidth

In real scenarios, the bandwidth is variable and depends, among other things, on the number of
connections in the topology. In a mesh network, every “hop” (link) between sensors will decrease the
bandwidth by half [26]. This happens because wireless links can only do one thing at a time—transmit
or receive. In a long “chain” of mesh links, this results in a very slow connection from end to end.
Even though this estimation (half of the bandwidth decreasing by every link) is widely accepted, in
reality, other factors can impact the available bandwidth in a specific time, for example communication
range, other networks interference, etc.

As explained below, our real-world sensors are based on a Raspberry Pi 3 as computer board.
The wireless communication bandwidth of Raspberry Pi 3 is estimated at ~10 Mbps (Megabytes
per second) [27]. Due to the number of links in our topology (some nodes may have five or six
links, which reduced the available bandwidth), we based our observations on a maximum available
bandwidth of ~2 Mbps.
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Figure 11. Communication pattern using the proposed model when we considered variable bandwidth

(blue nodes are nodes that computed cross-correlation; red nodes only sent data to the corresponding

network). Nodes that computed cross-correlations.
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Table 6. Number of cross-correlations for each selected node (variable bandwidth).

Node Computed Node Computed
Number Cross-Correlation Number Cross-Correlation
3 Ci-3 8 Cr—s
Ci4 Crn
C34 Cs—11
C3—7 Cs—12
Cy_y Cii-12
4 Cy s 10 Co_7
Cyg Ce—9
Cs-s Ce-10
6 C3 C7-10
Ca-6 Co—10
Cs—6 13 Cio-11
Cio-13
Ci1-13

We set an experiment in which we varied randomly the available bandwidth between each pair
of nodes depending on the number of links or hops, and we ran our optimization method. The “best
nodes” to compute cross-correlations and the communication pattern is shown in Figure 11. Note that
the central node, which had more neighbor connections, was not selected as one of the best nodes to
compute. Table 6 shows that only six nodes computed all needed cross-correlations. We can conclude
that it is possible to apply our communication-reduced method on nodes where variable bandwidth
is present.

4.5. Bandwidth and Energy Analysis

To further analyze the results of the proposed method, we compared the original communication
pattern (Figure 7) with the results of our experiments using the proposed communication-reduced
method. We analyzed three main aspects: (i) throughput of the network; (ii) computational cost
in terms of the number of computed cross-correlations; and (iii) percentage of energy saving in the
network after applying the proposed method.

We measured the throughput on every sensor node based on the number of packets received
to verify if our method improved bandwidth utilization. Figure 12 shows for each node the number
of kilobytes per second (kbps) transmitted. Note that the original communication pattern (without
optimization method) utilized much more bandwidth than our method with or without bandwidth
restriction. Only the unlimited bandwidth experiment had two nodes that utilized similar bandwidth
to the original pattern. Figure 13 shows the total throughput of the network in all cases. Our method
significantly improved the communication cost. Between our experiments, Experiment 1 (assuming
unlimited bandwidth) reduced communication the most. However, in reality, we did not have
unlimited bandwidth, and the option of our four experiments (variable bandwidth that depends on
the number of links/hops) resulted more attractive.
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Figure 12. Throughput comparison of every sensor node among different available bandwidth
using our proposed communication-reduced method vs. communication pattern without
communication-reduced method. Note that our method improved bandwidth utilization in all the
tested scenarios.

The improvement in the communication cost is more than expected in this case; because of
that, we analyze how our method impacts computation and energy saving. Figure 14 shows the
computation cost of each experiment and the original communication pattern. Note that our method
besides reducing communication cost also reduced computational cost because the cross-correlations
were computed only once and at the “best nodes”. In this case, the experiment using a maximum of
two neighbors was the one that better balanced the computation cost; however, the difference was not
too significant respecting the other experiments that also used our method. Finally, we computed the
percentage of energy saving when our method was applied. For doing this, our comparison was made
respecting the original communication pattern. Figure 15 illustrates energy saving results. According
to Pottie and Kaiser [28], the energy of transmitting 1 KB a distance of 100 m is approximately the
same as executing 3 million instructions by a processor. Hence, local data processing and reducing
communication cost is crucial for saving sensors energy. Note that, in terms of communication, in
all our experiments, we saved at least more than 60% of energy. This is a very promising reduction.
Furthermore, note that, in terms of computation, the energy saving in our experiments was around
50%. These results imply that our approach, besides reducing communication cost, also helped to
avoid extra energy utilization.
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Figure 13. Total throughput comparison node among different available bandwidth using our proposed
communication-reduced method vs. communication pattern without communication-reduced method.
Note that in the whole system level our method met bandwidth constraints.
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Figure 14. Computational cost in terms of number of cross-correlations computed by nodes.
Comparison between our proposed communication-reduced method and communication pattern
without reduction.Note that, in the case “unlimited bandwidth”, only 4/13 nodes computed
cross-correlations, and, in the case “without optimization method”, all 13 nodes computed
cross-correlations.

Based on our evaluation, we remark that, when there is variable bandwidth that mainly relies on
the number of links/hops of the nodes, our method performs very well in terms on communication
reduction, computation reduction, and energy saving. Hence, we use the results of Experiment 4 to set
up our system for a real-world deployment, as we explain in the next section.
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Figure 15. Percentages of energy saving respecting to the communication pattern without using
out method.

5. Field Test and Evaluations

We deployed smart seismic sensor nodes at the University of Georgia to generate the
velocity map and 3D structure of the subsurface using our dSPAC system and our optimized



Sensors 2019, 19, 2427 18 of 26

communication-reduced model. The previous systems demonstrated promising potential in
illuminating either deep or shallow subsurface depending on the tomography method used within
them [10,29,30]. However, one key problem of these systems is validation. For this reason, a validation
test in a small/known area is suitable for validation purposes, especially in shallow ambient noise
tomography. We allowws variable bandwidth based on the number of links/hops due to bandwidth
and energy analysis presented in Section 4.5. In this section, we explain the used equipment, the
deployment topology, the model used and the result of the real-world experiment. We show that our
system could measure the velocity variations of the subsurface that corresponded with underground
structures—in this case, a pipeline that is under our deployment location.

5.1. Smart Seismic Sensor Nodes

We used thirteen smart seismic sensor nodes (S3N) for a mesh network that communicates
wirelessly. The instruments were placed in the field in a ring-based topology, as shown in Figure 16.
Every S3N was composed of: (i) a Global Positioning System (GPS) that provided precise time-stamp
and location information; (ii) a three-channel seismometer for getting vibration stream data; (iii) a
computing board boxed into a waterproof box; and (iv) a waterproof battery 11 V and 99.9 Wh. Not
that the computing board was basically a Raspberry Pi 3 with 1.2 GHz of CPU, 1 GB RAM and GPU for
intensive local computing when needed, yet could be put in sleep for very low power consumption.

L - T \1%3 o
D! R

o 4] < ¢ A1

o (1] wN7] EE
. Lﬁ . . . . 1 s N . !p: .
@ B8 Xy fla
b B glgﬁ@ b
g e

Figure 16. Deployment topology and smart seismic sensor nodes.

5.2. System Setup

dSPAC system was installed on each S3N. An automatic system service initiated the system
process. The data preparation and data selection were automatically started and a mesh network was
formed between nodes. Nodes were required to be synchronized. The synchronization was done via
GPS. Once the node started, it obtained the timestamp from the GPS signal. Some nodes might receive
the GPS signal before others and start to transmit; however, this transmission was discarded until all
units were synchronized. Usually, this synchronization process did not take longer than 1 min. Once
all nodes were synchronized via GPS, every node selected the best node to cross-correlate data and
set this node to send the information. The cross-correlation window or cutting-time (A) and the total
time of the experiment (T) were set in a configuration file. The narrow frequency-band of interest
was also indicated in this configuration file. This file was updated on all nodes by running a script
before the process started. Every A time, the data were processed and sent to the “best node(s)” for
cross-correlation. After T time, the subsurface imaging section began by using the dSPAC coefficients to
estimate the velocities. Every section of the system was developed in C++. An internal database in
INFLUXDB was used to store the data for future analysis if needed.

The real location of the nodes running the proposed system is shown in Figure 17.
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Noise Reading

Figure 17. Deployment real location. A pipeline is located under the S3N location. Every node
automatically started to read and cross-correlate the ambient noise. The distance between nodes was
3 m (9.843 ft.) from the center to the outside circle nodes, and 1.7 m (5.577 ft.) from the center to the
inside circle nodes.

5.3. Cross-Correlation Results

As mentioned, nodes sent the cross-correlation to their “best node” every A time (in this
experiment, A was set in 5 min). The “best node” computed and stacksed the cross-correlation
of its data with those from the neighbors. An example of cross-correlation between two nodes after 1 h
of cross-correlation is shown in Figure 18.

TComelatond -6 1

Figure 18. Cross-correlation results after stacking the measurements over 1 h: (a) C;_g; and (b) Ce_7.

Figure 18a is the cross-correlation between Node 2 and Node 6, which was calculated in Node 6.
The cross-correlation in Figure 18b is between Nodes 6 and 7; this result was computed by Node 10.

5.4. Subsurface Imaging Results

After T hours of continuous system execution (in this experiment, T was 11 h, i.e., 660 min),
the “best nodes” (nodes that computed the cross-correlations) returned the results of the stacked
cross-correlation to the appropriate neighbors. Every node that was located in the center of each
ring/sub-ring ran the dSPAC method, as explained in Section 2.3. Once the phase velocity estimation
was completed for each sink node, they cooperatively constructed the velocity map for each depth
layer. Then, the sensor located at the center of each ring used depth sensitivity kernel theory [31] to
invert the frequency ranges in depth. It is worth noting that we could start sensing shapes after the
first 5 min of correlations; however, due to the nature of ambient noise image, more data stacking
improved the resolution. Then, more correlated data exhibited better performance (T = some hours).
Our main advantage is the in-situ and real-time computing compared with other geophysical methods.

Figure 19 shows a layer of 1.2 m depth. The area with high velocity in the map indicated that it
should be an isolated structure/facility, corresponding to the targeted pipeline. Notice that shallow
depths had better resolution. Between 1 to 1.5 m, it was possible to distinguish a change in potential
pipeline velocity. Depth layers showed changes in velocity but the resolution was low.
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Figure 19. Velocity map of the layer ~1.2 m depth. Sensor nodes locations are plotted as reference.

The sink sensor constructed a 3D subsurface velocity image, as shown in Figure 20, by
interpolating the velocity profiles from all the nodes. For instrument limitations, we chose 90 Hz
as the dominant frequency in our experiments. The sampling rate of our sensors was 500 Hz. Based on
the Nyquist-Shannon sampling theorem, only the first 250 Hz were usable. Furthermore, to avoid
aliasing effect [32], we adopted up to 125 Hz frequencies. Because our goal was to only illuminate the
shallow subsurface, we decided to use high frequencies of 80-100 Hz, which allows shallow velocities
according to depth sensitivity kernel theory [31].

In Figure 20, only depths between 1 and 1.7 m are shown. In the center of the velocity map, we can
notice the high-velocity area corresponding to the pipe location. Due to the high propagation velocity
of the metal pipe, the surrounding soils also showed higher velocities than other areas. Horizontal
resolution could be adjusted to a narrow frequency band, which was the most significant responses
with the pipe to obtain a better resolution. Note that, as shown in Figure 19, in our application, the
shallow subsurface velocity was around 200 m/s. Considering a central frequency of 90 Hz, the
wavelength A (A = ¢/w, where c is velocity and w is frequency) was about 2.22 m/s. Then, the seismic
resolution was calculated by A /4, resulting in our resolution being about 0.55 m, which is not optimal
for a pipeline detection, whose diameter is about 20 cm. This is the reason the pipeline image looks
thick in Figure 20. In addition, according to depth sensitivity kernel theory [31], the maximum depth
for a frequency of 125 Hz is approximately 5-7 m, which differs at different locations with various
geological conditions. Thus, the velocity map we generated is an average map between depth 0 and 5
m. Since the targeted pipe is located 1.3 m below ground, it should be detected in the imaging result.
However, if the pipeline were not the only underground facility at this depth range, our result might
be degraded. The solution to improve the resolution and image shallower subsurface was to increase
the sampling frequency, which is the reason ground-penetrating radar (GPR) can do its job.

In addition, the vertical resolution could be further improved, if there were more stations. This
result shows we could see structures under the subsurface and potentially extending our work for
some security issues (for example, detecting broken pipelines, detecting tunnels, etc.).
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Figure 20. 3D velocity subsurface: layers between 1 and 1.7 m.

6. Discussion about Robustness and Communication Limitations

In this section, we discuss: (i) the robustness of dSPAC approach and the recovery mechanism of
the system when some nodes fail; and (ii) the communication limitations of the system and how it
affects the communication and bandwidth analysis.

6.1. Robustness of the System

Any distributed system needs to overcome problems in the scenario of sensor failures. Suppose
that, during time T, one or more nodes fail, and suppose that these nodes are not the nodes that
compute cross-correlations. Every S3N has been designed to restart automatically the operations
after failure. However, during the time the node is down, the other nodes continue working sending
data for cross-correlation to the “best node”. At the moment the node is automatically restarted,
it synchronizes itself via GPS with the rest of the nodes, and it continues the cross-correlation of the
data from that point. Because, after cross-correlation, the system stacks the results (time-stacking), the
short-time failure does not affect the reliability of the cross-correlations. This guarantees self-healing
and resilience of the system. Now, suppose that during time T one of the “best nodes” fails. Similarly,
the node restarts automatically and re-synchronizes via GPS. Because every S3N is equipped with an
internal database, the cross-correlation calculation before the failure is saved, and the stacking process
can continue after recovery. Some data in the middle are lost, but, once again, due to the stacking
process, this small lost does not affect the system if the time of failure is short.

However, for the “subsurface imaging” process, the loss of one of the sink sensors is crucial
for the velocity assembling and interpolation. For this reason, we designed a recovery scheme for
recalculating the velocity map after a sink sensor failure. The scheme is described in Figure 21 from a
sink sensor perspective.

In this scheme, after a sensor is automatically started with a system service, and it has been
synchronized with the other sensors, the sensor checks if there is a velocity calculation and imaging
has been done during the time it was down. This is done by checking whether the current time is
greater than the time the process supposes to be performed. If this happens, the sink node sends a
request to other sink nodes for recalculation of the velocities and interpolation. The cross-correlation
process also starts in any case. Note that, to avoid energy failures, we can introduce solar panels for
recharging batteries. With this scheme, we introduce resilience to the system, and we aim to guarantee
that the results will be computed with the maximum number of available sink sensors.
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Recovery Scheme for every S3N using dSPAC approach
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Figure 21. Recovery scheme for system resilience after failures from the sink nodes perspective.

6.2. Communication Limitation Discussion

In the presented methodology, neighbor communication is fundamental to avoid centralized
approaches. However, it is important to discuss the effect of the communication range in the potential
applications of dSPAC deployments and methodology.

In a mesh network, every “hop” (link) between sensors will decrease the bandwidth by half [26].
This happens because wireless links can only do one thing at a time—transmit or receive. In a
long “chain” of mesh links, this results in a very slow connection from end to end. If all nodes are
required to transmit to a central place, the nodes near to the central node have less bandwidth, and
some of them would become a bottleneck. For this reason, we are proposing the communication
only between neighbors. However, what is the maximum distance between two nodes to actually
communicate without interruptions and collisions? It depends on the communication type. If we
use a wireless network, as we propose here, the distance between nodes can be 20-50 m. If we use
XBee communication, it may allow a communication range up to 45 km with a high gain antenna [33],
which means that our approach can be applied to bigger deployments.

To illustrate the advantage of having neighborhood communication instead centralized
communication, we present two studies: (i) a comparison of throughput using neighbor
communication (distributed) vs. centralized communication; and (ii) a comparison of communication
cost between the same two scenarios

We calculated the available bandwidth based on our hardware limitations and the throughput
of the network at each time point. Then, we compared the distributed approach proposed in this
paper, with the centralized approach. Our instruments are based on a Raspberry Pi 3 as computer
board (computational unit inside S3N). The wireless communication bandwidth of Raspberry Pi 3 is
estimated at ~10 Mbps (Megabytes per second) [27]. Due to the number of links in our topology (some
nodes may have five or six links, which reduced the available bandwidth), we based our observations
on a maximum available bandwidth of ~2 Mbps.

Figure 22 shows the comparison between the distributed and centralized approaches.
This throughput was recorded for 120 s in which nodes in the distributed approach exchange
information with the neighbors every ¢t = 20 s to perform cross-correlation later. In the centralized
approach, the nodes are all the time sending raw data to the central place, and we can notice that the
average available bandwidth is very low all the time. On the other hand, with our distributed approach,
the available bandwidth only has a small decrease during transmission for cross-correlation. Our
approach meets the bandwidth limitations, and the sent packages are small due to data preparation
and compression.
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Figure 22. Throughput and bandwidth availability in: (a) distributed approach; and (b) centralized
approach.

The system performance based on communication cost was also analyzed for the proposed
approach. Because the most intensive communication scenario occurs when the data are continuously
transmitted for cross-correlation, we present the communication cost after 1 h of transmission.

In Figure 23a,b, we can see that communication cost in a centralized setup is high near the
“central node” as all the raw data are transferred over the network. It is worth noting that the
distributed approach improves significantly the communication cost between nodes. The reduction in
the number of received messages is ~75%. This also has an impact in the energy consumption of each
node. According to to Pottie and Kaiser [28], the energy of transmitting 1 KB a distance of 100 m is
approximately the same as executing three million of instructions by a processor. Hence, local data
processing is also crucial for saving sensors energy. This implies that our approach, besides reducing
communication cost, also helps avoid extra energy utilization.
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Figure 23. Communication cost in terms of number of received messages by each node. Communication
of data for cross-correlation after 1 h of execution: (a) distributed approach—number of messages
between 0 and 70; and (b) centralized approach—number of messages between 0 and 700.
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With the obtained results, we envision our methodology and system can be applied to other
applications for shallow subsurface imaging. For example, we aim to utilize our method to detect water
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leakage in shallow-buried pipelines. Since water saturation may affect the underground velocity, we
believe our method may be suitable for this application. Similarly, near surface seismic imaging helps
monitor shallow buried objects [9,34,35], for example, very shallow seismic reflection and refraction
experiments can be conducted to investigate groundwater level changes in beach sand in situ [36].
These are other potential applications that we aim to explore with our methodology.

8. Conclusions

In this paper, we present a communication-reduced method for cross-correlation of ambient noise
data for subsurface imaging using distributed spatial auto-correlation (dSPAC). The main idea is to
reduce the communication cost between nodes when they are working together to correlate data.
The subsurface methodology includes two main sections: cross-correlation section and subsurface
imaging section. The main contribution of this paper is based on the cross-correlation section. We have
shown that is possible to select “best nodes” to correlate the needed data for imaging, and, at the same
time, meet bandwidth constraints. We also present analysis regarding computational cost and energy
consumption of the nodes. We integrated our optimal solution to a real-world deployment, and we
imaged subsurface structures that are close to the ground truth. The potential scientific and social
impact of our method is significantly and broadly widespread.
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