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Abstract: This paper presents an approach to exploit the superimposed training (ST)-based primary users’
(PUs) transmissions in the context of spectrum sensing for cognitive radio. In the low signal-to-noise
ratio (SNR), the proposed scheme splits the spectrum sensing phase into two sample processing periods,
allowing a secondary user (SU) to carry out a training sequence synchronization (with a small probability
of error) before the implementation of a robust spectrum sensing algorithm that enhances the detection,
based on the deterministic signal components embedded in the ST PU’s signals along with the unknown
data signal. The overall sensing performance is improved using a reasonable number of samples to
achieve a high probability of detection, resulting in a reduced spectrum sensing duration. Furthermore,
a low computational complexity version of the proposed ST combined approach for a reduced phase
(SCAR-Phase) of spectrum sensing is presented, which attains the same detection performance with
a smaller number of real operations in the low SNR. In the practical consideration of imperfect training
sequence synchronizations, the results show the advantages of exploiting the ST sequence to perform
spectrum sensing, thus quantifying the significant improvement in detection performance and the
maximum SU’s achievable throughput.

Keywords: spectrum sensing; superimposed training; cognitive radio

1. Introduction

Cognitive radio (CR) is envisioned as one of the technologies that will alleviate the demand for more
radio frequency (RF) spectrum required by future wireless communications systems and networks. In CR
networks, the shift is towards the implementation of opportunistic spectrum access mechanisms, in which
a frequency band can be accessed not only by its spectrum license holder, i.e., the primary user (PU) but also
by secondary users (SUs) in a non-intrusive way [1,2]. In other words, SUs are allowed to access a licensed
frequency band only when the PUs’ signals are idle either in time or geographic location [3]. Hence, the RF
spectrum availability can be improved given that the underutilized frequencies can be exploited by SUs,
creating the need for different approaches [4]. One of these is spectrum sensing, which must be performed
by SUs to know the available frequency bands by detecting the PUs’ transmissions.
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The most popular spectrum sensing algorithm is the energy detector, which does not need to know
any information about the PUs’ signals (i.e., blind spectrum sensing) and stands out for its computational
simplicity and promptness. However, its detection performance rapidly deteriorates under noise power
uncertainty [5] and in the low signal-to-noise ratio (SNR), where a high number of samples are required
to attain a certain detection performance [6]. Alternatively, other blind spectrum sensing algorithms have
been proposed to overcome the shortcoming of the energy detector, such as Maximum-to-Minimum
Eigenvalue, Maximum Eigenvalue Detection, Covariance Absolute Value, and Covariance Frobenius
Norm [7]. These algorithms are based on the statistical covariance or auto-correlation of the received
signals, which increases the computational complexity since they require a high number of samples.
Therefore, their performance drastically deteriorates if the number of received samples is small. In contrast,
pilot (or training) symbols, commonly included in the PUs’ transmitted signals for synchronization and
channel estimation purposes, can be used to improve the detection of PUs if such patterns are known by the
SUs. Indeed, previous investigations have demonstrated the significant improvement in terms of detection
performance achieved by algorithms that combine training and data sequences to perform spectrum sensing,
especially in the low SNR region [8–12]. For example, in [8], an enhanced detector for real-valued PUs’
signals with embedded pilots (e.g., digital TV signals) is proposed for spectrum sensing over a lossless
channel. This detector takes advantage of both the known pilot symbols and the energy of the received signal
to improve the detection performance of SUs. In [9] a semi-blind spectrum sensing algorithm is designed by
exploiting the knowledge of a training sequence that is time-multiplexed with binary phase shift keying
(BPSK) modulated PU’s signals. Interestingly, the detector consists of the linear combination of the matched
filter output, the energy, and pseudo-energy of the received signal, thus enhancing the detection performance
of SUs while keeping a relatively low computational complexity. Alternatively to time-multiplexed training
sequences, in [12] it is considered that low-power training information is superimposed (i.e., added) to
the PU’s data prior transmission for its own convenience. Hence, a detector for superimposed training
(ST)-based PUs’ signals buried in noise is designed. The results show that the detection performance improves
significantly even with very low-power training sequences. However, a lossless channel is considered in the
design of the detector, which is not the case in a practical wireless scenario.

Furthermore, in order to take advantage of the training sequence, a realistic model for spectrum sensing
implies to consider other important aspects. Amongst these, two major concerns can be distinguished:
(i) SUs need to know the training information about the PUs’ signals, and (ii) the synchronization of the
SU with the PU system is required. Regarding the former, however, it is possible for the SUs to obtain
information about the PUs’ signals if both users operate under a cooperation agreement in the CR context.
For example, recent studies have considered PUs that opt to share part of their spectral resources with
the SUs to get relaying services [13] or to improve the overall spectral efficiency, amongst other sorts of
rewards [14]. Therefore, in such a scenario, it is also possible to share the PU’s signal information, such as the
modulation type or pilot sequences. Regarding the latter, the training information of the PUs can be used by
the SUs to synchronize their receivers with the PU if a certain amount of time is assigned for this purpose.

In this paper, a new approach that allows SUs to exploit the training sequence using a synchronized
received sequence is proposed to improve the energy detector. After the sample collection of the spectrum
sensing phase, the new method uses a first sample processing period to perform a synchronization
procedure at the time the energy detection is carried out since it does not require the SU to be synchronized
with the PU’s transmissions. Then, in a second sample processing period, the new combined approach
utilizes the synchronized sequence to implement an enhanced training-based detection algorithm, as long
as the energy detector decides the absence of the PU’s signal. Hence, the focus is on the spectrum sensing of
superimposed training (ST)-based PU’s transmissions, given the fact that ST signals might benefit both PUs
and SUs. On the one hand, PUs’ receivers can improve their own channel estimation task without reducing
the data transmission bandwidth, which is of great importance for high data rate transmissions [15,16].
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On the other hand, SUs can consider the known ST sequence in the design of spectrum sensing algorithms
to improve their detection performance, which reduces the unwanted interference to PUs’ transmissions
and increases the SUs’ throughput. Additionally, ST allows the implementation of robust synchronization
algorithms at the SUs’ receivers, like those introduced in [17,18]. Therefore, a detector for ST PUs’ signals
(called ST-Det) is designed and used in the second sample processing period of the proposed superimposed
training combined approach for a reduced phase (SCAR-Phase) of spectrum sensing to implement an
enhanced detection, considering the synchronized training and the data sequences. Furthermore, in order
to reduce the computational complexity, a simplified version of the SCAR-Phase of spectrum sensing is
presented. The proposed schemes are useful in the very low SNR region, where synchronization with the
PU can be achieved to improve the spectrum sensing algorithms by exploiting the ST sequence. In order to
show how the energy detector can be improved by means of the ST sequence in the very low SNR region,
the proposed approaches are compared with this spectrum sensing algorithm. The results show that both,
SCAR-Phase and simplified SCAR-Phase, requires a significantly reduced number of samples to achieve
a target probability of detection in the low SNR, in contrast to the energy detector. Moreover, the SU’s
throughput gain is quantified for the proposed methods.

The rest of the paper is organized as follows: In Section 2 the spectrum sensing scenario under
consideration is described for ST PU’s transmissions and the detection problem is formulated. In Section 3
the proposed SCAR-Phase of spectrum sensing is detailed along with the design of a detector for ST-based
PUs’ signals under a flat fading channel. The performance metrics of the SCAR-Phase of spectrum sensing
are presented in Section 4. In Section 5, a simplified version of the SCAR-Phase spectrum sensing is
described. Moreover, the results are shown in Section 6. Finally, Section 7 concludes the work.

2. Superimposed Training System Model and Detection Problem

In the PU’s network it is assumed that a low power training sequence is superimposed (i.e., added) to
the data signal at the transmitter, which allows the PUs’ receivers to improve the synchronization and
channel estimation tasks. In the SU’s network the ST information can be exploited to improve the spectrum
sensing function. Moreover, the ST technique is suitable to overcome the synchronization requirement that
comes with the use of the deterministic signal components of coherent processing, which has been scarcely
investigated in the context of CR. For this, it is assumed that the PU shares its training information with the
SUs’ receivers according to the statutes of a previous cooperation agreement. Indeed, this can be done for
profit or to benefit both users in the cognitive radio scenario, as it has been recently contemplated in [14]
for different cooperation schemes. The ST PUs’ transmitted signal and the spectrum sensing problem
formulation at SU’s receivers are explained in the following section.

2.1. Superimposed Training PU’s Transmitter

In practical wireless communications systems, training symbols known by the receiver are used to
perform channel estimation and synchronization for reliable transmissions. Traditionally, separate time
slots are used to transmit training symbols independently of the data symbols, which is known in the
literature as the time domain multiplexed training (TDMT) scheme. This, certainly, requires the allocation
of a fraction of the total bandwidth for the training sequence, as visualized in Figure 1 (top). As a result,
the data rate of the PU to transmit signals in a specific frequency band is reduced. Alternatively to TDMT,
the ST technique consists in adding a low-power periodic training sequence to the PU’s data sequence
before it is transmitted, as visualized in Figure 1 (bottom), increasing its data transmission bandwidth at
the cost of requiring some additional processing [16]. In addition, the PU’s receivers also achieve better
synchronization and channel estimation by means of the ST sequence; as a consequence, its bit error rate
is decreased.
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Figure 1. Comparison of frame structures for the time domain multiplexed training (TDMT) scheme (top)
and the superimposed training (ST) scheme (bottom).

The PU’s transmitted sequence is given by [15]

s[n] = t[n] + d[n], (1)

where t[n] denotes the ST sequence and d[n] denotes the data (or information) sequence. The ST sequence
is a non-random periodic sequence with period P and average power given by σ2

t = (1/P)∑P−1
n=0 |t[n]|2.

Note that N represents the sample index. Moreover, the data sequence is assumed to be zero mean with
average power denoted by σ2

d . Generally, an ST system is characterized by the training-to-information
ratio (TIR) value, which is defined as α = σ2

t /σ2
d . Small values of TIR are usually specified for the PUs

since the ST sequence acts as input noise on the data sequence. Therefore, it is assumed that the PU sends
the ST-based signal through a frequency band selected from those available for its data transmissions.
In the SU network, the receivers must identify the idle bands, thus formulating the detection problem
explained in the next section.

2.2. Detection Problem for SUs in Cognitive Radio

In order to determine the available frequency bands for opportunistic transmissions, SUs rely on the
spectrum sensing functionality. For the CR scenario analyzed here, it is considered that in a frequency band
of the PU, each SU independently performs the spectrum sensing task over N received samples, with N/P
being an integer. Hence, the vector x = [x[0], x[1], · · · , x[N − 1]]T denotes the sequence periodically
collected by the SU’s receiver, with each sample of the set expressed as:

x[n] = θejφs[n− τ] + w[n], n = 0, 1, . . . , N − 1, (2)

where θ and φ represent the unknown amplitude and phase shift of a flat fading channel, respectively.
Furthermore, s[n− τ] denotes the independent and identically distributed (i.i.d.) ST PU’s signal samples
given by Equation (1) with power σ2

s , where τ is used to express the lack of time synchronization between
the PU’s transmitter and the SU’s receiver. Then, it is assumed that the transmitted data sequence d[n] is
unknown to the SU and the samples are modeled as i.i.d. circularly symmetric complex Gaussian random
variables with variance σ2

d , i.e., d[n] ∼ CN (0, σ2
d ) and the ST sequence t[n] is known to the SU. Similarly,

it is considered that the noise samples w[n] are i.i.d. circularly symmetric complex Gaussian random
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variables with zero mean and variance σ2, i.e., w[n] ∼ CN (0, σ2). Therefore, the detection problem
consists in deciding between the following two hypotheses:

(i) The PU is not using the frequency band of interest (i.e., hypothesisH0 : θ = 0),
(ii) the PU is transmitting data (i.e., hypothesisH1 : θ > 0).

Nevertheless, deciding if the PU is active from the received sequence {x[n]}N−1
n=0 can be very tough

when random channel gains are considered. Especially in a very low SNR region (i.e., when θ → 0),
which results in collisions with the PUs (caused by missed detections) or in the loss of opportunities
for SUs’ transmissions (caused by false alarms) due to the imperfect spectrum sensing. Additionally,
exploiting the ST information for spectrum sensing requires the synchronization of the SUs in the CR
network with the ST sequence transmitted by the PU, i.e., τ in Equation (2) must be estimated at each SU’s
receiver. These aspects are considered in the next section, where a new superimposed training combined
approach for a reduced phase (SCAR-Phase) of spectrum sensing is presented. This approach provides
a feasible solution to the synchronization issue for spectrum sensing algorithms that take into account the
training sequence to improve the detection performance in CR networks.

3. SCAR-Phase of Spectrum Sensing

Commonly, the energy detector has been widely studied to accomplish spectrum sensing in CR
due to its low computational complexity and simplicity of implementation. However, its performance
considerably degrades under noise power uncertainty. Besides, in the low SNR region, the required number
of samples to achieve a target detection performance dramatically increases as the SNR decreases [19],
which reduces the maximum SUs achievable throughput. In order to reduce the spectrum sensing phase
without compromising the detection performance, the PU’s ST sequence can be used to improve sensing
in the low SNR by combining the energy detector along with an enhanced ST-based detector. Additionally,
the ST information can be used to synchronize the SU with the PU’s transmissions.

The proposed SCAR-Phase of spectrum sensing block diagram is shown in Figure 2. The scheme
considers that spectrum sensing is performed periodically followed by the SUs’ transmissions if the
frequency band is idle. The SCAR-Phase of spectrum sensing consists of a sample collection period and
two sample processing periods. Hence, after the SU collects the samples, in the first sample processing
period a synchronization process (SYNC block in Figure 2) with the transmitted PU’s ST sequence is
carried out at the same time that the energy of the received signal is calculated to make a first decision
about the presence or absence of the PU’s signal. If a PU’s signal is detected (i.e., hypothesisH1 is true),
the SU waits until the next spectrum sensing phase. Otherwise (i.e., hypothesis H0 is true), the second
sample processing period is performed. During this period, the already synchronized ST sequence can be
exploited through an enhanced ST-based detection that uses the set of collected samples. If an enhanced
ST-based detector decides that the PU’s signal is present, the SU waits until the next spectrum sensing
phase, or else the SU can transmit data. The first and second sample processing periods are explained in
more detail next.
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Figure 2. Block diagram of the proposed ST combined approach for a reduced phase (SCAR-Phase) of
spectrum sensing.

3.1. First Sample Processing Period

3.1.1. Training Sequence Synchronization

The training sequence synchronization process represents a challenge for the SU, who must
synchronize with the PU’s ST sequence and then decide the presence or absence of the PU in a very
short time. The synchronization problem of ST-based transmissions has been previously studied in some
investigations [17,18], which have proposed robust algorithms that can be used in the proposed approach
to complete this task.

In this paper, a synchronization algorithm is implemented based on a particular case of the method
proposed in [18], which exploits the characteristics of the cyclic mean of the received signal and has lower
computational complexity than other methods. Hence, for the SU’s received signal model in (2), the time
offset τ is estimated by choosing the integer τ̂ = τ modulo-P (with 0 ≤ τ̂ ≤ P − 1) that satisfies the
objective function given by

J (τ̂) := ||(C−1
τ̂ y)[P−1]r || = 0, (3)

where the matrix Cτ̂ is given by Cτ̂ = circ(t[−τ̂], t[−τ̂ − 1], . . . , t[−τ̂ − P + 1]), with circ(·) producing
a circulant matrix. Moreover, the subscript [P− 1]r indicates the last P − 1 rows of a matrix and y =

[y[0], y[1], . . . , y[P− 1]]T (with the superscript T denoting transpose) represents the period-P cyclic mean
of Equation (2) given by

y[j] := E[x[iP + j]] = θejφt[j− τ], (4)

where E[·] denotes the expected value and j = 0, 1, . . . , P− 1. This last sequence is expressed in matrix
form as follows:

y = C[1]c
τ θejφ, (5)
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where the matrix Cτ is given by Cτ = circ(t[−τ], t[−τ − 1], . . . , t[−τ − P + 1]). Moreover, the superscript
[1]c indicates the first column of the matrix Cτ . Since τ is unknown, y must be estimated from the received
signal at the SU. The proposed estimate ŷ[j] (with j = 0, 1, . . . , P− 1) is:

ŷ[j] =
1

(N/P)

(N/P)−1

∑
i=0

x[iP + j], (6)

which is used in (3) instead of (5). Given that (3) is only satisfied under ideal conditions (i.e., when θ and φ

are perfectly known in a noiseless channel), τ̂ is therefore obtained by performing a linear search over
0 ≤ τ̂ ≤ P− 1 and then looking for the argument that minimizes J (τ̂) := ||(C−1

τ̂ ŷ)[P−1]r ||. That is,

arg min
0≤τ̂≤P−1

J (τ̂) := ||(C−1
τ̂ ŷ)[P−1]r ||. (7)

Note that, since y is estimated using the received signal x, the correct estimation of τ depends on
the number of received samples N. Hence, the greater the number of received samples, the better
the estimate of τ. The performance of the ST-based synchronization method is presented in Figure 3,
where the probability of synchronization error is show against different values of SNR. The probability
of synchronization error is found using 5000 Monte Carlo trials and a different number of samples.
The received signal is modeled as in (2) with the value 0 ≤ τ ≤ P− 1 (τ ∈ N) varying in each Monte Carlo
trial. Moreover, the training sequence is obtained as follows [15]:

t[n] = σtej π
P [n(n+u)] u = 1, P odd; u = 2, P even; n = 0, 1, . . . , P− 1, (8)

which has an unity peak-to-average power ratio, with period P = 10 and σ2
t chosen such that σ2

t + σ2
d = 1

and the TIR α = 0.2. It can be noticed that for a determined value of SNR, the probability of synchronization
error is lower when a greater number of received samples are utilized. It is important to note that in the SNR
region of interest, up to −20 dB, the probability of synchronization error approaches zero with a reasonable
number of samples N. For example, with N = 6000, the probability of synchronization error is ≈ 2× 10−2,
and with N = 9000 this probability reduces to ≈ 1.8× 10−3. Therefore, Figure 3 shows that it is feasible for
the SU to synchronize with the PU’s ST transmitted sequence using a relatively low number of samples.
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Figure 3. Probability of synchronization error against signal-to-noise ratio (SNR).
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3.1.2. Energy Detection

At the same time the synchronization is performed, a first decision about the presence or absence
of the PU’s signal can be made by means of an energy detector, since it does not require any prior
information about the PU’s signal neither require synchronization. This allows the proposed approach
to work according to the SNR level. That is, in the high SNR the operation of the energy detector might
satisfy the minimum requirements of the PUs and SUs with a reasonable number of samples. Whereas in
the low SNR, where the energy detector might exhibit a low detection performance and therefore require
a very large number of samples, an enhanced ST-based detection can be implemented to improve the
overall performance using a reduced number of samples once the synchronization has been realized.

The energy detector test statistic decidesH1 if

Φed(x) =
N−1

∑
n=0
|x[n]|2 > λed, (9)

where λed is the threshold used to compared the test statistic. The probability of a false alarm of the energy
detector is defined as Ped

fa , Pr{Φed(x) > λed|H0}, where Pr{·} denotes the probability operator. Hence,
under the received signal model in (2) and for large N it is given by [20]

Ped
fa = Q

(
λed − Nσ2
√

Nσ4

)
, (10)

where Q(·) is the Q-function or complementary cumulative distribution function of a standard Gaussian
distribution [21]. Similarly, the probability of detection is defined as Ped

d , Pr{Φed(x) > λed|H1}, which is
given by

Ped
d = Q

 λed − Nθ2(σ2
d + σ2

t )− Nσ2√
2Nθ2σ2

t (θ
2σ2

d + σ2) + N(θ2σ2
d + σ2)2

 . (11)

Then, for a specific value of false alarm Ped
fa = β, the threshold can be obtained from (10) as:

λed =
√

Nσ4Q−1 (β) + Nσ2, (12)

which after its substitution in (11), gives the attained probability of detection for the β value.

3.2. Second Sample Processing Period: Enhanced ST-Based Detection

The second processing period is enabled when the SU does not detect the PU presence. This might be
caused for several reasons, including its operation in the low SNR, the hidden terminal problem or missed
detections of the energy detector. For the second processing period, it is proposed to take advantage of
the PU’s training information once the training sequence synchronization process has been completed.
For this task, an enhanced ST-based detector (ST-Det) is designed.

From the received signal model in (2), note that each sample of the set is distributed according
to x[n] ∼ CN (θejφt[n− τ], θ2σ2

d + σ2). Since the received samples are considered to be i.i.d., the joint
multivariate probability density function (or simply PDF) of x is given by

p(x; θ, φ) =
1

πN(θ2σ2
d + σ2)N exp

(
−

N−1

∑
n=0

|x[n]− θejφt[n− τ]|2

θ2σ2
d + σ2

)
, (13)

which is said to be parameterized by the amplitude θ and the phase φ of the unknown channel gain.
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The goal of a detector is to decide either H0 or H1 based on an observed set of data x. This is
a mapping of each data set value into a decision [21]. In this sense, the locally optimum detection (LOD)
criterion maximizes the slope of the power function (i.e., the probability of detection) amongst the detectors
with the same probability of false alarm. Given that LOD produces relatively simple structures that work
well in the low SNR region [22], it is used here in the design of the ST-Det that takes into account the PU’s
ST information to enhance the overall detection of the SCAR-Phase of spectrum sensing. Hence, according
to LOD, the SU decidesH1 is true when [23]

Φ(x) =
p(i)(x; θ, φ)

∣∣∣
θ=0

p(x; 0, φ)
> λst, (14)

where p(i)(x; θ, φ) is the i-th derivative of p(x; θ, φ) with respect to θ, p(x; 0, φ) is the PDF of x evaluated
at θ = 0 and λst is a threshold against which the test statistic Φ(x) is compared. It is worth noting that
p(x; θ, φ) evaluated at θ = 0 is equal to

p(x; 0) =
1

(πNσ2N)
exp

(
−

N−1

∑
n=0

|x[n]|2
σ2

)
, (15)

which does not depend on the value of φ. Next, the first derivative of p(x; θ, φ) with respect of θ is obtained,
which after some algebraic manipulations and rearranging some terms is found to be

p(1)(x; θ, φ) = p(x; θ, φ) {Λ(θ, φ) + Ω(θ)} , (16)

where Λ(θ, φ) is equal to

Λ(θ, φ) =
N−1

∑
n=0

{
2θ3σ2

d |t[n− τ]|2 − 4θ2σ2
d<{e

jφt[n− τ]x∗[n]}+ 2θσ2
d |x[n]|

2

(θ2σ2
d + σ2)2

−2θ|t[n− τ]|2 − 2<{ejφt[n− τ]x∗[n]}
θ2σ2

d + σ2

}
, (17)

and Ω(θ) is given by

Ω(θ) = −
2Nθσ2

d
θ2σ2

d + σ2
. (18)

Note that <{·} and ∗ denote the real part and conjugate of a complex variable, respectively. Then,
after evaluating (16) at θ = 0 and substituting the result in (14), the first derivative-based test statistic is
ΦST1(x, φ, τ) = (2/σ2)∑N−1

n=0 <{ejφt[n− τ]x∗[n]}. In order to compute ΦST1(x, φ), the parameters τ and φ

must be estimated. Firstly, the estimate of τ modulo-P (i.e., τ̂) is obtained using (7). Secondly, it can be
shown by using a Taylor series expansion of the likelihood function around θ = 0, that

φ̂ = ∠
N−1

∑
n=0

t∗[n− τ̂]x[n] (19)

can be used as a nearly maximum likelihood estimate for φ. It can be noticed that ΦST1(x, φ, τ) also
depends on the knowledge of the noise power σ2, which in the ideal case is assumed to be perfectly known.
However, in realistic scenarios, random noise distribution is never known entirely. Hence, in the strict
sense, noise is neither completely stationary, white nor Gaussian [24]. Therefore, the noise power must



Sensors 2019, 19, 2425 10 of 24

be estimated by using a proper calibration method, whose output could be stored in the SU’s devices.
For example, it can occur during the manufacturing process by replacing the antenna at the input of
the SUs’ receivers with a matched load and collecting a set of noise samples every certain given time
during a specified period [25]. However, this might not be precise since this value is different for a myriad
of application environments. In consequence, accurate estimation of the noise power is not achieved
in practice, thus leading to the noise power uncertainty problem that limits the performance of noise
power-based sensing techniques [5]. Alternatively, in a practical implementation, σ2 could be estimated
by taking advantage of the silent periods in which the PU’s signal is not present and then, performing
measurements periodically to update the noise statistics. The effect of noise power uncertainty in the
proposed scheme is a matter of further investigation.

Since further simulations have shown a poor performance of ΦST1(x, φ, τ), the use of the second
derivative of p(x, θ, φ) with respect to θ in (14) is analyzed next to obtain the ST-Det for the second
sample processing period. The second derivative of p(x; θ) is computed by deriving (16) with respect to θ,
which after some algebra can be written as:

p(2)(x; θ, φ) = p(x; θ, φ)
{

Λ(1)(θ, φ) + Ω(1)(θ) + [Λ(θ, φ) + Ω(θ)]2
}

, (20)

where Λ(1)(θ, φ) and Ω(1)(θ) represents the first derivatives of Λ(θ, φ) and Ω(θ), respectively. These can
be easily obtained by standard procedures, which after being evaluated at θ = 0 are reduced to:

Λ(1)(0) =
N−1

∑
n=0

{
2σ2

d |x[n]|
2

σ4 − 2|t[n− τ]|2
σ2

}
, (21)

and

Ω(1)(0) = −
2Nσ2

d
σ2 . (22)

Therefore, p(2)(x; θ, φ) evaluated at θ = 0 is given by

p(2)(x; θ, φ)
∣∣∣
θ=0

= p(x; 0)

[
N−1

∑
n=0

{
2σ2

d |x[n]|
2

σ4 − 2|t[n− τ]|2
σ2

}

−
2Nσ2

d
σ2 +

(
2
σ2

N−1

∑
n=0
<
{

ejφt[n− τ]x∗[n]
})2

 . (23)

Next, by substituting (23) in (14) and then including the resulting constant terms along with λst in a new
threshold λ′st, the second derivative-based version of the ST-Det (or simply ST-Det) that depends on the
unknown values φ and τ is:

ΦST2(x, φ, τ) =
N−1

∑
n=0
|x[n]|2 + 2

σ2
d

(
N−1

∑
n=0
<
{

ejφt[n− τ]x∗[n]
})2

> λ′st. (24)
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After substituting the estimate of τ modulo-P, which is obtained solving (7), and then, the estimate of φ

given by (19), the enhanced ST-Det test statistic is finally given by

ΦST(x) =
N−1

∑
n=0
|x[n]|2︸ ︷︷ ︸
Φed

+
2
σ2

d

∣∣∣∣∣∣∣
N−1

∑
n=0

t[n− τ̂]x∗[n]︸ ︷︷ ︸
∣∣∣∣∣∣∣
2

Φt

> λ′st, (25)

where Φed denotes the energy detection metric of the ST-Det and |Φt|2 denotes the ST related metric of the
ST-Det. It is important to mention that the optimality of the detector in (25) might have been lost due to the
estimates τ̂ and φ̂. In order to evaluate the difference between the test statistic based on the exact values
of τ and φ (i.e., ΦST2(x, φ, τ)) and the test statistic based on the estimated values τ̂ and φ̂ (i.e., ΦST(x)),
the power of each test defined respectively as Pr{ΦST2(x, φ, τ) > λ′st|H1} and Pr{ΦST(x) > λ′st|H1}, can
be considered. For this, 5000 Monte Carlo simulations are performed to quantify the mean squared error
between the power of the test statistic in (24) and the power of the test statistic in (25) as shown in Figure 4.
It can be seen in this figure that the mean squared error is very close to zero when the number of samples
N used for spectrum sensing is greater than 4000. For example, the mean squared error is 2.53× 10−6

when N = 6000, which is the number of samples required to attain a low synchronization error as shown
in Figure 3. Therefore, since simulations show that the difference between the power of both test statistics
is very small, the proposed detector in (25) continues to be referred to as locally optimum.
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Figure 4. Mean squared error of the power function of the ST-based detector (ST-Det) test statistic against
the number of samples N.

Thus, in the second sample processing period, an enhanced version of ST-training based detection is
used, since both the training and data sequences are exploited. Interestingly, in the very low SNR region,
the ST related term of the ST-Det plays a major role in the detection of ST signals, since σ2

d is very small
with respect to σ2. Moreover, the ST-Det can also be used to detect non-ST signals, given that it reduces to
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the energy detection metric when t[n− τ] = 0 ∀n. Additionally, the algorithm is relatively simple and its
implementation in an SU terminal is feasible. Although higher order derivatives of p(x, θ, φ) can be used
in (14) to obtained the test statistic of the ST-Det, in this paper, the detector in (25) is used to analyze the
performance of the proposed SCAR-Phase of spectrum sensing. The detection performance metrics of the
ST-Det are presented below.

3.2.1. ST-Det Probability of a False Alarm

The probability of a false alarm of the ST-Det, denoted by Pst
fa is defined as the probability of deciding

H1 whenH0 is true, i.e.,

Pst
fa , Pr{ΦST(x) > λ′st|H0} =

∫ ∞

λ′
pΦST(x|H0)dx, (26)

where pΦST(x|H0) is the PDF of ΦST(x) when H0 is true. In order to obtain an analytical expression for
the Pst

fa , a statistical analysis must be carried out on ΦST(x) when H0 is true. Note that, for a large N,
the central limit theorem (CLT) can be invoked. Hence, Φed is Gaussian distributed underH0. Therefore,
after analyzing its statistical properties it can be determined that

Φed ∼ N
(

Nσ2, Nσ4
)

. (27)

Similarly, Φt is a complex Gaussian random variable (r.v.) Then, after computing its mean and variance it
can be shown that

Φt ∼ CN
(

0, Nσ2σ2
t

)
. (28)

Thereby, |Φt|2 can be expressed in terms of a chi-squared distribution with two degrees of freedom
(i.e., exponential distribution). Therefore, underH0, the ST-Det test statistic can also be written as:

ΦST(x) = ψG + Nσ2 + υE , (29)

where G ∼ N (0, 1), ψ = σ2
√

N, E is an exponential r.v with parameter ρ = 1/2 (i.e. E ∼ Exp(1/2)) and
υ = Nσ2α. In strict sense, G and E are not independent, which complicates obtaining the exact distribution
of ΦST(x). However, since it can be shown that correlation amongst these random variables is low,
independence can be assumed without affecting the results significantly. Considering this, the expression
for PFA is found as:

Pst
fa =

∫ ∞

0

∫ ∞

λ′st

1
ψ
√

2π
e−

1
2

(
G−Nσ2−υE

ψ

)2
1
2

e−E/2dGdE . (30)

Solving the integral, the expression for the probability of false alarm is:

Pst
fa = f (z) := exp

(
ψ2 − 4υz

8υ2

)
Q
(

ψ2 − 2υz
2υψ

)
+Q

(
z
ψ

)
, (31)

where z = λ′st − Nσ2. Considering that f (z) is monotonically decreasing in z, the threshold can be obtained as

λ′st = f−1 (Pst
fa
)
+ Nσ2, (32)

where f−1(·) is the inverse function of f (·).
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3.2.2. ST-Det Probability of Detection

The probability of detection of the ST-Det, denoted by Pst
d is defined as the probability of decidingH1

whenH1 is true, i.e.,

Pst
d , Pr{ΦST(x) > λ′st|H1} =

∫ ∞

λ′st

pΦST(x|H1)dx, (33)

where pΦST(x|H1) is the PDF of the test statistic ΦST(x) whenH1 is true. Next, Pst
d is obtained by analyzing

the statistical properties of ΦST(x) underH1. Using the CLT, it can be shown that

Φed ∼ N
(

Nθ2(σ2
d + σ2

t ) + Nσ2, 2Nθ2σ2
t (θ

2σ2
d + σ2) + N(θ2σ2

d + σ2)2
)

(34)

and
Φt ∼ CN

(
Nθe−jφσ2

t , Nσ2
t (θ

2σ2
d + σ2)

)
, (35)

when τ̂ = τ modulo-P. Hence, |Φt|2 follows a non central chi squared distribution with two degrees of
freedom and a non centrality parameter given by ρ = 2Nθ2σ2

t /(θ2σ2
d + σ2). Therefore, under hypothesis

H1, the ST-Det test statistic can be written as:

ΦST(x) = ψ1G + Nθ2(σ2
d + σ2

t ) + Nσ2 + υ1X , (36)

where ψ1 =
√

2Nθ2σ2
t (θ

2σ2
d + σ2) + N(θ2σ2

d + σ2)2, υ1 = Nα(θ2σ2
d + σ2), G ∼ N (0, 1) and X is a non

central chi squared r.v with two degrees of freedom and non centrality parameter ρ. By assuming
independence amongst these random variables the Pst

d is found as:

Pst
d =

∫ ∞

0

∫ ∞

λ′st

1
ψ1

√
2π

e
− 1

2

(
G−ς
ψ1

)2
1
2

e−
1
2 (X+ρ) I0(

√
ρX )dGdX , (37)

where ς = Nθ2(σ2
d + σ2

t ) + Nσ2 + υ1X and I0(·) is the modified Bessel function of the first kind and order
0. Since finding a closed-form solution of (37) makes the analysis more involved, the Pst

d is found by noting
that the inner integral is the Q-function and then evaluating the resulting outer integral by relying on
numerical methods, e.g., the trapezoidal method over a large number of evenly spaced points.

4. Performance Metrics for the SCAR-Phase of Spectrum Sensing

4.1. Detection Performance

The detection performance of the SCAR-Phase of Spectrum Sensing is characterized in terms of the
overall probability of false alarm and the overall probability of detection. Since this approach combines
two detectors as in [26], a false alarm occurs in the following two cases:

(i) Φed(x) > λed whenH0 is true.
(ii) ΦST(x) > λ′st given that Φed(x) ≤ λed whenH0 is true.

Therefore, the overall probability of false alarm, denoted by PFA, of the SCAR-Phase of spectrum sensing is:

PFA = Ped
fa +

(
1− Ped

fa

)
Pst

fa . (38)

Whereas a correct detection occurs in the following two cases:

(i) Φed(x) > λed whenH1 is true.
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(ii) ΦST(x) > λ′st given that Φed(x) ≤ λed whenH1 is true.

Hence, the overall probability of detection of the SCAR-Phase of spectrum sensing, denoted by PD, is:

PD = Ped
d +

(
1− Ped

d

)
Pst

d . (39)

Note that both PFA and PD depend on the values λed and λst. Consequently, the values of both thresholds
that maximizes PD subject to a false alarm rate constraint β must be determined. Since the optimal PD is
attained by PFA = β, as demonstrated in [26], this problem can be written as:

max
(λed , λ′st)

PD (λed, λ′st)

s.t. PFA = β. (40)

From (38) and a given false alarm rate constraint β, the probability of false alarm for the energy detector is
Ped

fa = (β− Pst
fa)/(1− Pst

fa). Hence, using (10), λed can be written as a function g(λ′st), i.e.,

λed = g(λ′st) =
√

Nσ4Q−1

(
β− Pst

fa
1− Pst

fa

)
+ Nσ2. (41)

Therefore, as shown in [26], the optimization problem in (40) can be simplified as follows:

max
λ′st

PD
(

g(λ′st), λ′st
)

. (42)

Thus, from (42) and (41) the optimal λ′st and λed = g(λ′st) can be found.

4.2. Mean Computational Complexity

In this section, the computational complexity is measured in terms of the total number of real
operations (additions and multiplications) needed to decide the presence of the PU’s signal. As shown in
the block diagram displayed in Figure 2, enhanced ST-based detection is only performed if the energy
detector does not detect a PU’s signal. Using the energy detector, deciding the absence or presence of the
PU’s signal can be modeled as a Bernoulli r.v. denoted by B, whose probability of deciding the absence of
the PU’s signal (denoted by PH0 ) is given by PH0 = Pr {H0} (1− Ped

fa ) + Pr {H1} (1− Ped
d ), where Pr {H0}

and Pr {H1} are the prior probabilities denoting the absence and presence of the PU in the frequency band,
respectively. Hence, carrying out the second phase of sample processing depends on the value that this r.v
takes (i.e., its expected value, given by E[B] = PH0). Hence, the total mean computational complexity of
the SCAR-Phase of spectrum sensing is:

C̄ = Csync + Ced + PH0 Cst, (43)

where Csync, Ced and Cst are the number of real operations required by the synchronization process,
the energy detector and the enhanced ST-based detection. Note that Csync and Cst are related to the method
used to carry out the synchronization process and the enhanced ST-based detection. To obtain the number
of real operations, it is considered that in a modern digital signal processor (DSP), the time consumed by
a real multiplication and a real addition is the same. Moreover, it is considered that a complex addition
requires two real additions and a complex multiplication needs four real multiplications and two real
additions. Hence, for the synchronization method previously described, which requires P3 + 2P + 3
complex operations [18], Csync = 216P3 + 12P + 18 real operations. Moreover, the energy detector requires
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N complex multiplications and N − 1 real additions. Hence, Ced = 7N − 1 real operations [19]. For the
enhanced ST-based detection, the ST-related metric of the ST-Det, Φt, needs N + 1 complex multiplications
and N − 1 complex additions, i.e., 4N + 4 real multiplications and 4N real additions. Therefore, ΦST(x)
requires 8N + 5 real multiplications and 7N real additions. Thus, Cst = 15N + 5 real operations. Finally,
the mean computational complexity of the SCAR-Phase of spectrum sensing is:

C̄ = 216P3 + 12P + 17 + 7N + PH0(15N + 5). (44)

4.3. Analysis of a Secondary User’s Throughput

In periodic spectrum sensing, the frame structure for the SU’s network consists of one spectrum
sensing phase followed by one transmission phase in which the SU transmits data if the PU is inactive.
Considering that the total number of samples of a frame is N f , the average throughput for the SU’s network
is given by [27]

R(N) =

(
N f − N

N f

)
C0(1− PFA)Pr {H0}+

(
N f − N

N f

)
C1(1− PD)Pr {H1} , (45)

where N f − N is the length of the data transmission phase. Moreover, C0 = log2(1 + γs) is the throughput
of the SU’s network when the SU transmits under H0 with γs denoting the SNR of the secondary link,
whereas C1 = log2(1 +

γs
1+γp

) is the throughput of the SU’s network when the SU transmits underH1 with
γp denoting the SNR of the link between the PU and the SU. Note that R depends on the value of N, hence,
the optimal value of N that maximizes the achievable SU’s throughput for a given target probability of
detection, βd, must be found. In this paper, it is used (45) to obtain the SU’s throughput for a determined
value of βd.

5. Simplified SCAR-Phase of Spectrum Sensing

The simplified SCAR-Phase of spectrum sensing block diagram is shown in Figure 5. Different to the
SCAR-Phase sensing, the simplified version consists of a sample collection period and only one sample
processing period. This is due to the fact that the contribution of the energy detection metric in the
enhanced ST-based detection (ST-Det) in (25) does not require the synchronization procedure. Moreover,
the results of this metric are the same as in the first sample processing period of the SCAR-Phase sensing,
thus this period can be omitted. Hence, after the SU collects the samples, the synchronization process
with the transmitted PU’s sequence is carried out at the same time that the energy of the received signal is
calculated. Then, once τ is estimated, the already synchronized ST sequence can be used in the ST-related
metric of the ST-Det. If the enhanced ST-based detector decides that the PU’s signal is present, the SU
waits until the next spectrum sensing phase, or else, the SU can transmit data. Note that simplifying the
sensing phase to one sample processing period reduces the computational complexity of the approach,
which is characterized in terms of the total number of real operations needed to make a decision.

After analyzing the mathematical structure of the proposed simplified SCAR-Phase of spectrum
sensing, the computational complexity is found to be C = Csync + Ced + Ct, where the number of real
operations needed by the synchronization method is Csync = 216P3 + 12P + 18, by the energy detection
metric is Ced = 7N − 1. Therefore,

C = 216P3 + 12P + 15N + 23. (46)
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Next, the detection performance metrics of the simplified SCAR-Phase sensing are presented.
The overall probability of false alarm is:

PFA = Pst
fa , (47)

where Pst
fa is given by (31).

Additionally, the overall probability of detection, when τ̂ = τ modulo-P, is:

PD = Pst
d , (48)

where Pst
d is given by (37).

c

Input to 
spectrum
sensing

Figure 5. Block diagram of the simplified SCAR-Phase spectrum sensing.

In Table 1 the computational complexity of the proposed approaches and the energy detector can
be compared. Note that, for the same number of samples, the computational complexity of the energy
detector is the lowest. Although the computational complexity of the energy detector is much simpler
in contrast to the proposed approaches, the detection performance of the SCAR-Phase sensing and its
simplified version is much higher in the very low SNR region, as it will be shown later in the results section,
which makes it worth the increase in computational complexity. Additionally, since the number of real
operations used by the SCAR-Phase of spectrum sensing depends on the value of PH0 , its computational
complexity will be greater than that of the simplified scheme as PH0 approaches 1. This is shown in
Figure 6, where the number of real operations of the proposed schemes as a function of PH0 is shown for
a fixed value of N. Note in this figure that the computational complexity of the simplified SCAR-Phase of
spectrum sensing remains constant, whereas for the SCAR-Phase of spectrum sensing increases according
to PH0 . It can be seen that for PH0 values greater than≈ 0.55 the computational complexity of the proposed
simplified approach is lower than that of the SCAR-Phase of spectrum sensing. This makes sense given
that the probability of executing the second processing period of the SCAR-Phase sensing is greater.
In the next section, it will be shown that to attain a given detection performance in the very low SNR
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region, the computational complexity of the simplified version is lower than that of the SCAR-Phase of
spectrum sensing.

Table 1. Computational complexity comparison of the SCAR-Phase of spectrum sensing, the simplified
SCAR-Phase of spectrum sensing and the energy detector in terms of the number of real operations.

Spectrum Sensing Method Number of Real Operations

Energy detector 7N − 1 [19]
SCAR-Phase of spectrum sensing 216P3 + 12P + 17 + 7N + PH0 (15N + 5)

Simplified SCAR-Phase of spectrum sensing 216P3 + 12P + 15N + 23
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N = 6, 000

N = 2, 250

Figure 6. Computational complexity in terms of number of real operations against PH0 for a fixed value of
number of samples N.

6. Results and Discussion

In this section, the performance of the proposed SCAR-Phase of spectrum sensing and its simplified
version are analyzed via Monte Carlo simulations. The number of Monte Carlo iterations is set to 5000.
In the considered CR scenario, the PU transmits an ST-based signal given by (1). The ST sequence
is designed using (8) with a TIR value α = 0.2, a training period P = 10 and considering that σ2

d +

σ2
t = 1. The received signal at the SU is modeled as in (2), with random channel gains and τ selected

from the interval [0, P − 1] in such a way that the time offset variate in each Monte Carlo simulation.
Hence, τ̂ is obtained in each trial using (7), thus the Monte Carlo simulations are carried out considering
the corresponding synchronization errors for each SNR value. The noise variance is chosen to satisfy
a determined value of instantaneous SNR (denoted by γ), hence σ2 = θ2(σ2

d + σ2
t )/γ.

The region of interest is the low SNR between the PU and the SU, where the detection of the PU’s
signal can be tough. Given that, in such a scenario, the number of samples required by the energy
detector dramatically increases at the time that the SNR decreases, the SUs’ throughput is severely affected.
Therefore, both proposed approaches are compared with the traditional energy detector, since their aim
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is to reduce the number of samples used in the spectrum sensing phase to increase the maximum SUs’
throughput when operating in the low SNR region. In order to carry out the Monte Carlo simulations,
the values of λ′st and λed = g(λ′st) that maximize the overall probability of detection (PD) for a target
PFA = β must be determined for the SCAR-Phase of spectrum sensing. For this purpose, PD is first
obtained as a function of λ′st using (39) and (41). Then, the value λ′st that maximizes PD is found and used
to obtain λed = g(λ′st).

The detection performance of the proposed SCAR-Phase and simplified SCAR-Phase of spectrum
sensing is shown in Figure 7, in terms of the attained overall probability of detection (satisfying
a constraint on the overall probability of false alarm β = 0.1) as a function of SNR. These results are
obtained by finding the number of samples used for spectrum sensing, N, that attains an objective
probability of synchronization error, below which the theoretical expression of the overall probability
of detection is accurate enough. For example, with N = 6000 the probability of synchronization error
is 2× 10−2 at −20 dB (see Figure 3 for reference). Therefore, for a set of collected samples of length
N ≥ 6000, the probability of synchronization error will be less than 2× 10−2 in the low SNR region
above −20 dB. Hence, the theoretical results for the SCAR-Phase of spectrum sensing and the simplified
version approximate the simulation results, as shown in Figure 7. Moreover, in order to provide a fair
perspective on the performance of the proposed approaches, it is also shown in this figure the attained
overall probability of detection against SNR with a number of samples that produce a higher probability
of synchronization error. For example, with N = 2250 the probability of synchronization error is
approximately 0.28 at −20 dB (see Figure 3 for reference). Thus, it can be seen in Figure 7 that with
N = 2250 the theoretical approximations (in both proposed approaches) do not perfectly match the
simulation results as the SNR decreases. Indeed, in this case, the theoretical results overestimate the
simulations in the very low SNR since more synchronization errors are made. It is worth mentioning that
the results of both proposed approaches are similar, given the fact that in the low SNR the SCAR-Phase
sensing results rely mostly on the ST-Det of the second sample processing period, whereas the simplified
SCAR-Phase sensing results rely only on the ST-Det in the unique sample processing period. Additionally,
for comparison purposes, Figure 7 also exhibits the theoretical detection performance of the energy
detector with N = 6000, which is the number of samples used by the proposed approaches. For the results
labeled as energy detector, the theoretical expressions in (10)–(12) are used. It can be noticed that the
performance of the SCAR-Phase of spectrum sensing and the simplified version evince a similar operation
in comparison to the energy detector in the SNR region above −13 dB. However, for SNR values below
−13 dB, the second sample processing period of the SCAR-Phase sensing is enabled to exploit the ST
sequence by means of the ST-Det. Therefore, in the low SNR, the performance of the SCAR-Phase sensing
is significantly improved with respect to that of the energy detector. In consequence, for a target detection
performance, the number of samples can be reduced in the low SNR when the proposed approaches
are implemented. Finally, note in this figure that spectrum algorithms that are based on the sample
covariance matrix, such as the Covariance Absolute Value and Covariance Frobenius Norm [7], have been
included for comparison purposes under the signal model considered in (2). It can be seen that they
exhibit a degradation in detecting uncorrelated signals and their performance drastically deteriorates
since N is small [7], which is the scenario analyzed in this paper. Therefore, further analyses compare the
proposed approaches only with the energy detector.
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Figure 7. Comparison of the (overall) probability of detection against SNR for different spectrum
sensing schemes.

Next, Figure 8 shows the required number of samples as a function of the SNR, for a given pair of
target probabilities of detection and false alarm, βd = 0.9 and β = 0.1, respectively. It quantifies the
increasing difference in the required number of samples to achieve the target probabilities as the SNR
decreases. For example, for an SNR of −16 dB, the SCAR-Phase of spectrum sensing and the simplified
SCAR-Phase of spectrum sensing need approximately 2× 103 samples whilst the energy detector requires
approximately 1× 104 samples, which is around five times the number of samples required by the proposed
approaches. Furthermore, when the SNR is equal to −20 dB, the new schemes only require approximately
4× 103, whereas the energy detector requires approximately 6.6× 104 samples, which is 16.5 times the
required number of samples by the proposed approaches. Moreover, Figure 8 evidences that as the SNR
increases, the detection performance of the energy detector and the proposed approaches is similar. Note that,
the SCAR-Phase of spectrum sensing and the simplified SCAR-Phase of spectrum sensing requires the same
number of samples. However, the simplified version of the SCAR-Phase is in the sense of computational
complexity, which is analyzed in terms of the number of real operations in what follows.

The computational complexity of the proposed approaches is shown in Figure 9 in terms of the
required number of real operations as a function of the SNR. The results are obtained for a target pair
of probabilities βd = 0.9 and β = 0.1 using (44) for the SCAR-Phase sensing and (46) for the simplified
version. It can be seen that, as the SNR decreases, the required number of real operations of the simplified
SCAR-Phase also decreases in comparison to those required by the other approach. This is due to the
fact that in the low SNR, the energy detector in the first sample processing period of the SCAR-Phase
sensing decides more frequently the absence of the PU’s signal. In consequence, the enhanced ST-based
detection in the second sample processing period is executed. Since in the simplified version, the first
sample processing period is omitted, the required number of real operations is reduced. For example,
in SNR equal to −15 dB, the SCAR-Phase sensing requires 2.551 × 105 real operations whereas the
simplified version needs 2.434× 105 real operations. The reduction is more noticeable in lower SNR
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values. For example, in SNR equal to −20 dB, the SCAR-Phase sensing requires 2.955× 105 real operations
whereas the simplified version needs 2.697× 105 real operations.
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Figure 8. Comparison of the required number of samples to achieve a probability of detection ρd = 0.9 for
a target probability of false alarm ρ = 0.1 for different spectrum sensing schemes.
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Figure 9. Comparison of the required number of real operations to achieve a probability of detection
βd = 0.9 for a target probability of false alarm β = 0.1 for the proposed spectrum sensing schemes.
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Furthermore, in Figure 10 the performance of the proposed approaches is compared to the energy
detector with a constraint on the level of protection for the PU. Therefore, the overall probability of a false
alarm is obtained against different number of samples to satisfy a βd = 0.9. The results show that with
N = 2000, the probability of false alarm for the proposed approaches is approximately 0.0052, whilst for
the energy detector, it is equal to 0.4633. This difference increases with the number of samples used for
spectrum sensing, impacting the SU’s achievable throughput.
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Figure 10. Probability of false alarm against sensing time.

Finally, the maximum SU’s achievable throughput against the number of samples is compared in
Figure 11 for the proposed methods and the energy detector. The results are obtained using (45) for a frame
size of N f = 60, 000 samples, γs = 15 dB and γp = −15 dB. Moreover, different values of Pr{H0} are
considered to show the dependency of the SU’s achievable throughput on the value of the prior probability
of absence of the PU. It can be seen that for the proposed approaches the maximum throughput is achieved
with N = 2000 samples, whereas for the energy detector it is achieved with N ≈ 8500 samples. Note that
these number of samples are equal for both prior probabilities, but the achievable throughput varies
accordingly since there are more opportunities to carry out SU’s transmissions when the probability that
the PU is inactive is greater.
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Figure 11. Achievable throughput for the secondary network.

7. Conclusions

A new approach for the exploitation of ST PUs’ systems in the context of spectrum sensing for CR
was presented. The proposed SCAR-Phase sensing took advantage of the ST information to carry out
the synchronization of an SU with the ST PU’s sequence and also to enhance its detection performance.
This was possible by splitting the spectrum sensing phase into one sample collection and two sample
processing periods. In the first one, the synchronization with the ST sequence was achieved by means
of a robust algorithm with a small probability of error in the low SNR region. Then, in the second one,
an enhanced ST-based detector (i.e., ST-Det) was designed to perform the spectrum sensing with a small
number of samples and a high probability of detection. This approach is different from the two-stage
spectrum sensing scheme, which consists of a short first sample collection plus a large second sample
collection with its processing period each. Furthermore, a simplified version of the SCAR-Phase sensing
with a reduced computational complexity was introduced by exploiting the high detection performance
of the proposed ST-Det. The results showed that, in the low SNR, the proposed approaches exhibit
a significantly higher overall probability of detection than the energy detector. Moreover, it was shown that
the required number of samples to achieve a target probability of detection is significantly lower for the
proposed schemes. Furthermore, the maximum SU’s achievable throughput was quantified and showed
to be higher for the SCAR-Phase sensing and the simplified version than that for the energy detector.
Further studies need to be carried out in order to assess the performance of the proposed methods in the
presence of noise power uncertainty.
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Abbreviations

The following abbreviations are used in this manuscript:

CLT Central limit theorem
CR Cognitive radio
DSP Digital signal processor
LOD Locally optimum detection
PDF Probability density function
PU Primary user
RF Radio frequency
r.v. Random variable
SCAR-Phase Superimposed training combined approach for a reduced phase
SNR Signal-to-noise ratio
ST Superimposed training
ST-Det Superimposed training-based detector
SU Secondary user
SYNC Synchronization
TDMT Time domain multiplexed training
TIR Training-to-information ratio
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