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Abstract: Manhole covers, which are a key element of urban infrastructure management, have a direct
impact on travel safety. At present, there is no automatic, safe, and efficient system specially
used for the intelligent detection, identification, and assessment of manhole covers. In this work,
we developed an automatic detection, identification, and assessment system for manhole covers.
First, we developed a sequential exposure system via the addition of multiple cameras in a symmetrical
arrangement to realize the joint acquisition of high-precision laser data and ultra-high-resolution
ground images. Second, we proposed an improved histogram of an oriented gradient with symmetry
features and a support vector machine method to detect manhole covers effectively and accurately,
by using the intensity images and ground orthophotos that are derived from the laser points and
images, respectively, and apply the graph segmentation and statistical analysis to achieve the
detection, identification, and assessment of manhole covers. Qualitative and quantitative analyses are
performed using large experimental datasets that were acquired with the modified manhole-cover
detection system. The detected results yield an average accuracy of 96.18%, completeness of 94.27%,
and F-measure value of 95.22% in manhole cover detection. Defective manhole-cover monitoring
and manhole-cover ownership information are achieved from these detection results. The results not
only provide strong support for road administration works, such as data acquisition, manhole cover
inquiry and inspection, and statistical analysis of resources, but also demonstrate the feasibility
and effectiveness of the proposed method, which reduces the risk involved in performing manual
inspections, improves the manhole-cover detection accuracy, and serves as a powerful tool in
intelligent road administration.
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1. Introduction

An increasing number of urban manhole covers are being used in road administration
(e.g., for electricity and gas supply, fire control, water supply and draining, communication, and sewage
discharge) as rapid urban development in the digital age promotes constant growth, city planning
improvements, and road construction. The daily management, maintenance, and inspection of these
covers now involve increased workloads and difficulties. Frequent and heavy traffic also leads to cover
damage and subsidence, which often reduces road and infrastructure safety, thus posing potential
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dangers to road users [1,2]. The manual detection and repair of defective manhole covers via traditional
methods can no longer meet the demands of modern cities in terms of timeliness, safety, and inspection
accuracy. The automation of urban manhole-cover management, which acquires accurate location and
ownership information—and their inspection and maintenance at higher operational safety levels—is
now a primary focus in intelligent road administrations. The recent emergence and rapid advancement
of mobile mapping [1–3] present effective methods for the monitoring and maintenance of defective
manhole covers, while also functioning as data sources. The mobile mapping system is a new-generation
multi-platform and multi-band mobile information acquisition system, this system is mounted on
a carrier vehicle and integrated with various sensors, such as a laser scanner, inertial navigation system,
global navigation and positioning system, and digital camera [4–13]. It offers a high-precision and
high-efficiency means of acquiring large quantities of three-dimensional (3D) point cloud and image
data in real-world environments, and has now become an indispensable component in the evolution of
digital cities, providing long-term support in promoting the construction and management of modern
cities and the transformation to digital management and operation. It also presents new possibilities
and methods for the automated location, extraction, and identification of urban manhole covers.

Few studies have been conducted to date that address the monitoring and maintenance of urban
manhole covers. Nan et al. [14] developed an underground practical sensing system to detect manholes
beneath the urban pavement environment. Fu et al. [15] developed an intelligent system for manhole
cover detection and management via the deployment of many sensors at each manhole cover to provide
real-time monitoring. However, this method requires a considerable (and constantly increasing)
amount of equipment to monitor all the manhole covers in a given urban area. Timofte et al. [16]
presented a multi-view scheme for manhole detection and recognition based on a van-mounted
camera and global positioning system (GPS) for data acquisition, but this method was limited in
its ability to detect manhole covers, and the ownership information could not be obtained due to
the low image resolution. It is also slow and inconvenient to monitor all the manhole covers via
radio-frequency identification tagging [17]. Murasaki et al. [18] estimated the degree of manhole
cover wear based on a texture recognition approach that used the local binary pattern feature of
the image-processing method. Ji et al. [19] presented a manhole detection method that employed
a multi-view matching and feature extraction technique based on close-range images, and inertial
navigation system and light detection and ranging (LiDAR) data, and utilized canny edge detection
for manhole cover recognition. However, this method depends on the detected edge of the manhole
cover, which may be difficult to detect due to the similar intensities of the manhole cover and road.
Yu et al. [2] used multi-scale tensor voting and distance thresholds to extract the manholes from
two-dimensional georeferenced-intensity feature images [1], with these feature maps generated from
mobile LiDAR data, but this method is computationally intensive. Yu et al. [20] detected manhole
covers by using a supervised deep-learning model from the georeferenced-intensity feature maps
that were generated via the interpolation of inverse-distance-weighted laser points. This method
yielded better manhole-cover detection results, but it is solely based on laser points from the RIEGL
VMX-450 mobile laser scanning system. Therefore, detailed cover ownership information could not be
acquired, and the method only focused on manhole cover detection, with no manhole identification or
assessment information obtained.

Two problems are identified in the above manhole-cover detection methods. First, the data
obtained by conventional mobile-mapping systems [1,2,20] are not high-definition ground images,
and therefore cannot provide detailed manhole-cover ownership information (e.g., ownership unit, use,
and cover specifications), which is necessary for road administration purposes. Second, most researchers
determine the manhole cover locations by using point cloud or image data, whereas the combined
implementation of both data sources achieves higher precision results. Furthermore, no manhole
cover assessments have been conducted during the detection and identification process to assess
whether a given manhole cover needs to be repaired or replaced. In summary, current conventional
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mobile-mapping systems do not meet the growing demands of manhole cover detection, identification,
maintenance, and management for urban road administration purposes.

This study proposes a modified manhole-cover detection, recognition, and assessment system that
utilizes the integration of two image-acquisition devices. An improved sequential exposure scheme
using a symmetrical arrangement of multiple cameras, in combination with a high-density laser scanner,
is proposed to obtain high-density point cloud and ultra-high-resolution ground images simultaneously.
An improved method based on the histogram of oriented gradients (HOG) descriptor with symmetry
features, support vector machine (SVM), and statistical analysis is proposed. This improved and
optimized system, in combination with the proposed data-processing method, enables the efficient
and rapid detection, identification, and assessment of manhole covers. In this paper, we first provide
a description of the developed manhole-cover detection system, and then introduce the key technologies
used in manhole cover detection and maintenance, followed by an analysis of the experimental results.

2. Materials and Methods

2.1. Key System Optimization Technologies

The modified mobile-mapping system for the customized and professional detection and
identification of manhole covers, here termed the SSW-D Mobile LiDAR System, is shown in Figure 1.
It is a modification of the SSW mobile-mapping system [3], including the acquisition of high-resolution
images and high-precision laser data, the key steps in the modification process are the equipment
model selection and system reconstruction, which are detailed below:
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Figure 1. Modified mobile-mapping system. (a) Side view. (b) Back view.

(1) Equipment selection: The sensor system needs to be constructed using the optimal vehicle,
camera, and laser model. The vehicle is selected based on three factors: interior space, roof stability,
and height. Full-sized sports utility vehicles or multi-purpose vehicles are the best choices due to their
spacious interiors, which facilitates the storage of additional equipment, such as generators. The roofs
of these vehicle models are also stable after the camera mount installation, and the extra height of
these vehicles provides a broader field of view during acquisition. Mobile mapping systems are often
equipped with panoramic or area array cameras, but these devices are unable to capture high-precision
ground images. The Sony A7 camera with a 14-mm fisheye lens is chosen as the ideal camera for
the system, and the Canon 5D II series camera is chosen as an alternative candidate, with the latter
camera being a little larger, heavier, and more unstable to return to signal stability than the former
camera. Road maintenance and repair is required when a manhole cover subsidence of 2 cm or more is
detected. For higher accurate detection, we choose RIEGL laser scanner to acquire high-precision and
high-density laser data, so as to assessment manhole cover.

(2) System construction and installation: A camera mount that extends from the rear of the vehicle
is designed for the high-resolution ground image acquisition. The cameras are also tilted 20◦ toward



Sensors 2019, 19, 2422 4 of 18

the rear of the vehicle to increase the shooting range, as shown in Figure 2a,b. The Sony A7 manual
states that the camera has a shooting speed of 1 image/s at the highest resolution, but the exposure
interval is longer than one second during acquisition to prevent image loss. Furthermore, an image
acquisition rate of 1 image/s requires a vehicle speed of 18 km/h, which seriously affects local traffic and
the efficiency of our work. A sequential exposure method that uses multiple cameras in a symmetrical
arrangement is therefore proposed. Three pairs of cameras (labeled A, B, and C in Figure 2a) are
employed to acquire ground images sequentially, and they are positioned based on the load-bearing
capability of the mounting frame, system stability, operation efficiency, image accuracy, and image
overlap. The modified system is shown in Figure 2. The camera exposure is based on the mileage
value, with the exposure signal triggered at a certain distance interval. This setup ensures that the data
requirements are met for a vehicle speed of 40 km/h.
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Figure 2. Structure of the reconstructed camera system and mounting frame. (a) Bottom view of the
modified system. (b) Side view of the modified system.

Symmetric exposure from both the left and right also increases the ground shooting range to
three traffic lanes, as shown in Figure 3. Figure 3a,b are the ground images taken by the left and right
cameras, respectively, and Figure 3c is the fused image, which yields an image that covers three lanes.
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The above modifications are sufficient for the daytime detection, identification, and maintenance
of manhole covers. The ownership information extracted from the manhole covers is clear and visible,
as shown in Figure 4. Example ground images are shown in Figure 4a, and example LiDAR data from
different manhole covers are shown in Figure 4b. The high-precision images and LiDAR data acquired
by the improved SSW-D system provide a favorable database for the later detection and maintenance
of manhole covers.
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Figure 4. Example manhole-cover images. (a) Ground images. (b) Laser data images.

2.2. Key Detection and Identification Technologies

High-resolution images and high-density laser data of the road surface are acquired via the SSW-D
system after sensor calibration. Images can provide high-resolution texture information, and laser data
can provide high-precision 3D location information. However, there is no method to extract manhole
cover images based on the combination of laser data and images simultaneously. As described in
Section 1, it is difficult to apply current methods to the practical engineering of well cover detection,
and solve the problems currently faced. In this paper, an automatic manhole-cover extraction method
based on the combination of images and laser data is proposed; the two datasets are integrated in
this study to utilize the strengths of both datasets and obtain more accurate cover-detection results.
The key technology comprises four main components: (1) the generation of intensity images and (2)
ground orthophotos, (3) manhole cover extraction and detection, and (4) manhole cover identification.
This process is illustrated in Figure 5.
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2.2.1. Generation of Intensity Images

The manhole-cover detection method primarily involves an image-processing method that
requires the conversion of 3D laser-scanned point cloud data into intensity-based images.
Accordingly, the intensity-based images are generated from the ground laser points according to our
previous study [3], where the ground points are first extracted based on the fluctuation trend in the
elevation differences between the current laser point and the neighboring laser points of the adjacent
scan lines. The laser point is considered as the ground point if the trend value is below a certain
threshold. We then use these derived ground points to project the laser-scanned point data onto
the XOY plane and rasterize the dataset based on the horizontal positions, elevations, and intensity
information of laser data.

This requires the range of the 3D point cloud ([Xmin, Xmax], [Ymin, Ymax], [Zmin, Zmax]) to be
determined. The grid size (W× H) is calculated via Equation (1):{

W = (Xmax −Xmin)/GSD
H = (Ymax −Ymin)/GSD

, (1)

where W is the width of the grid, H is the height of the grid, and GSD is the ground sample distance.
The gray value of each grid cell (i,j) is determined by the relevant features of the laser-scanned points in
the grid, such as their horizontal positions, elevations, and intensity values. The effect of the horizontal
position is computed via inverse distance weighting, with larger weights assigned to the horizontal
positions that are farther from the grid center and vice versa. The elevation is related to the mean
difference of the elevation, with larger weights assigned to the elevations that possess smaller mean
differences and vice versa. The gray value of each grid cell (i,j), Fi j is then computed as:

Fi j =
∑ni j

k=0
(wi jk·Ii jk)/

∑ni j

k=0
wi jk, (2)

where Ii jk is the intensity of the k-th laser-scanned point in the grid cell, ni j is the number of scanned
points in the grid cell, and wi jk is the calculated weight of the k-th laser-scanned point, which is
defined as:

wi jk = α×


√

2GSD
Dk

i j

+ β×

(
hmini j −Zmin

)
((

Zmax − hmaxi j

) (
Zk

i j −Zmean

)) (3)
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where α and β are the weight coefficients for the horizontal position and elevation, respectively, Dk
i j is

the distance between k laser point in grid cell (i,j) and its center. hmaxi j , hmini j , and Zmean are the
maximum, minimum, and average elevations of the laser-scanned points in the grid cell, respectively,
and Zk

i j is the elevation of the k-th laser-scanned point in the grid cell. The gray value of each grid
cell (i,j) is obtained via Equation (2). Because the gray value range for the entire gridded area of the
intensity image is [Imin, Imax] we therefore employ the normalized method to unify the gray interval
over [0, 255]. These generated intensity images then become the data source for the manhole cover
detection and identification.

2.2.2. Generation of Ground Orthophotos

There are additional difficulties in extracting the manhole cover location from the images acquired
by the SSW-D system due to the varying degrees of manhole cover deformation. An improved
quadrilateral orthographic road (IQOR) model is proposed for the generation of ground orthophotos
to restore the true shape of the manhole covers. The IQOR model constructed in this study possesses
a higher geometric accuracy because it is based on the image and laser points after registration
synchronization to obtain the real road surface, instead of simplifying the pavement to a pure plane
via inverse perspective mapping [21]. Quadrilateral generation, image initialization, and image
transformation are the key steps in the IQOR model (Figure 6).Sensors 2019, 19, x FOR PEER REVIEW  7 of 17 
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Figure 6. Schematic for the generation of the ground orthophotos.

The ground orthophoto process is as follows: A three-lane road strip is recreated by first extending
each 1.5-lane image to both sides of the trajectory line based on the camera exposure mileage value to
segment a given road strip, and then forming a series of closed quadrilateral blocks, with the z-value of
the quadrilateral vertexes confirmed from the ground points. Image initialization takes a blank image
and rasterizes the quadrilateral blocks according to the specified ground resolution, with the ground
orthophoto resolution calculated from the focal length, image size, and height of the road surface.
The initialized image is projected on a XOY plane on the road surface. The space transformation
of the camera center and the initialized image are analyzed to obtain the RGB information based
on the position and attitude information of the synchronized image at the same exposure time,
which yield the RGB information from the intersection position of the transformed camera center and
the location of the intersection of the initialized image and the synchronized image. The RGB value
of each pixel is then retrieved to construct the ground orthophoto, as shown in Figure 6, which also
illustrates the ground-orthophoto generation process. Each ground orthophoto image possesses
a certain geographical reference from which the corresponding spatial position and RGB information
can be obtained.
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2.2.3. Manhole Cover Detection

The rapid extraction and location of manhole covers are conducted using the generated
intensity-based images and ground orthophotos. In this paper, an improved method based on
an improved HOG descriptor, principal component analysis (PCA), symmetry characteristic, and shape
detection to detect manhole covers is proposed. The improved HOG descriptor [22–24] and PCA
method are used to reduce the image dimensions and the SVM is applied as a discrimination method.
In addition, symmetry is introduced into the manhole-cover extraction method. Because the manhole
cover itself has some circular or rectangle shape and symmetrical characteristics, the combination
of the HOG descriptor and symmetrical features can achieve more effective manhole-cover filtering
extraction. Symmetry features are obtained directly based on HOG descriptors. Symmetry descriptors
are illustrated by the channel with eight bins of HOG descriptors. For a circular manhole cover,
the upper (Cu), down (Cd), left (Cl), and right (Cr) sectors are symmetrically distributed, so the
eigenvectors of the left Pl

u and right regions Pr
u are shown in Equation (4), and the adjusted symmetrical

eigenvectors PR′
u are shown in Equation (5).

Pl
u = [pul1pul2pul3pul4pul5pul6pul7pul8]

T

= [pur1pur2pur3pur4pur5pur6pur7pur8]
T (4)

PR′
u = [pur1′pur2′pur3′pur4′pur5′pur6′pur7′pur8′ ]

T

= [pur5pur4pur3pur2pur1pur8pur7pur6]
T (5)

The symmetric vector of Pl
u and Pr

u is defined by Equation (6),

and Cu =
[

Cu1 Cu2 Cu3 Cu4 Cu5 Cu6 Cu7 Cu8
]T

, j is located at the range of [1,8], Cuj is
calculated based on Equation (6).

Cuj =


puli∑8

k=1 pulk
/ puri∑8

k=1 purk
, i f puri∑8

k=1 purk
>

puli∑8
k=1 pulk

puri∑8
k=1 purk

/ puli∑8
k=1 pulk

, i f puri∑8
k=1 purk

≥
puli∑8

k=1 pulk

(6)

Among them, the value range of elements in the symmetric vector Cu is between 0 and 1,
and the corresponding symmetric vector Cd can also be obtained by choosing the similar principle.
Due to the symmetric feature of the well cover, the symmetry vector itself has better symmetry.
Then, the optimized HOG descriptor consists of the HOG descriptor’s own vector and the circular
symmetry vector. However, the optimized HOG descriptor is high dimensions, and it contains excessive
unnecessary redundant data, which not only directly causes computational pressure and increases the
computational complexity, but also directly reduces the extraction accuracy. Accordingly, PCA was
introduced in the proposed method. The PCA method is applied here to convert the original variables
into a series of new and unrelated variables via an orthogonal transformation. A small number of new
vectors are selected to represent the best original vectors and a function is defined by the new feature
descriptors based on the actual need of the image, which reduces the image dimensions and speeds
up the calculation. The last step consists of placing the feature descriptors of the sample data after
PCA processing into the SVM classifier to carry out training. Detectors are also applied to the intensity
or orthophoto images to generate negative and hard examples, which are used with the previously
acquired features that train the final detectors. The obtained detectors are then placed into the SVM
classifier [25] for the rapid location and automated extraction of manhole covers.

This method can be used to extract manhole covers from both the intensity images and ground
orthophotos. Manhole cover information is extracted from both datasets to demonstrate their respective
advantages, with the final extraction result based on the final information that possesses higher accuracy.
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2.2.4. Manhole Cover Identification

Manhole cover identification includes the acquisition of manhole maintenance and ownership
information. Manhole cover maintenance is primarily used to determine if a manhole cover is defective,
and if maintenance or replacement is necessary. Defective manhole covers include sinking manhole
covers, manhole ring-height differences, broken manhole covers, and damage to the periphery of
manhole covers, which is shown in Figure 7. For example, a height difference of greater than 2 cm
between the manhole cover and manhole ring is indicative of a sinking well cover, which requires
maintenance. Damage to the periphery of manholes is evident when the road surface around the
manhole shows clear signs of damage, with an accompanying large height fluctuation observed.
Manhole cover damage is any breakage of the manhole cover, which indicates an incomplete or
insecure cover. Therefore, manhole cover maintenance is primarily achieved by evaluating the heights
of the cover, rim, and periphery of the rim, which is based on the height difference values between the
manhole cover, rim, and periphery of the rim, to determine if a height-difference threshold value is
exceeded. Manhole ownership information consists of the ownership unit, usage (e.g., water and sewage
discharge, electricity and gas supply, and communication), and cover specifications. Cover diameters
can be identified as either 60 or 80 cm when the specifications are obtained by their location and outline.
However, the ownership unit and usage must be identified from the ground images. Manhole-cover
outline detection is therefore the key to inspecting manhole cover conditions.Sensors 2019, 19, x FOR PEER REVIEW  9 of 17 
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Figure 7. Example manhole cover conditions. (a) Sunken manhole rim. (b) Sunken manhole cover.
(c) Damage to the periphery of the manhole. (d) Damaged manhole cover.

A graph-based image segmentation method, OneCut [26,27], is employed to delineate the
manhole cover outlines by using the location information obtained from the intensity-based images
and ground orthophotos. OneCut is an improved image-splitting algorithm by Tang et al. [27] that
is based on GrapCut. It uses a fast globally optimized binary partitioning technique, and requires
a priori specifications of a rectangle framed around the objects of interest. This frame contains the
foreground and some background information. Pixels that fall outside the frame are hard-constrained
as background pixels. The minimum energy function for image partitioning is given by Equation (7).

E(S) =
∣∣∣∣ ·S∩ R

∣∣∣∣− β||θS
− θ

·

S
||L1 + λ|∂S|, (7)

where S and
·

S represent the foreground and background images to be segmented, respectively, R is the

bounding box, θS and θ
·

S are unnormalized histograms of the foreground and background, respectively,
and the value of λ is based on experiments. |∂S| is the contrast-sensitive smoothness term, which is
calculated from Equations (8) and (9):

|∂S| =
∑ 1
||p− q||

·e
−||Ip−Iq ||2

2σ2 ·

∣∣∣Sp − Sq
∣∣∣ (8)

σ2 =
1

Nn

∑
(p,q)∈n(I)

||Ip − Iq||
2 (9)

where {p,q} represents the case of unordered pairs of neighbors, Nn is the number of elements in n(I),
and n(I) is a set of pairs of adjacent pixels in image I. The above model requires the designation of
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a rectangular frame that contains the objects of interest. Here, seed points are provided in the actual
computation to replace the rectangular frame. The location of the manhole cover and the region of
interest (ROI) containing the cover can be obtained as outlined in Section 2.2.3. The pixels that define
the outline of the cover are hard-constrained as background pixels, and the pixels within a certain
distance from the center of the cover are hard-constrained as foreground pixels based on the ROI.
This removes the rectangular frame requirement of the above model, which then yields the optimized
minimum energy function as:

Eseed(S) = −β||θS
− θS
||L1 + λ|∂S|, (10)

where β is defined as:

β = βimg =
|R|

−||θR − θR||L1 + |Ω|/2
·β′, (11)

and β′ is a global parameter that is generally assigned a value of 0.9.
Splitting is conducted based on this energy function (Equation (10)) to produce a binary image,

and the best-fit circle that represents the manhole cover is then obtained. The cover diameter and
specifications can be obtained from the cover outline, as well as the corresponding point clouds and
image data.

The criteria for judgment are shown in Equation (12) based on Figure 8. The manhole covers are
divided into 16 areas. In order to judge whether the covers are manhole cover damaged, subsidence
or surround damage, we mainly rely on the laser point cloud data in the adjacent 45-degree fan area.
As shown in the figure, A1, B1 and C1, respectively, represent the manhole cover, the manhole outer
ring and the surrounding area of the manhole covers. r1, r2 and r3 are represent the radii of the manhole
cover, the manhole outer ring and the surrounding area of the manhole covers. Statistical analysis is
used to assess the height difference of the area surrounding the cover. The periphery of a manhole is
classified as damaged if the height difference fluctuation exceeds a certain threshold, with the height
difference between the manhole cover and its surroundings used to identify the degree of manhole
cover subsidence. Other geometric parameters can also be evaluated in the same way using the
laser-scanned point clouds. The criteria for judgment are shown in Equation (12).

∆ f i
gc =

∣∣∣ZAi+Ai+1 −ZBi+Bi+1

∣∣∣
∆ f i

xc =
∣∣∣ZAi+Ai+1 −ZCi+Ci+1

∣∣∣
∆ f i

ps =

∣∣∣∣∣∣ n∑
i=1

ZAi /n−ZAi++Ai+1

∣∣∣∣∣∣
∆ f i

zbps =

∣∣∣∣∣∣ n∑
i=1

ZCi /n−ZCi++Ci+1

∣∣∣∣∣∣
(12)

where ∆ f i
gc represents the height difference of the sector area in the i-th block, ∆ f i

xc represents the
subsidence value of the sector area in the i-th block, ∆ f i

ps represents the cover damage value in the
sector area in the i-th block, and ∆ f i

zbps denotes the periphery damage value in the sector area in the
i-th block. If the above calculation threshold exceeds the evaluation value of the defect manhole
cover, it is considered that there is a disease in the cover. The accuracy of the results is directly
related to the laser data density. The modified system in Section 2 ensures the high-performance
efficiency and accuracy of the data during acquisition. Corresponding images of the manhole cover
site are obtained and high-definition images of the cover are also acquired in a semi-automated
manner to obtain manhole-cover ownership information (i.e., extraction of the cover inscriptions).
Manhole cover detection and identification via a mobile-mapping system transfers a large amount of
tedious outdoor work to the office, while also supplying high-precision and detailed data for manhole
cover maintenance.
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Our developed system and proposed method of the detection, identification and assessment
method transform the operational mode of road maintenance, and provides technical support.

3. Results and Discussion

3.1. Experimental Data

The experimental datasets are acquired using the SSW-D Mobile LiDAR System described in
Section 2 to verify the feasibility, practicality, and effectiveness of the proposed method. The SSW-D
is integrated with a RIEGL VUX-1HA laser sensor, cameras (SONY A7), an inertial measurement
unit, GPS antenna, odometer, and other features, with the specific sensor parameters listed in
Table 1. A RIEGL VUX-1HA laser sensor with the following specifications is used in the customized
mobile-scanning system mentioned: laser pulse repetition-rate = 1014 kHz, scan frequency (number of
laser lines recorded per second) = 250 Hz, and measuring range = 2–200 m at a reflectivity of 80%.
A SONY A7 camera, with a focal length of 12 mm, pixel size of 6 µm, and image size of 24 million
pixels, is used. The POS2010 inertial navigation system (Beijing) [3] is used.

Table 1. Device specifications.

Device Specifications Device Specifications

RIEGL

Laser pulse repetition rate 1014 kHz

Camera

Focal length 12 mm
Scan frequency 250 Hz Pixel size 6 µ

Range 2–200 m at
a reflectivity of 80% Number of pixels 24 million

Echoing mode Multi-echo Maximum resolution 6000 × 4000
Relative measurement

accuracy ≤1 cm Exposure interval 1 s

Divergence 0.3 mrad

POS2010
Positioning accuracy Roll: 2%� Pitch:

2%� Yaw: 5%�Field of view 360◦

Operation temperature −10 to 40 ◦C Horizontal position
accuracy <10 cm

Safety grade II Elevation accuracy <5 cm

For convenience, we choose an urban road in Beijing, China, with more manhole covers, as the
experimental area to verify the effectiveness and feasibility of the proposed method. The vehicle
is driven at 40 km/h during the data acquisition, with the entire study area shown in Figure 9a,
among, Figure 9b–f is the sample A,B,C,D,E located at the area of Figure 9a. A total of 216.885 km
of roads were surveyed, with 1.80 × 105 high-definition ground images and 6016 laser files acquired.
The laser files contain 1.36 × 109 laser-scanned points at a point density of 1800 p/m2. The data include
various complex ground features, such as vehicles, trees, buildings, and acoustic barriers, to meet road
administration requirements, and ensure effective and accurate manhole cover detection. The following
experimental analyses are performed on the five road-section samples. The data acquired with the
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proposed system in this study are used for the automated extraction of manhole covers, and the
subsequent detection, identification, and assessment of manhole covers employ the proposed method.
This manhole cover experiment confirms the feasibility of the acquisition system and the effectiveness
of the method.
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3.2. Manhole Cover Detection

Ground point extraction is the first step in manhole cover detection from laser-scanned point
clouds. The effective selection of ground points and the elimination of non-ground points significantly
reduce the computational workload of large laser datasets. Here, we directly use the ground points in
the manhole cover detection and identification, with the ground point extraction based on the method
outlined in our previous paper [3]. An image resolution of 0.01 m is set to generate the intensity-based
images from the ground points. The modified HOG–SVM joint method with symmetry features used
for the extraction in this study requires sample data for the calculation, which are created directly from
the intensity images. The final intensity images include 13,838 positive samples and 10,846 negative
samples. Five road-section samples are randomly selected in the study area to provide further details
on the extraction results, as shown in Table 2. The first column shows the ground points, the second
column data displays the manhole-cover detection result as green rectangles, the third column data
shows the manhole-cover outline extraction result as blue circles, and the fourth column depicts the
superimposed result based on the laser points. It can be seen that the proposed method effectively
extracts the location of the manhole covers and their outline based on the intensity images generated
from the laser points.
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Table 2. Manhole cover detection results.

Ground Points Cover Detection Outline Detection Superimposed Result
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(Laser Data) 
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Failures 
(Laser Data) 

Failures 
(Images) 

A 122 104 108 6 8 
B 155 130 135 4 7 
C 63 55 58 3 4 
D 210 174 190 6 9 
E 139 115 105 4 6 

We computed the completeness (CPT), correctness (CRT), and F-measure [3] to assess the 
success of the extracted result via the proposed method against manual inspection. CPT indicates the 
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The manhole cover extraction from the images consists of first generating the ground orthophotos
from the images, with the manhole cover extraction and detection carried out using the method
described in the Section 2.2.3. The high degree of agreement between the laser-scanned point clouds
and image data yields overlaps in the extraction results that need to be removed. In total, 7015 positive
samples and 8185 negative samples are generated from the ground orthophotos. The robustness of the
proposed method is verified by the data from road samples A–E, as shown in Figure 10. The blue points
are the extraction results from the point clouds, the green points are the results from the image data,
and the magenta points are the undetected covers. Numerous overlaps are present in the extracted
structures detected by the two data sources, as seen in Figure 10. However, some manhole covers can
only be extracted from the intensity-based images, while others can only be extracted from the ground
orthophotos. Improved results are therefore achieved by merging the extraction outcomes of the two
data sources and removing the repeated extracted results, as given in Table 3.
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Table 3. Detection results from the laser data and ground images.

Zone Total Correct
(Laser Data)

Correct
(Images)

Failures
(Laser Data)

Failures
(Images)

A 122 104 108 6 8
B 155 130 135 4 7
C 63 55 58 3 4
D 210 174 190 6 9
E 139 115 105 4 6

We computed the completeness (CPT), correctness (CRT), and F-measure [3] to assess the success of
the extracted result via the proposed method against manual inspection. CPT indicates the percentage
of detected manhole covers. CRT is the percentage of correct manhole covers detected. CPT = CA/TA,
CRT = CA/TC, and F-measure = 2 × (CPT × CRT)/(CPT + CRT), where CA is the correct number of
extracted manhole covers, TA is the total number of manhole covers via manual inspection, and TC
is the total number of extracted manhole covers. These assessment results are compared with the
previous method [28] based on the HOG descriptor without symmetry features, which extracted
manhole covers by using laser points, with the results given in Table 4.

Table 4. Manhole cover assessment result comparison between the previous method [20] and
proposed method.

Previous Method [28] Proposed Method

CRT CPT F-Measure CRT CPT F-Measure

A 0.9455 0.8525 0.8966 0.9487 0.9590 0.9538
B 0.9701 0.8387 0.8997 0.9720 0.9226 0.9467
C 0.9483 0.8730 0.9091 0.9483 0.9206 0.9342
D 0.9667 0.8286 0.8923 0.9703 0.9619 0.9661
E 0.9664 0.8273 0.8915 0.9697 0.9496 0.9595

AVG 0.9594 0.8440 0.8978 0.9618 0.9427 0.9522

By combining the laser points and images as outlined in the proposed method, the average
CRT, CPT, and F-measure for manhole cover detection are 96.18%, 94.27%, and 95.22%, respectively.
When compared with our previous method [28], which used only laser points, the CPT, CRT,
and F-measure are all higher for the proposed method, which employs a combination of laser points
and images. Although the proposed method obtained better extraction results, it failed to extract 5.37%
of the manhole covers, the laser points incorrectly extracted 3.38% of the manhole covers, and the
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ground images incorrectly extracted 4.93% of the manhole covers. Four key factors likely influence
these manhole-cover extraction failures: (1) the integrity of the data, as vehicles, pedestrians, and other
obstructions cause unavoidable data loss in both the laser point and image acquisitions; (2) laser point
density, which is related to the range, angle, long-term vehicle rolling, heat, weather, and other factors,
with a higher density of laser points yielding a higher extracted result; and (3) interference from ground
objects that are similar to the manhole covers (e.g., bicycle marks and wheels), as these objects can
easily be mistaken for manhole covers. The following three measures can be incorporated to improve
the extracted result. First, a vehicle speed limit should be enforced to avoid reducing the point cloud
density due to a fast-travelling vehicle. Second, the data acquisition should be performed during the
daytime during non-peak traffic hours to improve the work efficiency and integrity of the acquired
data. Finally, the interference of similar ground objects can be addressed by either adding the negative
samples containing these interfering features or employing a deep-learning method that participates in
the combined laser point/ground image-based manhole cover extraction.

It can be concluded from the above discussion that the two data sources acquired with the
modified mobile LiDAR system presented in this study and processed via the proposed method
could effectively realize the automated detection of manhole covers to obtain a better extraction result.
The complementary advantages of the two data sources can improve the accuracy and completeness
of the results. Better extraction results would also validate the effectiveness and feasibility of the
proposed modification scheme.

3.3. Manhole Cover Identification

Manhole cover identification includes manhole maintenance and ownership information
acquisition, which is achieved based on the extraction results presented in Section 2.2.4. Manhole cover
maintenance is determined from the elevation fluctuations of the manhole cover, its rim, and the
surrounding areas, which require the manhole cover outline. We can obtain the manhole cover
outline via the proposed method, with the extracted outline result computed from the intensity-based
images (Figure 11a) and determined by superimposing the computed outlines on the point cloud
data (Figure 11b).
Sensors 2019, 19, x FOR PEER REVIEW  15 of 17 

 

 
(a) 

 
(b) 

Figure 11. Detection of the manhole cover outline. (a) Ground image examples. (b) Laser data 

examples. 

The elevation fluctuations of the manhole cover, its rim, and the surrounding areas can be 

calculated based on the manhole cover outline to identify whether the manhole cover requires 

maintenance or replacement. Ownership information is also acquired based on the manhole 

location, with the aid of the real-time amplification function in the SWDY program, which has been 

developed by our team. Each real-time manhole-cover photo is obtained directly from its respective 

location to acquire the ownership information, which can also be used to verify the correctness of the 

test results. The manhole cover diameter is calculated from the outline data, where the diameter is 

generally either 60 or 80 cm. The number of covers with abnormal elevations in road sections A–E is 

determined by statistical analysis. Two damaged manhole covers, 10 sinking manhole covers, 13 

sinking manhole rings, and 18 broken manhole covers, which comprise 0.29, 1.45, 1.88, and 2.61% of 

the total manholes on these five road sections, respectively, are identified. This indicates that 6.24% 

of the manholes require maintenance. The experimental result highlights the potential to conduct 

on-site maintenance directly. The proposed method enabled the identification of 10,399 manhole 

covers from the point-cloud laser data and 9759 from the ground image data for the entire 

experimental dataset. The manual detection of such a large number of covers would entail a heavy 

workload, high risk, and low detection accuracy. 

The modified acquisition system presented in this study, and the corresponding manhole-cover 

detection method transforms the surveying, data processing, inspection, and maintenance of 

manhole covers into a primarily office-based endeavor that improves both work efficiency and 

detection accuracy, while also reducing the risk generally associated with road works. The manhole 

cover detection and identification procedure conducted in this study has the potential to improve 

the management and maintenance of manhole covers for road administration purposes.  

Therefore, the developed system and the proposed method are effective in the detection and 

identification of manhole covers. This system is able to acquire an abundance of ground data, 

including high-density, high-precision laser-scanned point clouds and high-resolution ground 

images. The manhole cover information extracted via the proposed method aids in the data 

collection, inquiry, inspection, and statistical analysis of resources for road administration purposes. 

Furthermore, our improved acquisition scheme and extraction method are not limited to the 

extraction of manhole covers, but can also be applied to other ground features, such as road 

markings and road edge boundary.  

Compared to traditional manual methods, this method improves the automation, efficiency, 

accuracy, and security. However, this method also has some limitations. For shaded manhole covers 

in grass, it is easy to be shaded in the acquisition of manhole cover, leading to the failure of 

extraction and identification of the well cover. This needs to be combined with manual detection 

methods. 

4. Conclusions 

Figure 11. Detection of the manhole cover outline. (a) Ground image examples. (b) Laser data examples.

The elevation fluctuations of the manhole cover, its rim, and the surrounding areas can be
calculated based on the manhole cover outline to identify whether the manhole cover requires
maintenance or replacement. Ownership information is also acquired based on the manhole location,
with the aid of the real-time amplification function in the SWDY program, which has been developed
by our team. Each real-time manhole-cover photo is obtained directly from its respective location to
acquire the ownership information, which can also be used to verify the correctness of the test results.
The manhole cover diameter is calculated from the outline data, where the diameter is generally either
60 or 80 cm. The number of covers with abnormal elevations in road sections A–E is determined by
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statistical analysis. Two damaged manhole covers, 10 sinking manhole covers, 13 sinking manhole
rings, and 18 broken manhole covers, which comprise 0.29, 1.45, 1.88, and 2.61% of the total manholes
on these five road sections, respectively, are identified. This indicates that 6.24% of the manholes require
maintenance. The experimental result highlights the potential to conduct on-site maintenance directly.
The proposed method enabled the identification of 10,399 manhole covers from the point-cloud laser
data and 9759 from the ground image data for the entire experimental dataset. The manual detection
of such a large number of covers would entail a heavy workload, high risk, and low detection accuracy.

The modified acquisition system presented in this study, and the corresponding manhole-cover
detection method transforms the surveying, data processing, inspection, and maintenance of manhole
covers into a primarily office-based endeavor that improves both work efficiency and detection accuracy,
while also reducing the risk generally associated with road works. The manhole cover detection and
identification procedure conducted in this study has the potential to improve the management and
maintenance of manhole covers for road administration purposes.

Therefore, the developed system and the proposed method are effective in the detection
and identification of manhole covers. This system is able to acquire an abundance of ground
data, including high-density, high-precision laser-scanned point clouds and high-resolution ground
images. The manhole cover information extracted via the proposed method aids in the data
collection, inquiry, inspection, and statistical analysis of resources for road administration purposes.
Furthermore, our improved acquisition scheme and extraction method are not limited to the extraction
of manhole covers, but can also be applied to other ground features, such as road markings and road
edge boundary.

Compared to traditional manual methods, this method improves the automation, efficiency,
accuracy, and security. However, this method also has some limitations. For shaded manhole covers in
grass, it is easy to be shaded in the acquisition of manhole cover, leading to the failure of extraction
and identification of the well cover. This needs to be combined with manual detection methods.

4. Conclusions

A sequential exposure scheme using multiple cameras in a symmetric arrangement is proposed
as a modification and upgrade to the original acquisition design for manhole cover detection.
Careful equipment model selection and installation are undertaken to meet the requirements for the
effective detection of manhole covers. High-density, high-precision laser-scanned point clouds and
ultra-high-resolution ground images are acquired with this modified system, which also makes the
extraction of manhole cover conditions and ownership information possible. Modified HOG and
SVM algorithms are applied to the intensity-based ground images and orthophotos generated from
point clouds and ground images, respectively, to obtain the location, ownership, and state-of-health
information of the manhole covers. The detection average accuracy is 96.18%, data completeness is
94.27%, and F-measure is 95.22%. The method described in this paper is highly efficient, accurate,
and safe. It has been practically applied, and is currently used on the roads of Beijing to inspect
and analyze manhole covers thoroughly. This method provides strong technical support in the data
acquisition, surveying, and inspection of manhole covers in road administration works, and also
promotes the intelligent construction and management of urban infrastructure.

While satisfactory experimental results and verifications are obtained using the manhole cover
detection and identification methodology presented here, there is still room for improvement in the
following areas. Deep learning should be integrated into the detection and extraction of the manhole
cover information to improve the extraction results further. Future research should also implement
automatic manhole-cover identification, with a focus on any unique identifiers that are engraved on the
covers. Furthermore, data collection during peak traffic times should be avoided to reduce shielding
and data gaps.
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