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Abstract: In classification of satellite images acquired over smallholder agricultural landscape with
complex spectral profiles of various crop types, exploring image spatial information is important.
The deep convolutional neural network (CNN), originally designed for natural image recognition
in the computer vision field, can automatically explore high level spatial information and thus is
promising for such tasks. This study tried to evaluate different CNN structures for classification of
four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1
(meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without
pooling, with max pooling and with average pooling, were evaluated and compared with random
forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for
each pooling strategy. The training and testing samples were systematically sampled from reference
land cover maps to ensure sample distribution proportional to the reference land cover occurrence
and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in
the four study areas showed that the best pooling strategy was the average pooling CNN and that the
CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher
kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate
better the spectrally similar crop types by effectively exploring spatial information. CNN was still
significantly outperformed random forest using training samples that were evenly distributed among
classes. Furthermore, future research to improve CNN performance was discussed.

Keywords: deep convolutional neural network (CNN); high spatial resolution; GaoFen-1; smallholder
agriculture

1. Introduction

Land cover plays an important role in human-environment interactions [1–4] including nature
resource management, precision agriculture, ecosystem service modelling, climate change and urban
planning, and has been recognized as an essential climate variable by the Global Climate Observing
System (GCOS). Land cover mapping was undertaken since the first acquisition of satellite images [5].
Over the last several decades, land cover mapping has evolved from low to high spatial resolution [6,7],
from local to global scale [8,9] and from single to time series image utilization [10,11]. This is attributed
to the advancements in open data policy [12], analysis ready data [13], and machine learning and
computation facilities [4].
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The state-of-the-art of remote sensing image classification is to use non-parametric supervised
classifiers, e.g., support vector machine [14] and random forest [15], trained with collected land cover
samples. However, these machine learning classifiers need hand-engineered features to achieve good
performance. Recently, deep convolutional neural network (CNN), due to its capability to extract
features from raw data (end-to-end training), has significant advantage [16] in natural image scene
classification in the computer vision field and has been proven in land cover mapping [17–20] (Table 1).
The deep CNN originates from deep neural network, which has been in conception for decades [21] but
only trainable and applicable after recent breakthrough in understanding of deep neural network [22].
The deep CNN has better representative capability as it usually consists of several to hundreds of
feature layers linked by millions of learnable parameters to map the input predictors to the output class
labels [16]. Convolution in CNN is usually applied on an image patch rather than a single pixel so
that the high level spatial features are extractable. A convolution layer is usually followed by pooling
operation, which combines several nearby features to a unique feature, to reduce noise, improve CNN
efficiency [23], and keep scale and translational invariance features [24]. The popular pooling operation
is max or average pooling [23], i.e., taking the max or average value of the nearby features as the
pooling output.

Deep CNN has been used for detecting anomalies [25] and weeds [26] in agricultural field and for
crop specie recognition [27] among many other agricultural applications [28]. A few studies have used
deep CNN for cropland classification with median [29,30] and high [31,32] spatial resolution satellite
images. The agricultural landscape is known to be difficult to classify reliably [33–35] especially
smallholder crop areas [36–38] with field size smaller than 5 ha [36]. The smallholder agricultural
landscape is mainly distributed in developing countries including China [39,40]. To map these
heterogonous landscapes, effectively exploring spatial information is the key as many different crop
types with similar spectral pattern coexist. The CNN is good at exploring spatial information, but the
CNN structure parameters need to be carefully tuned to maximize its performance. This is because the
optimal CNN structure may depend on the satellite image characteristics, input image patch size and
training sample characteristic, e.g., Table 1 lists the CNN structure variety in the literature for remote
sensing image classification.

Table 1. Pooling operation, input image patch size and layer number in supervised convolutional neural
network (CNN) used in the literature for remote sensing image land cover classification. Only layers
with learnable parameters are counted following Simonyan and Zisserman [41] (e.g., pooling operation
is not a layer).

Literatures Pooling Input Image Patch Size Layer Number

Chen et al. [42] max 27 × 27 7

Zhao and Du [43] max 32 × 32 1, 2, 3, 4, 5

Kussul et al. [29] max 7 × 7 4

Guo et al. [44] average 18 × 18 4

Li et al. [45] no 5 × 5 4

Mei et al. [46] no 3 × 3; 5 × 5 3

Santara et al. [47] no 3 × 3 5, 6, 7

Yang et al. [48] max 21 × 21 4

Wu and Prasad [49] max 11 × 11 4

Hamida et al. [50] max 3 × 3; 5 × 5; 7 × 7 5, 7, 9, 11

Ji et al. [31] average; max 8 × 8 5

Xu et al. [51] max 7 × 7; 9 × 9; 11 × 11 4

Liu et al. [52] max 9 × 9 4

Song et al. [53] average 23 × 23; 25 × 25; 27 × 27 26; 32

Hao et al. [54] max 7 × 7 5
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Table 1. Cont.

Literatures Pooling Input Image Patch Size Layer Number

Zhong et al. [55] average 3 × 3; 5 × 5; 7 × 7; 9 × 9; 11 × 11 12

Zhang et al. [56] max 16 × 16 5

Yang et al. [57] no 7 × 7 5; 10

Mahdianpari et al. [58] max 30 × 30 and resampled to the input size for
each CNN designed in computer vision field 16~152

Gao et al. [59] max 5 × 5; 7 × 7; 9 × 9 4

Karakizi et al. [60] max 29 × 29 4

Wei et al. [61] no 3 × 3 9

Paoletti et al. [62] average 11 × 11 25

Wang et al. [63] average 5 × 5; 7 × 7; 9 × 9; 11 × 11; 13 × 13 12

Li et al. [64] maximum overlap 14 × 14 4

The objectives of this study are to (1) apply the deep CNN to classify high spatial resolution
images acquired over smallholder agricultural landscapes and (2) to compare CNN with the established
random forest classifier. This study uses pan-sharpened GaoFen-1 images with 2 m spatial resolution
over four areas in Heilongjiang, China with smallholder agriculture. The reference land cover maps are
interpreted from 2 m GaoFen-1 images and systematically sampled for training and testing. The CNN
structure parameters are tuned with different pooling strategies and with different complexities.
The classification results are evaluated using conventional confusion matrix derived from the testing
samples and visual comparison of the classification maps.

2. Data

2.1. Study Areas

The study areas are in Heilongjiang province, which is located in the northeast agricultural area
of China (Figure 1). The agricultural land accounts for 83.5% of the 473,000 km2 province land area.
Four study areas including Dangnai village in Dorbod Mongol autonomous county (study area 1),
Jufu village in Qing’an county (study area 2), Jiuwang village in Qing’an county (study area 3) and
Changhe village in Bin county (study area 4) were chosen. The study area 1 is mainly covered by
wetland and maize, study areas 2 and 3 by rice, and study area 4 by maize.
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2.2. GaoFen-1 Data

The panchromatic/multispectral data from the China GaoFen-1 satellite were used in this study.
The GaoFen-1 was launched in 2013 and provides 10-bit radiometric resolution panchromatic and
multispectral data with 2 and 8 m spatial resolutions, respectively (Table 2). The detailed characteristics
of GaoFen-1 data are summarized in Table 2.

Table 2. Characteristics of panchromatic/multispectral sensors aboard on the GaoFen-1 satellite.

Band Wavelength (nm) Spatial Resolution (m) Re-Visiting Period (Days) Swath (km)

Panchromatic 450–900 2

4 60
Blue 450–520 8

Green 520–590 8
Red 630–690 8

Near infrared 770–890 8

In this study, four GaoFen-1 panchromatic/multispectral images (Figure 2) over the four study
areas were collected on 22 August, 13 August, 13 August and 17 August, 2016, respectively.
All the 8 m four band multispectral images were pan-sharpened to 2 m using the well-established
Gram–Schmidt method which is known to have moderate computational load and good spatial
sharpening capability [65,66]. The images were mainly acquired in August considering that the harvest
time of the main crops (wheat, rice, maize, etc.) in Northeast China is in September and October.
They were subsequently cut according to the village administrative boundaries of the four study areas
(Figure 2).
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2.3. Reference Land Cover Maps for Training and Testing

The reference land cover maps (Figure 3) were derived by visual interpretation of the 2 m
pan-sharpened GaoFen-1 images with interpreter’s field survey knowledge [67]. For each GaoFen-1
image, three sample plots each with 200 × 200 m pixels were randomly selected and visited for land
cover type identification by the interpreter in order to gain the necessary knowledge on the GaoFen-1
image characteristics of different land cover types. The entire study area image was then manually
interpreted based on the knowledge. There are 14 land cover types including maize, rice, wheat,
soybean, mung bean, vegetable, orchards, forest, grassland, water, wetland, road, residential and bare
land. The small patch crop landscapes are evident in the reference landscapes (Figure 3).
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The box covering 400 × 400 2 m pixels in each study area is examined in detail in the results section.

The training and testing samples were systematically collected from the reference land cover
maps to make sure the proportional distribution among the classes related to the proportion that they
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occur in reality. Keeping class proportions in training samples has been shown with more reasonable
classification accuracies [10,68]. The training and testing pixels cannot be very close to avoid that the
spatial correlation may boost the testing data classification accuracy. They cannot be very far away to
ensure enough training samples for the CNN model. Consequently, the reference land cover maps
were sampled every five pixels in column and row directions. The sampled pixels in the pool were
randomly and equally divided into training and testing samples. The training and testing sample
numbers are shown in Table 3.

Table 3. Number of training and testing 2 m pixel samples in four study areas. The samples were
derived by systematically sampling from the reference land cover maps (Figure 3) and randomly split
into training and testing.

Classes
Study Area 1 Study Area 2 Study Area 3 Study Area 4

Training Testing Training Testing Training Testing Training Testing

Maize 28,345 28,345 13,406 13,406 2574 2575 50,067 50,068
Rice 239 239 138,149 138,149 75,530 75,531 5396 5396

Wheat 1878 1879 720 721 none none 139 139
Soybean none none 4458 4458 none none 411 411

Mung bean 1419 1420 none none none none none none
Vegetable 550 550 190 191 1505 1505 380 381
Orchards none none 1172 1173 none none none none

Forest 1565 1565 9737 9737 2192 2192 3281 3281
Grassland 415 415 1325 1325 1048 1049 692 693
Wetland 352,942 352,943 none none none none none none

Water none none 11,033 11,034 2080 2081 2915 2916
Residential 3677 3678 3205 3206 4348 4348 2121 2121

Road 5271 5271 2753 2753 1435 1435 3330 3331
Bare land 957 958 799 800 none none 1038 1038

Total 397,258 397,263 186,947 186,953 90,712 90,716 69,770 69,775

3. Methods

3.1. CNN Overview

CNN usually consists of multiple (several to more than one hundred) stacked layers each
containing a certain number of features [16] (Figure 4) derived from the previous layer features by
nonlinear transformation. Using these feature layers, the CNN is to convert the input K × K × D
(K being the spatial neighbor size and D being the spectral band number, i.e., D = 4 in this study)
image patch to one single class label of the center pixel. Each layer feature is derived from the previous
layer features through mathematical transformation, which nominally contains a linear operation with
learnable weight and bias parameters and a fixed non-linear activation function. The convolution
layer uses convolution kernel (the kernel values are the learnable weights) to extract information from
a small region’s neighbor pixels and contain many kernels to extract different feature information.
The last convolution layer is usually followed by fully connected layers to extract more abstract features.
These final, fully connected layer features are fed into a softmax function for classification. In such a
way, the loss function can be defined using training samples with known land cover labels and the
CNN training is to find the optimal learnable parameters to minimize the loss function. In this study,
the cross-entropy loss function is used:

loss = −
C∑

i=1

{(y == i) ∗ log
eai∑C

i=1 eai
}, (1)

where C is the total number of classes in the classification legend indexed by i, y is the ground truth
label, ai is the ith feature value of the final fully connected layer with C features. This loss function is
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minimized using a mini-batch gradient descent method where each gradient descent iteration only
uses a small portion of the training samples to prevent overfitting and to save computation load [69].Sensors 2019, 19, 2398 7 of 19 
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The convolution is formulated as below,
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ω
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where vxy
l,t stands for the output at position (x, y) of the tth feature map at the lth layer, f denotes the

non-linear activation function, blt refers to the bias term, and k indexes over the set of feature maps of
the (l-1)th layer, Hl,t and Wl,t are the height and width of tth kernel of lth layer and are indexed by p
and q, respectively, ωpq

ltk is the convolution kernel value at position (p, q) of the tth feature map in the lth
layer connected to the kth feature map in the (l-1)th layer. The recently developed rectified linear units
(ReLU) [70] is used as f in this study:

f (x) = max(0, x). (3)

For the edge pixels in the input image patch, the convolution is usually conducted by enlarging
the input images with zero values (i.e., zero padding). Convolutions with zero padding can keep the
input feature map size unchanged and lose little information.

In the CNN used for object recognition [71], pooling is applied after convolution to derive more
abstract and scale invariant features [24], and to reduce noise and avoid overfitting [23]. The pooling
can resize the input feature maps spatially. For example, a commonly used max pooling with 2 × 2 size
and 2 × 2 stride will go through the input feature map spatially along both width and height directions
and take the maximum value of the 2 × 2 features in the input feature map Figure 5(middle). This will
only keep a quarter of the input features and discard 75% of them.

3.2. CNN Structure Parameter Tuning

The input patch image size was set to 7 × 7 (K = 7) as many of the previous studies (Table 1)
used such window to balance the computation efficacy and the classification accuracy. Moreover,
larger window size may overly smooth the classification results since the classification is implemented
on a sliding window basis. The convolution kernel size was set as 3 × 3 and the pooling size and stride
size were set as 2 × 2 following previous studies [16].

Six CNN structures were designed using two different numbers of learnable parameters each
with three different pooling strategies. The three different pooling strategies were (Figure 5): (1) no
pooling was used and the feature map size was not reduced after convolution, for example, the input
7 × 7 image will become a 7 × 7 feature map no matter how many layers of 3 × 3 convolution were
applied (Table 4; Figure 5(left)); (2) max pooling was used and feature map size was reduced after
convolution and pooling, for example, the input 7 × 7 image will result in a 4 × 4 feature map after a
3 × 3 convolution and a 2 × 2 stride pooling and will result in a 1 × 1 feature map after three 3 × 3
convolution layers each followed by a 2 × 2 stride pooling (Table 4; Figure 5(middle)); and (3) same as
(2) but using average pooling (Table 4; Figure 5(right)). Five layer CNN consisting of three convolution
layers and two fully connected layers were used in this study. This is because pooling strategies (2)
and (3) can have a maximum of three convolution layers (i.e., three convolution layers with 2 × 2 stride
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pooling will lead to a 1 × 1 feature map) and the convolution layers are usually followed by two fully
connected layers.Sensors 2019, 19, 2398 8 of 19 
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Two CNN settings with different numbers of learnable parameters (~70,000 and ~290,000 in
Table 4) representing different complexity were used to examine the CNN structure complexity effect.
Each setting has very similar number of learnable parameters (i.e., similar complexity) so that pooling
strategies in each set were fairly compared.

Table 4. Six CNN structures include two settings with significantly different numbers of learnable
parameters (~70,000 and ~290,000) each using three pooling strategies. The number of feature map (in
the bracket) is different for CNN with and without pooling to guarantee that their total numbers of
learnable parameters (n) are very similar. Con and FC indicate the convolution and fully connected
layer, respectively. The two numbers (with symbol ×) in each cell outside the bracket indicate the
convolution kennel size.

CNN1 with ~70,000 Learnable Parameters CNN2 with ~290,000 Learnable Parameters

No Pooling Max Pooling Avg Pooling No Pooling Max Pooling Avg Pooling

n 79,504~79,640 77,011~77,255 77,011~77,255 296,208~296,472 290,971~291,455 290,971~291,455

Input 7 × 7 × 4 input reflectance

Con layer 1 3 × 3 (32) 3 × 3 (59) 3 × 3 (59) 3 × 3 (64) 3 × 3 (119) 3 × 3 (119)
Con layer 2 3 × 3 (32) 3 × 3 (59) 3 × 3 (59) 3 × 3 (64) 3 × 3 (119) 3 × 3 (119)
Con layer 3 3 × 3 (32) 3 × 3 (59) 3 × 3 (59) 3 × 3 (64) 3 × 3 (119) 3 × 3 (119)

FC layer 1 (32) (64)

FC layer 2 (8~12: 11 for study area 1, 12 for study area 2, 8 for study area 3 and 11 for study 4)

3.3. CNN Training Parameterization

In this study, all the CNNs were trained using the optimal hyperparameters for fair comparison.
Following the convention, the input patch reflectance was normalized for each band by being subtracted
by mean and divided by standard deviation. The CNN model was regularized using the weight decay
method with coefficient of 0.001. The mini-batch size was set as 256. The learning rate started from 0.1
and decreased by 10 times when the validation sample accuracy stopped improving. The validation
sample accuracy was calculated and compared every 100 mini-batch gradient descent iterations to
check accuracy improvement. In the whole training process, decreasing the learning rate three times
can achieve maximum accuracy (i.e., the learning rate changes from 0.1, 0.01, 0.001 to 0.0001). Following
He et al. [72], the validation samples occupied 4% of the training samples (Table 3) for each study area
and were randomly selected from them. The start learning rate was different from the recommended
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value of 0.01 in Krizhevsky et al. [16] and He et al. [72] because Ioffe and Szegedy [73] suggested that
increasing the start learning rate can get better accuracy. We tested our CNN models and found that the
0.1 start learning rate did give slightly better accuracy without gradient explosion. Such high starting
learning rate can be used because the batch normalization regularization technique [73] was adopted
to normalize the features generated by each layer. The CNN was implemented using Tensorflow.

3.4. Classification Result Evaluation

The random forest classifier [15] was used as a benchmark for comparison. Random forest was
run using the same 7 × 7 image patch as input. The random forest was implemented using the R
software RANDOMFOREST package (http://www.r-project.org/). The default random forest parameter
settings were used (e.g., 500 trees, the number of features used in each split is the squared root of the
total number of features, and the number of samples in each tree is 63.2% of total without replacement).

The accuracy of the generated land cover map was validated both quantitatively and visually.
The quantitative indices were only applied to the testing samples shown in Table 3 to avoid the
accuracy boosting due to training and testing sample spatial correlation. Four quantitative indices, i.e.,
the overall accuracy, producer’s accuracy, user’s accuracy and kappa coefficient were used to evaluate
the accuracy of classification of the six CNN structures and the random forest model. In addition,
all the study areas were classified, and the land cover classification map was visually assessed by
comparing with the true color GaoFen-1 image and the reference land cover map.

Although the imbalanced training samples are on purpose used so that they are proportional
to the ground truth class occurrence [10,68], we also compared the random forest and the optimal
CNN structure using the balanced training dataset. This is to avoid that the rare classes that are
difficult to classify may bias the random forest and CNN comparison. For all the classes with more
than 4000 samples, 2000 samples were randomly selected as training and 2000 samples (different from
training) as testing. The overall accuracy, producer’s accuracy, user’s accuracy and kappa coefficient of
the testing samples were tabulated and compared.

4. Results

4.1. CNN Structure Parameter Tuning

Figure 6 shows, for each study area, the testing sample classification overall accuracies (left column)
and kappa coefficients (right column) for the six CNN models and random forest. In Figure 6, the blue
color is used to indicate which CNN model among the six gets the best performance so that CNN2-Avg
always obtains the best scores. This value is directly compared to the performances obtained by
random forest algorithm. The rank of three pooling strategies in the order of increasing performance is
no pooling, max pooling and average pooling for all the study area experiments and for both CNN
settings with significantly different numbers of learnable parameters. The accuracy advantage of
the CNN structure with average pooling over the equivalent without pooling is moderate (0.2–1.5%
higher overall accuracy and 0.01–0.04 higher kappa coefficient). This may be because the input image
patch size is much smaller and there is not much image noise that pooling can suppress. Previous
studies showed that either max or average pooling may perform best depending on the data feature
distribution [23], while results in this study revealed that the GaoFen-1 data feature distribution is more
favorable to average pooling strategy. All the CNN overall accuracies are greater than 85% indicating
good classification performance.

For each CNN setting, the three pooling operations were on purpose designed to have very similar
numbers of learnable parameters so that the three pooling operations were fairly compared. For the
best pooling operation (i.e., the average pooling), the CNN model with ~290,000 learnable parameters
(CNN2-Avg) performed slightly better than the light model with ~70,000 learnable parameters
(CNN1-Avg). This is reasonable considering that more learnable parameters give more power to CNN
representation. However, the more than four times learnable parameters only give <0.5% and <1%

http://www.r-project.org/
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improvement indicating that the CNN structure used in this study has marginal improvement space
without more complicated CNN techniques (e.g., skip connections).
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Figure 6. (a) and (b) show the six CNN model and random forest overall accuracies (a) and kappa
coefficients (b) of the study area 1 testing sample classification. (c) and (d) show the same for study area 2
testing sample classification, (e) and (f) for study area 3 testing sample classification, and (g) and (h) for
study area 4 testing sample classification. CNN1 and CNN2 indicate the first and second CNN structure
settings with ~70,000 and ~290,000 learnable parameters, respectively. -no, -max and -avg indicate no,
max and average pooling, respectively. The blue color is used to indicate the best performance CNN
model among the six models.

4.2. CNN and Random Forest Classification Accuracy Comparison

The CNN2-Avg has 2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient
(Figure 6) than the random forest using the same 7 × 7 input image patch indicting the more
powerful capability of CNN to explore high level spatial structural information. The kappa coefficient
improvement of the CNN model over the random forest model is much larger than the overall accuracy
improvement because the user’s and producer’s accuracies are better balanced in the CNN model
classification. Table 5 shows the user’s and producer’s accuracies for the four study area testing samples.
For example, the rare class wheat in Table 5a has more than 60% user’s and producer’s accuracy
difference for random forest and has only <13% difference for CNN classification. Other such rare class
examples include rice, mung bean and bare land in Table 5a, wheat, orchards and road in Table 5b,
maize, vegetable and road in Table 5c, and wheat, soybean and residential in Table 5d. Some user’s
accuracy is NaN (Not a Number, indicating no value) as the total number of pixels classified as such
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class is zero and is used as dividend for user’s accuracy calculation. Note that the producer’s accuracy
cannot be NaN as there is always some ground truth samples in the testing samples.

Table 5. Study areas 1–4 testing samples (Table 3) accuracies of the random forest and the best CNN
model (i.e., the CNN with average pooling and ~290,000 learnable parameters). The training sample
percent to the total training samples (the value is same for the testing sample in Table 3) is shown in the
bracket after class name.

Classes
Random Forest CNN2-Avg

User’s Producer’s User’s Producer’s

(a) Study Area 1 Testing Sample (Table 3)

Maize (7.14%) 89.30 54.84 85.76 85.57
Rice (0.06%) NaN 0.00 76.25 25.52

Wheat (0.47%) 80.48 17.99 77.56 64.93
Mung bean (0.36%) 82.91 6.83 64.27 44.72
Vegetable (0.14%) NaN 0.00 41.83 11.64

Forest (0.39%) 89.29 1.60 70.19 52.97
Grassland (0.10%) NaN 0.00 38.10 1.93
Wetland (88.84%) 93.38 99.57 97.77 98.98

Residential (0.93%) 77.81 44.81 81.25 75.64
Road (1.33%) 79.18 3.68 61.35 39.39

Bare land (0.24%) 98.94 58.46 91.12 82.46
Overall accuracy 93.13 96.09
Kappa coefficient 0.5586 0.8001

(b) Study Area 2 Testing Sample (Table 3)

Maize (7.17%) 79.55 35.15 67.99 62.77
Rice (73.90%) 87.17 97.30 92.98 95.62

Wheat (0.39%) 75.00 1.25 44.38 30.65
Soybean (2.38%) 82.19 67.16 80.88 78.49

Vegetable (0.10%) NaN 0.00 46.38 16.75
Orchards (0.63%) 95.97 10.14 72.71 55.41

Forest (5.21%) 58.76 57.76 72.32 72.76
Grassland (0.71%) NaN 0.00 18.39 8.30

Water (5.90%) 76.92 64.40 77.90 74.71
Residential (1.71%) 62.15 61.67 69.37 65.35

Road (1.47%) 71.92 27.82 62.53 51.22
Bare land (0.43%) 100.00 0.13 28.57 17.00
Overall accuracy 84.47 87.72
Kappa coefficient 0.5939 0.7121

(c) Study Area 3 Testing Sample (Table 3)

Maize (2.84%) 89.71 4.74 76.84 34.80
Rice (83.26%) 91.55 99.38 94.59 98.62

Vegetable (1.66%) 66.40 10.90 58.62 48.57
Forest (2.42%) 52.25 20.67 61.00 53.01

Grassland (1.16%) 25.00 0.10 34.41 13.25
Water (2.29%) 69.70 58.91 73.03 67.42

Residential (4.79%) 64.94 80.13 79.15 77.90
Road (1.58%) 89.01 22.02 65.21 47.67

Overall accuracy 88.96 91.37
Kappa coefficient 0.5463 0.6842

(d) Study Area 4 Testing Sample (Table 3)

Maize (71.76%) 94.11 97.73 96.03 97.38
Rice (7.73%) 89.36 87.82 90.96 92.90

Wheat (0.20%) 87.10 38.85 70.63 81.30
Soybean (0.59%) 88.40 63.02 92.57 84.91

Vegetable (0.54%) NaN 0.00 17.98 8.40
Forest (4.70%) 51.57 64.68 68.56 68.12

Grassland (0.99%) 86.36 5.48 35.18 21.07
Water (4.18%) 94.89 80.86 93.95 92.15

Residential (3.04%) 62.91 87.32 70.98 75.53
Road (4.77%) 52.20 33.86 61.69 56.32

Bare land (1.49%) 38.01 13.58 37.30 33.82
Overall accuracy 88.53 90.52
Kappa coefficient 0.7464 0.7959
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4.3. CNN and Random Forest Land Cover Map Comparison

Figures 7–10 show the 8 m GaoFen-1 true color image, 2 m pan-sharpened image, reference
land cover map, two land cover maps produced by the best CNN structure (CNN2 with average
pooling) and the random forest models, for the four 400 × 400 2 m pixel example areas shown in
Figure 3. The pan-sharpened images have more spatial details which are favorable for small crop field
classification. The random forest classification maps are inferior to (i.e., less resembling to the reference
land cover maps than) the CNN classification maps. This is because the end-to-end CNN training
process can extract spatial information which is helpful to classify the spectrally similar classes, such as
the maize and grassland classes in Figure 7, rice and wheat classes in Figure 8, rice and maize classes in
Figure 9, and road and bare land classes in Figure 10. Due to the same reason, the linear features (e.g.,
roads and roadside forests in Figures 7, 9 and 10) are more evident in the CNN classification maps.
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Figure 7. Study area 1 example 8 m GaoFen-1 true color image (the 400 × 400 2 m pixel box in Figure 3),
2 m pan-sharpened image, and three 2 m land cover maps (the reference land cover map, the land cover
map generated by CNN model with average pooling and ~290,000 learnable parameters, and the land
cover map generated by the random forest model). The two true color images are displayed using the
same stretch.
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4.4. CNN and Random Forest Accuracy Comparison for Balanced Training Data 

All the previous results were derived from the training samples which are proportional to the 
land cover occurrence in the reference land cover maps. To examine the training sample balance 
effect, in this section, the CNN and random forest were trained using the sample data balanced 
among different classes, i.e., same number of training samples for all the classes. Table 6 lists the 
balanced testing dataset classification accuracies for the four study areas. The random forest is still 
inferior to the CNN model by 3.8–9.1% overall accuracy and 0.04–0.10 kappa coefficients. However, 
the overall accuracy of CNN model is only 78–85% that is lower than the imbalanced training dataset 
(Table 5). This is because overall accuracy may be boosted for imbalanced dataset by simply 
classifying most pixels as the majority classes. Similarly, the user’s and producer’s accuracies for 
CNN are more balanced than that for random forest.  

Table 6. Balanced sample accuracies of the random forest and the CNN2-Avg model for study areas 
1–4 samples data. A total of 2000 training and 2000 testing samples were randomly selected from 
Table 3 (class with samples <4000 was not used). The training sample percent to the total training 
samples (the value is same for the testing sample) is shown in the bracket after class name. 

Classes 
Random Forest CNN2-Avg 

User’s Producer’s User’s Producer’s 
(a) Study Area 1 Testing Sample 

Maize (25.00%) 84.38 82.95 85.62 88.40 
Wetland (25.00%) 76.74 72.60 81.88 79.30 

Residential (25.00%) 83.21 86.00 89.66 87.10 
Road (25.00%) 64.92 67.35 72.80 74.80 

Overall accuracy 77.26 82.40 
Kappa coefficient 0.6963 0.7653 

(b) Study Area 2 Testing Sample 
Maize (14.29%) 74.92 57.35 71.18 65.95 
Rice (14.29%) 69.43 80.05 74.50 79.45 

Soybean (14.29%) 83.25 89.20 88.73 90.90 

Figure 9. Same as Figure 7 but for the example 400 × 400 pixels in the box area in study area 3 (Figure 3).
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4.4. CNN and Random Forest Accuracy Comparison for Balanced Training Data

All the previous results were derived from the training samples which are proportional to the
land cover occurrence in the reference land cover maps. To examine the training sample balance
effect, in this section, the CNN and random forest were trained using the sample data balanced among
different classes, i.e., same number of training samples for all the classes. Table 6 lists the balanced
testing dataset classification accuracies for the four study areas. The random forest is still inferior to
the CNN model by 3.8–9.1% overall accuracy and 0.04–0.10 kappa coefficients. However, the overall
accuracy of CNN model is only 78–85% that is lower than the imbalanced training dataset (Table 5).
This is because overall accuracy may be boosted for imbalanced dataset by simply classifying most
pixels as the majority classes. Similarly, the user’s and producer’s accuracies for CNN are more
balanced than that for random forest.

Table 6. Balanced sample accuracies of the random forest and the CNN2-Avg model for study areas 1–4
samples data. A total of 2000 training and 2000 testing samples were randomly selected from Table 3
(class with samples <4000 was not used). The training sample percent to the total training samples
(the value is same for the testing sample) is shown in the bracket after class name.

Classes
Random Forest CNN2-Avg

User’s Producer’s User’s Producer’s

(a) Study Area 1 Testing Sample

Maize (25.00%) 84.38 82.95 85.62 88.40
Wetland (25.00%) 76.74 72.60 81.88 79.30

Residential (25.00%) 83.21 86.00 89.66 87.10
Road (25.00%) 64.92 67.35 72.80 74.80

Overall accuracy 77.26 82.40
Kappa coefficient 0.6963 0.7653

(b) Study Area 2 Testing Sample

Maize (14.29%) 74.92 57.35 71.18 65.95
Rice (14.29%) 69.43 80.05 74.50 79.45

Soybean (14.29%) 83.25 89.20 88.73 90.90
Forest (14.29%) 60.66 70.85 73.16 73.85
Water (14.29%) 82.09 62.35 73.89 74.15

Residential (14.29%) 75.58 79.70 85.44 85.10
Road (14.29%) 63.23 65.00 77.25 75.20

Overall accuracy 70.73 77.80
Kappa coefficient 0.6742 0.7410
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Table 6. Cont.

Classes
Random Forest CNN2-Avg

User’s Producer’s User’s Producer’s

(c) Study Area 3 Testing Sample

Maize (20.00%) 76.43 67.95 80.57 79.00
Rice (20.00%) 65.60 72.75 73.49 76.50

Forest (20.00%) 58.58 67.45 73.27 75.10
Water (20.00%) 82.36 69.80 83.14 80.60

Residential (20.00%) 78.61 78.85 86.28 84.90
Overall accuracy 70.08 79.22
Kappa coefficient 0.6420 0.7403

(d) Study Area 4 Testing Sample

Maize (16.67%) 92.19 86.70 89.74 89.70
Rice (16.67%) 93.00 89.65 91.78 92.70

Forest (16.67%) 61.89 74.80 74.81 72.75
Water (16.67%) 96.06 81.70 93.47 91.60

Residential (16.67%) 83.88 92.65 86.85 89.50
Road (16.67%) 66.47 61.95 72.85 73.40

Overall accuracy 81.15 84.94
Kappa coefficient 0.7749 0.8193

5. Discussion

CNN has been used for land cover classifications using remote sensing data, in particular
hyperspectral data [42,43,48,49,64]. In this study, CNN was evaluated for mapping smallholder
agriculture considering the unique spatial pattern of the smallholder agricultural landscapes. The CNN
structures with three different pooling strategies were carefully designed with very similar numbers of
learnable parameters and they were trained using the same optimal hyperparameters. The classification
results showed that the pooling is still necessary even for small input image patch (i.e., 7 × 7 input
image patch) because the small patch size input image still contains a moderate level of irrelevant
information that the pooling can suppress. The average pooling performed better than max pooling
because the max pooling is more suitable for separation of features that are very sparse [23] which is
not the case for a small 7 × 7 input image patch.

In this study, the simple Gram–Schmidt method was used to pan-sharpen the 8 m multispectral
images. Its adoption can be considered a reasonable trade-off between performance and easy-to-use.
The Gram–Schmidt method, in fact, has performance that can be considered acceptable, even though it
is not an up-to-date method and other pansharpening methods produce better scores [74–77]. Anyway,
its adoption presents undeniable advantages in terms of easy-to-use because Gram–Schmidt is included
in commercial software.

The CNN classifications have better accuracy than the random forest classifications as the CNN
can explore the high level spatial information. However, there is still some pepper and salt effect in the
CNN land cover classification maps. They occur mostly in the heterogeneous area, e.g., the residential
and maize mixed area in Figure 8 and the roads and roadside forests mixed area in Figure 10. This is
because in such heterogeneous area with two land cover classes distributed in a checkerboard pattern,
all pixels may have very similar spatial context whatever the pixel class is. To handle such issue,
Zhang et al. [56] and Pan and Zhao [78] have tried to fuse CNN and Markov based classification results
at the decision level. Other options to handle this may use multi-scale CNN [44,79], object based
CNN [80,81] and fully convolutional network [82,83].

The CNN had better performance than random forest for both imbalanced and balanced training
datasets. In the imbalanced dataset, the classes with rare samples are difficult to classify and random
forest easily misclassified these classes. The CNN performed much better for classes with rare samples
and has a very high kappa coefficient improvement compared to the random forest. Furthermore,
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in this study the CNN loss function is defined as the average loss function of all the training samples.
Training sample loss function can be easily weighted based on their classes to better classify specific
classes. This may be useful when user’s accuracy is more or less important than the producer’s accuracy,
for example, in cloud detection, omission error has a more severe effect on time series application than
commission error [84].

6. Conclusions

This study evaluated CNN for remote sensing image classification of smallholder agricultural
landscape using pan-sharpened GaoFen-1 satellite data with 2 m spatial resolution. Four study
areas in Heilongjiang province were selected with reference land cover maps generated by manual
interpretation. Pixels were systematically sampled from the reference land cover maps and evenly
split for training and testing. Six CNN structures were designed and divided into two settings based
on their number of learnable parameters (i.e., a ~70,000 and a ~290,000 learnable parameter setting).
Each setting has three different pooling strategies, i.e., without pooling, with max pooling and with
average pooling. Results showed that CNN performed better than the established random forest
classifier. This is because the CNN end-to-end training can effectively extract spatial information
favorable to discriminate spectrally similar classes which occurs frequently in smallholder agricultural
landscapes and especially in the four-band multispectral images. Random forest, despite taking
the same 7 × 7 image patch as input, can only consider each pixel separately during the tree split
training process.
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