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Abstract: In this work, we investigated the sensing performance of epitaxial graphene on Si-face
4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb and Cd), showing fast and stable
response and low detection limit. The sensing platform proposed includes 3D-printed microfluidic
devices, which incorporate all features required to connect and execute lab-on-chip (LOC) functions.
The obtained results indicate that EG exhibits excellent sensing activity towards Pb and Cd ions.
Several concentrations of Pb2+ solutions, ranging from 125 nM to 500 µM, were analyzed showing
Langmuir correlation between signal and Pb2+ concentrations, good stability, and reproducibility over
time. Upon the simultaneous presence of both metals, sensor response is dominated by Pb2+ rather
than Cd2+ ions. To explain the sensing mechanisms and difference in adsorption behavior of Pb2+

and Cd2+ ions on EG in water-based solutions, we performed van-der-Waals (vdW)-corrected density
functional theory (DFT) calculations and non-covalent interaction (NCI) analysis, extended charge
decomposition analysis (ECDA), and topological analysis. We demonstrated that Pb2+ and Cd2+ ions
act as electron-acceptors, enhancing hole conductivity of EG, due to charge transfer from graphene
to metal ions, and Pb2+ ions have preferential ability to binding with graphene over cadmium.
Electrochemical measurements confirmed the conductometric results, which additionally indicate
that EG is more sensitive to lead than to cadmium.

Keywords: heavy metals detection; epitaxial graphene; high sensitivity; 3D-printed flow cell;
reusable lab-on-chip

1. Introduction

Nowadays, among water pollutants, heavy metals (HMs) are considered as the most serious
source to pollute the biosphere, posing a significant threat to human health, because they are
non-biodegradable and accumulate in soft tissues [1]. Some HMs are essential minerals for healthy
biochemical and physiological function, since they serve as components of several key enzymes
and play important roles in various oxidation-reduction reactions in human bodies. Others, such
as lead, cadmium, chromium, arsenic, and mercury are toxic even when ingested in very small
quantities [2]. In particular, lead, which has a high toxicity and the ability to accumulate in the

Sensors 2019, 19, 2393; doi:10.3390/s19102393 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0540-1965
https://orcid.org/0000-0002-8685-3332
https://orcid.org/0000-0003-0646-5266
https://orcid.org/0000-0001-8478-4663
http://www.mdpi.com/1424-8220/19/10/2393?type=check_update&version=1
http://dx.doi.org/10.3390/s19102393
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2393 2 of 13

body, is one of the most dangerous substances due to its negative effect on intracellular biochemical
processes in living organisms [3–9]. Standard techniques used to detect low traces of lead are, for
example, mass spectroscopy (MS) [10], inductively-coupled plasma mass spectrometry (ICPMS) [11],
and atomic absorption spectroscopy (AAS) [12], which are very sensitive, accurate, and often allow
for detection of different ions simultaneously, but most of them require expensive instruments and
specialized staff to perform the analysis. This has led scientists to develop portable and easy-to-use
methods towards real-time, accurate, and sensitive identification of HMs in the environment. Indeed,
in the last few years, several sensing platforms for the detection of lead have been developed
exploiting electrochemical [13–28] and conductometric detection methods [29,30], which use simple
equipment and allow for the miniaturization of sensing systems. Huge progress in the development of
the nano-sized materials and state-of-the-art sensing systems is well-documented in recent review
papers [31]. In particular, nanomaterials-based sensors are promising in the detection of heavy metals
due to their large surface area, high catalytic efficiency, high surface reactivity, and strong adsorption
capacity. For all of these reasons, graphene is one of the best transducer materials because it exhibits
extreme sensitivity thanks to its unique properties, such as every atom being available for interaction
with adsorbing molecules [32], the high carrier mobility [33], and the high electronic conductivity
even when very few charge carriers are present [34]. As a result, very small changes in epitaxial
graphene (EG) conductivity can be detected leading to high-resolution sensors. Moreover, the use
of nanomaterials in the design of chemical sensors has also improved their limit of detection (LoD),
reproducibility, and due to the unique properties of nanoscale materials, have opened avenues for
miniaturization, which has led to the emergence of lab-on-chip (LOC) technology [35].

The main trend in modern heavy metal sensors concepts has been their gradual shift from
traditional electrochemical quantification of analytes to real-time non-invasive optical sensing of toxic
substances, including fluorescent [36,37], surface-enhanced Raman scattering (SERS) [38], and surface
plasmon resonance (SPR) sensors [39]. Nevertheless, in the present work, we investigated the
performance of a sensing platform based on epitaxial graphene on Si-face 4H-SiC (EG/SiC) for
liquid-phase detection of HMs, simply measuring the conductivity changes due to the interaction
between Pb and/or Cd ions and the sensing surface, obtaining very promising results in terms of
sensitivity and the possibility to exploit real-time monitoring. In this work, we developed and tested a
reusable LOC for heavy metals detection, in which the 3D-printed microfluidic cell allowed for the
interaction between the HMs solutions and the sensing surface [40]. Moreover, Density Functional
Theory (DFT) calculations were performed to explain the interaction mechanisms of graphene with
lead and cadmium ions, and consequentially conductivity changes of the sensing material.

2. Materials and Methods

2.1. Experimental Setup

The sensor system proposed in this work integrates the extraordinary features offered by an
epitaxial graphene sensor with a 3D-printed microfluidic lab-on-chip (Figure 1). The sensor is based on
a monolayer of epitaxial graphene grown on on-axis, Si-face 4H-SiC (0 0 0 1), using the well-established
sublimation growth technique to produce large area, homogeneous graphene [41]. Details on the
graphene growth and characteristics are reviewed in [42]. The sensor chip with a physical size of
7 × 7 mm2 was processed through two different sputtering steps in order to realize four circular
(θ = 1 mm) electrical contacts on the corners, needed to bias the sensor and to collect the output signal.
All contacts were fabricated through sputter deposition of 2 nm of titanium and 200 nm of gold
sequentially [43]. Four-point measurements are possible with this scheme, but only resistance between
two contacts on the diagonal of the chip was measured in this work. The microfluidic chamber, with a
volume of 7 µL, was fixed on the EG surface using four screws that apply sufficient pressure to ensure
that the chamber was perfectly sealed. Analyte and buffer solutions were injected using two automatic
syringe pumps (NE-1010 Higher Pressure Programmable Single Syringe Pumps) with a flow-rate
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of 19.2 mL/h into a 3D-printed Y junction, through which the solution to send to the main chamber
is selected. Buffer solution was used to clean the chip after each measurement cycle. Both chips
exhibit open channels, which allow easy access for functionalization, and the sub-micro-metric surface
finishing enables sealing with regular transparent adhesive tape [44]. Both microfluidic chips, which
include inlet and outlet ports with an internal radius of 500 µm, were designed using Autodesk Inventor
Fusion 360® CAD software and printed by a Form 1 + 3D printer (FormLabs) with a proprietary resin
Clear Type 02 [40]. The resin includes different proportions of modified acrylate and acrylate oligomer,
epoxy monomer, acrylate monomer, photo initiator and additives as the principal components [45,46].
A 2601A Keithley Source Meter was used to bias the sensor and to collect the output signal.

Electrochemical measurements were performed by using a computer-controlled potentiostat
(Autolab, EcoChemie, Metrohm, Utrecht, The Netherlands). The custom-built electrochemical cell
of O-ring type was assembled with a three-electrode system: EG/SiC, Ag/AgCl, and platinum wire
were used as the working electrode, reference electrode, and counter electrode, respectively. For more
information about the design of the electrochemical cell, see our previous work [47]. The stripping
process was performed by square wave anodic stripping voltammetry (SWASV) at the following
parameters: accumulation time of 2 min, frequency of 15 Hz, amplitude of 25 mV, and increment
potential of 5 mV. Since the stripping peak current is dependent on both the redox potential of the metal
and the concentration of the metal cations, the SWASV analysis enables simultaneous quantification of
cadmium and lead.
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2.2. Sample Preparations

Analyte solutions, with concentrations of lead ions (Pb2+), ranging from 125 nM to 500 µM, were
prepared by diluting a powder of lead chloride, PbCl2 (purchased from Sigma-Aldrich), in deionized
water (dH2O). In order to compare the response of EG to other heavy metals, a concentration of
cadmium ions (Cd2+) of 500 µM was prepared by diluting a powder of cadmium chloride, CdCl2
(purchased from Sigma-Aldrich), in dH2O. Moreover, for cross-sensitivity studies, both solutions,
containing lead and cadmium ions with a concentration of 500 µM for each, were mixed and analyzed.
For electrochemical measurements, aqueous solutions of Cd2+ and Pb2+ were prepared by dissolving
the appropriate amounts of CdCl2 and Pb(NO3)2 salts in buffer solution (0.1 mol·L−1 HClO4 in
Milli-Q-water) with pH = 4.5.

2.3. Density Functional Theory

Since the main aim of this work is to understand the fundamental principles behind detection of
the cadmium and lead in liquid phase, the experimental work is complemented by comprehensive
density functional theory (DFT) calculations, with consideration of the water as a solvent phase.
The nature of the interaction between heavy metals (Cd and Pb in different charge states) and graphene
was elucidated using the Gaussian 09 Rev. D.01 program package [48]. As a model of graphene,
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C96H24 (circumcircumcoronene [49]) with edge hydrogen passivation has been chosen. All of the
calculations were carried out using PBE1PBE-D3 level of theory [50] with consideration of split basis set
and empirical dispersion correction (which enables us to estimate the contribution of the van-der-Waals
forces into total interaction energy). The 6-31G (d) basis set was used for carbon and hydrogen atoms,
while the basis set developed by the Stuttgart–Dresden–Bonn group (SDD) was utilized for the heavy
metal species [51]. In order to study the solvation effect on the interaction between metal species and
graphene, the self-consistent reaction field (SCRF) approach, using the polarizable continuum model
(PCM) [52], was used. All atoms are enabled to be fully relaxed during the geometrical optimization
procedure. All calculations were carried out without symmetry restrictions. Geometry optimization
calculations were performed with SCF (self-consistent field) convergence criterion of 10−8. Mulliken
population analysis [53] and the Hirshfeld scheme [54] were applied to study the charge distribution
within interacting complexes. Since the van-der-Waals (vdW) interaction is supposed to be a prevailing
factor in the adsorption of heavy metals, noncovalent interactions (NCI) analysis and topological
analysis were performed using the Multiwfn program to better understand the metal–carbon (M–C)
bonding [55]. The nature of M–C bonding and orbital interactions for all considered complexes were
also explored by the quantum theory of atoms in molecules (QTAIM) method [56] and extended charge
transfer analysis (CDA), as implemented in the Multiwfn program [57,58].

3. Results and Discussion

3.1. DFT Calculations

In the experiments described in this work, the graphene response to metal-containing liquid phase
has been measured for three different cases: (i) adsorption of individual cadmium ions, (ii) adsorption
of individual lead ions, and (iii) simultaneous adsorption of both metals. The current work is a
continuation of our previous research efforts towards deep understanding of the adsorption behavior
of metal ions on graphene in aqueous phase [59]. In particular, it was revealed that the adsorption order
of heavy metal ions on graphene is changed from Cd2+ > Pb2+ for gas-phase to Pb2+ < Cd2+ for water,
respectively. Such reordering is originating from the solvent-mediated interaction between metal cations
and carbon rings, as was explained in the classical work by Kumpf and Dougherty [60]. Furthermore,
in our recent paper we demonstrated concentration dependences of the adsorption energy of lead
ions and the experimentally-derived sensitivity, which may be associated with redistribution between
energy components of total interaction energy. Taking the previous observations and theoretical
findings into account, one can expect that the sensitivity of the graphene to Pb ions will be higher
than that to Cd ions. Nevertheless, despite the theoretical predictions of binding sequence, stronger
arguments are needed to better understand the way in which heavy metals interact with graphene
dissolved in water electrolyte. To reach this fundamental knowledge, metal–graphene bonding
is deeply investigated by comprehensive DFT calculations through performing extended charge
decomposition analysis (ECDA), non-covalent interaction (NCI) analysis, and topological analysis.
Prior to discussion of the nature of bonds, we focused on the adsorption configurations. As can be
seen from Figure 2a–c, the most stable and favorable way for metals to be adsorbed at the graphene is
for Cd2+ and Pb2+ divalent ions to occupy the hollow site (above the center of the hexagonal ring).
The corresponding adsorption heights are estimated to be 3.42 Å and 2.45 Å, respectively. For each of
the three cases studied, we noticed that the initial charge on ionic species (i.e., +2) before interaction
with graphene tends to decrease during the interaction. This suggests that divalent metal cations on
graphene act as electron-accepting adsorbates/dopants. In particular, the Mulliken/Hirshfeld charge
magnitudes on separately adsorbed cadmium and lead are about +1.98/+1.90 and +1.40/+1.16, while
for cadmium simultaneously adsorbed with lead on the graphene these values were slightly different
for lead case: +1.98/+1.90 and +1.37/+1.12, respectively. The electron localization function (ELF) and
localized orbital locators (LOL) analyses give more evidence on charge redistribution in the interacting
systems (see Figure 2d–i). From the ELF and LOL images, it is clearly seen that there is no electron
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localization overlap between the Cd ion and graphene, while the electrons are shared between the Pb
ion and carbon atoms, suggesting a larger interaction strength.Sensors 2019, 19, x FOR PEER REVIEW 5 of 13 
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Figure 2. Top view and side view of the relaxed adsorption configurations of Cd2+ (a), Pb2+ (b), and
simultaneous presence of Cd2+ and Pb2+ divalent ions (c), on the graphene surface. Contour plots of
the electron localization function (ELF) and color-filled maps of localized orbital locator (LOL) for the
heavy metal ions adsorbed onto graphene: Cd2+ on Gr (d,g), Pb2+ on Gr (e,h), and Cd2+ and Pb2+ on
Gr (f,i), respectively.

Charge decomposition analysis (CDA), which is reported in the supplementary information,
revealed strong orbital interactions between the three lowest unoccupied orbitals of lead ion (LUMO,
L + 1, L + 2) and the unoccupied orbitals of the graphene nanofragment. No orbital interaction between
Cd2+ and graphene was observed.

3.2. Experimental Results

DFT calculations indicate that Pb2+ ions, adsorbed on graphene, behave as electron-accepting
dopants, with a preferential charge transfer from graphene to divalent ions [61]. This process of energy
transfer produces a change in the graphene conductivity, which was confirmed by our experimental
measurements. Starting from PbCl2 diluted in dH2O, several concentrations of Pb2+ solutions, ranging
from 125 nM to 500µM, were measured. Since the water molecules on graphene act as electron-accepting
(p-type) dopants [62], we observed that the presence of charged lead species in water electrolyte
increased the p-type conductivity of graphene.

The sensor used in this study was used for more than one year in different operating conditions
(analyte concentrations, different species, etc.) without demonstrating any degradation in performance.

For each concentration of Pb2+, more than three measurement cycles were measured (signal is
stable for hours, but only a few cycles are reported here) and the differential resistance (∆R) and
experimental error were calculated and are reported in Figure 3b. The resistance value reported (∆R) is
the net resistance, measured as the difference between the signal due to the presence of Pb2+ and the
recovery value obtained by the cleaning of the chip after each measurement cycle. Figure 3a shows
the EG response to 125 nM, 5 µM, and 200 µM of Pb2+. In particular, the response recorded for the
lowest concentration of lead ions exhibits a signal-to-noise ratio (SNR) of 7.1 dB, which portends the
possibility to further reduce the measurable detection limit of the sensor system.
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Moreover, in accordance with Langmuir’s law which describes the adsorption of a monolayer of
species onto simple surfaces, increasing the Pb2+ concentration leads to an increase of the ∆R value
(Figure 3), since more divalent ions are adsorbed on the EG surface. DFT calculations indicated that
for high levels of Pb2+ concentration, the energy transfer between individual lead ions and graphene
decreases. It has also been confirmed by the experimental data, since we obtained higher sensitivity for
low compared to high Pb2+ concentration, as demonstrated by the different slopes of the calibration
curve reported in Figure 3b. It was observed that for low concentrations (0.125–5 µM) of Pb2+ we can
approximate a sensitivity (SL = 13.90 Ω/µM) that is much higher than the sensitivity (SH = 0.10 Ω/µM)
estimated for high concentrations (50–500 µM) of Pb2+. This result demonstrates how the system
is more sensitive to low concentrations of the analyte. Moreover, a detection limit of 95 nM was
extrapolated from the calibration curve (based on three times the standard deviation of the zero
response, 3σ), which is lower than the recommended safe limit (180 nM) provided by the World Health
Organization (WHO) for lead levels in drinking water [63]. Still, an improvement in the detection limit
value is necessary to be competitive with the state-of-the-art (1–3 nM [38,39]), but this can be achieved
simply by increasing the ratio between the area of the graphene surface exposed to the HMs solution
and the total device area between the contacts (≈10% in this experimental configuration).

Measurements with lead dissolved in drinking water were also performed in order to evaluate the
interaction between different species in complex matrixes that also includes other ions [40]. In that case,
we compared the performance obtained for the highest concentration of lead dissolved in deionized
and drinking water, obtaining a reduction of almost 35% of ∆R. This means that the presence of other
species influences the response, and to use this system for field applications, a functionalization of the
graphene surface is needed to be more selective to the different species.

The EG response to lead was compared to the one obtained by measuring the same molar
concentration (500 µM) of cadmium ions (Cd2+) and is reported in Figure 4a. It was demonstrated
that cadmium exhibits a lower affinity to graphene compared to lead, and it is visible from different
features, like amplitude of the signal response and time response. Concerning the amplitude, in the
same operating conditions in terms of molar concentrations of analyte, cadmium exhibits a response
∆R of 67 Ω compared to 76 Ω for lead (Figure 4a). Moreover, cadmium needs more time to adsorb on
the graphene surface compared to lead, due to the lower affinity. The rise (tr) and fall (tf) times are the
times needed to switch from 10% to 90%, or vice versa, of the signal amplitude. Both the rise and fall
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times of the sensor after each injection of solution containing heavy metals were analyzed. The data
can be fitted assuming a decreasing exponential equation for both, in the form of:

y = A0·exp(−t/τ) + y0 (1)

In Equation (1), A0 is a constant value depending on the reactant concentrations and whose
sign depends on the filling or emptying of the reaction chamber, being positive during chamber
filling (interaction metals–graphene) and negative during its emptying (cleaning-phase). τ is the
time constant and it has different values during the filling and emptying processes. The filling time
constant (τf) is 11.2 ± 0.4 s for lead and 47.9 ± 1.2 s for cadmium. Once the data was fitted, rise
(recovery time) and fall time (response time) values could be calculated, each being about three times
the corresponding characteristic time (τr and τf respectively), hence we obtained tf = 33.6 ± 1.2 s for
lead and tf = ~143.7 ± 3.6 s for cadmium.

In the worst case (highest concentration of lead), the emptying time constant (τr) is 61.0 ± 1.4 s
and consequentially, tr is 183.0 ± 4.2 s.

In both cases, the time response is calculated from a reference condition represented by the
equilibrium reached when only water is flowing through the system. The time needed to reach the
starting time (top of the response curve, Figure 3) is included in the recovery time.

Comparing the shape of the two signals, we observed that the signal provided by cadmium
exhibits a shoulder at about half of its total amplitude, confirming the different type of interaction with
the graphene surface.

To test the cross-sensitivity of the sensor system we mixed both solutions containing lead and
cadmium ions with a concentration of 500 µM for each, and we observed that the resulting signal
exhibits roughly the same amplitude of the lead response, an intermediate time response (around 99 s),
and a little shoulder due to the presence of Cd (Figure 4b).
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Figure 4. (a) Comparison between epitaxial graphene (EG) responses (resistance) to a concentration of
500 µM of Pb2+ (black line) and Cd2+ (red line) versus time; (b) EG response to a complex sample in
which both solutions of Pb2+ and Cd2+ with a concentration of 500 µM were mixed.

The presence of the shoulder is due to the different interaction nature of cadmium and graphene
compared to lead, as demonstrated by DFT calculations. Moreover, due to the lower affinity with
graphene exhibited by cadmium compared to lead, more time is needed for the interaction to occur.

The presence of cadmium could only be detected at high concentrations (500 µM), since the EG
response to lead is much stronger due to the higher affinity. This result was also confirmed by the
electrochemical measurements performed and reported in Figure 5. A well-defined intensive stripping
current peak (with a current density proportional to the concentration of the metal ions) is observed
at approximately −0.43 V, only for the lead case. This peak starts to appear at the concentration of
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500 nM Pb2+. The detailed description of the sensing mechanism of Pb species can be found in our
previous work [47]. In contrast to detection of Pb ions, the sensitivity of the epitaxial graphene towards
Cd ions is much worse. Initially, electrochemical measurements of the graphene response to exposure
of both cadmium and lead ions were performed at the same metal concentrations. Since the stripping
current peak is found to be very faint even at high Cd2+ concentrations, we then changed measurement
conditions. After reaching the equilibrium concentration of 1.2 µM for both metals in solution, we then
continued to increase only the Cd2+ concentration, while maintaining the Pb concentrations at the
same level. Under accumulation conditions, the Cd-related peak was detected only at concentrations
of 100 µM or higher. We noticed the enhancement of this peak at higher concentrations of metals. Such
difference in behavior between the two metals can be ascribed to the interaction nature and preference
for Pb adsorption compared to Cd. It is likely that under conditions of the simultaneous presence
of both metals, Pb predominantly tends to occupy the available electrochemical reactive sites at the
graphene surface, while Cd species are not involved in the stripping process within the corresponding
concentration range. It can be explained by the very small intrinsic adsorption energy of Cd on the
surface of the graphene electrode, which is not enough to accumulate the metal species required for
generating the stripping current.
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Figure 5. Square wave anodic stripping voltammetry (SWASV) electrochemical response of the
graphene electrode for the simultaneous analysis of Cd2+ and Pb2+.

In most cases, at small concentrations of Cd and Pb, the corresponding stripping peaks at SWASV
are well-separated. In such accumulation conditions, the intensity of the stripping peaks is mainly
dependent on the binding order and adsorption preference of considered metal species on graphene.
On the other hand, at high metal concentrations, the peak potential of Pb is shifted to more negative
potentials as the concentration values increase, while the peak of Cd is still very weak. It means that
the simultaneous quantification of Pb and Cd by graphene electrode can be attained in very limited
ways and is feasible neither in a low-concentration regime due to preferential Pb adsorption, nor
in the high-concentration regime due to the existence of a binary mixture of metals. To explain the
experimental results, we simulate the solvent-mediated interaction between elemental heavy metals
and graphene. Since the graphene response during the electrochemical process is mainly determined
by the interaction between graphene and neutral Cd and Pb adatoms, we believe that a fundamental
understanding of the adsorption of these heavy metals will help to address the selectivity phenomenon.
In this regard, we adapted the approach, which we used to explore the adsorption of divalent ions,
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to investigate the behavior of elemental heavy metals in the same adsorption configurations (Figure 6a).
Briefly, we revealed the Cd adatom prefers to adsorb onto the hollow site of the graphene, while Pb
adsorbed on the graphene surface by interacting with two adjacent carbon atoms (so-called bridge site).
Compared to Cd adsorption, Pb on graphene is the most stable adsorption configuration, with a
higher adsorption energy (energy difference is higher than 0.1 eV). Charge distribution analysis of the
interaction complexes by both Mulliken/Hirschfeld methods indicates that Pb is an electron-accepting
dopant, with a charge magnitude of −0.051/−0.029 in individual geometry as well as −0.054/−0.036
in combined geometry, respectively. On the other hand, both methods give controversial data for
charge magnitude on Cd in individual adsorption geometry (−0.012/0.064) and in combined adsorption
geometry (−0.018/0.062). By analyzing the ELF and LOL plots for considered metals (see Figure 6b–g),
one can conclude that the interaction between graphene and both metals is very weak and the main
difference in their behavior on graphene is only related to the difference in vdW contribution to the
total interaction energy. CDA analysis, which is reported in the supplementary information, also
confirms the weak orbital interaction between frontier orbitals of the metal adatoms and graphene.
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on Gr (b,e), Pb0 on Gr (c,f), and Cd0 and Pb0 on Gr (d,g), respectively.

4. Conclusions

In this work we showed design and characterization of a new sensing platform based on an
epitaxial graphene sensor coupled to 3D-printed microfluidic chips for the real-time detection of heavy
metals. The use of an EG sensor and a 3D-printed microfluidic chip allowed for the detection of
low traces of Pb2+ due to the extreme sensitivity of the material. Indeed, a detection limit of 95 nM
was obtained, which is much lower than the recommended limit provided by WHO for Pb levels in
drinking water, and it can be still improved by increasing the EG area exposed to the solution relative
to the total device area. Moreover, a full set of different concentrations of Pb2+ solutions, ranging
from 125 nM to 500 µM, were analyzed, showing a Langmuir correlation between the signal and
the Pb2+ concentration, fast response, good stability, and reproducibility over time. It was observed
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that for low-concentrations (0.125–5 µM) of Pb2+ the system exhibits a sensitivity (SL = 13.90 Ω/µM)
that is much higher than the one (SH = 0.10 Ω/µM) obtained for high-concentrations (50–500 µM) of
Pb2+. Real measurements with lead dissolved in drinking water were also performed to evaluate the
interaction with different species in complex matrixes that includes other ions [40]. Comparing the
performance obtained for the highest concentration of lead dissolved in deionized and drinking water,
we obtained a reduction of almost 35% of ∆R. This means that the presence of other species influences
the response, and to use this system for field applications, a functionalization of the graphene surface
is needed to be more selective to the different species.

The comparison between the EG response to Pb and Cd was discussed, and the higher affinity to
Pb was demonstrated. Indeed, from the cross-sensitivity analysis, only at high-concentration levels
of Cd was it possible to detect its presence when mixed with lead. DFT calculations allowed us to
get deep insights into the nature of the interaction between lead (cadmium) species and graphene
as well as to explain the exceptionally high sensitivity of the EG to Pb compared to Cd. It was
found that the major difference between Cd2+ and Pb2+ adsorption can be understood in terms of the
charge-transfer reactions and subsequent solvent-mediated stabilization of the carbon–metal bonding.
It was found that the adsorption of electron-accepting Pb ions is governed by an orbital interaction,
while Cd2+ behavior on graphene is predominantly regulated by long-range dispersion forces. This is
evidenced by NCI, ECDA, and topological analyses. The different interaction nature of cadmium and
graphene compared to lead, as demonstrated by DFT calculations, introduces a small shoulder in
the experimental response to Cd2+. Moreover, due to the lower affinity with graphene exhibited by
cadmium compared to lead, more time is needed for the interaction to occur.

To confirm the conductometric results, we have also performed electrochemical tests by the probing
of simultaneously present Cd and Pb in aqueous solution using the SWASV method. Comprehensive
DFT calculations enabled us to elucidate the nature of the non-bonding interaction between elemental
heavy metals and graphene. It is proposed that the mechanism of preferential electrochemical detection
of lead is driven by dispersion forces.

All of the features described in this work show that this system can be used for accurate and
sensitive identification of heavy metals in the environment.
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