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Abstract: The problem of image segmentation can be reduced to the clustering of pixels in the intensity
space. The traditional fuzzy c-means algorithm only uses pixel membership information and does not
make full use of spatial information around the pixel, so it is not ideal for noise reduction. Therefore,
this paper proposes a clustering algorithm based on spatial information to improve the anti-noise
and accuracy of image segmentation. Firstly, the image is roughly clustered using the improved
Lévy grey wolf optimization algorithm (LGWO) to obtain the initial clustering center. Secondly, the
neighborhood and non-neighborhood information around the pixel is added into the target function
as spatial information, the weight between the pixel information and non-neighborhood spatial
information is adjusted by information entropy, and the traditional Euclidean distance is replaced by
the improved distance measure. Finally, the objective function is optimized by the gradient descent
method to segment the image correctly.
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1. Introduction

In recent years, clustering technology has played an important role in remote sensing image
segmentation. The technique uses visual features such as image color, texture and shape to gather
together areas with large similarity, so that the pixels in the same area are as similar as possible, and the
pixels in different areas are as different as possible [1–4]. The fuzzy c-means (FCM) algorithm has the
advantages of conforming to human cognitive characteristics, easy implementation, simple description
and good segmentation effect [5]. Due to the FCM algorithm using fuzzy membership to measure the
degree of pixels belonging to a certain class relative to the other segmentation algorithms, it can retain
the original image information as much as possible [6]. It has been widely used in medicine and remote
sensing image segmentation [7–10]. But the traditional FCM algorithm fails to consider the correlation
between the grey features of each point and its neighborhood pixels in image segmentation, which
makes the algorithm more sensitive to noise, low contrast, intensity inconsistency, and so on [11]. When
imaging remote sensing images, due to the constraints of satellite imaging technology, problems such as
unclear pixels, discrete pixels or block-forming pixels appear, which seriously affect the segmentation
effect of FCM algorithm. In order to effectively solve these problems, researchers have proposed many
improved FCM algorithms. Ahmed et al. [12] added spatial neighborhood information around pixels
to the FCM algorithm, proposing the FCM_S algorithm. The objective function is modified to increase
the robustness of the algorithm to noise points and improve the precision of the segmentation results.

Sensors 2019, 19, 2385; doi:10.3390/s19102385 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3668-7572
http://dx.doi.org/10.3390/s19102385
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/10/2385?type=check_update&version=2


Sensors 2019, 19, 2385 2 of 17

However, the FCM_S algorithm takes a long time to calculate the relationship between each pixel point
and the surrounding neighborhood, resulting in high computational complexity and low efficiency.
So, Chen and Zhang [13] proposed improved algorithms, FCM_S1 and FCM_S2. Before iterative
calculation, these algorithms first evaluate the influence of neighborhood pixels on the center pixel,
which is equivalent to filtering the image. The algorithm avoids repeated computation in iterations and
reduces the time complexity of the algorithm effectively. Mean filtering and median filtering are used
respectively in FCM_S1 and FCM_S2, which have good segmentation effect for images with Gauss
noise and salt and pepper noise. Cai et al. [14] introduced a new local similarity measurement method,
combined with local spatial distance and grey difference, and proposed the fast generalized fuzzy
-means (FGFCM) clustering algorithms. This algorithm not only considers the spatial information of
neighborhood pixels in the filtering function, but also considers the grey information of neighborhood
pixels, which can better preserve the details of the image while filtering. In the above improved FCM
algorithm, there are parameter settings, which have a significant impact on the segmentation results.
Krinidis et al. [15] defined a new fuzzy factor, combining local spatial information and grey level
information, and proposed the fuzzy local information C-Means (FLICM) algorithm. The algorithm
effectively integrates the spatial information and grey level information of the neighborhood pixels,
enhances the insensitivity of the algorithm to noise, and controls the weight between denoising and
image details through adaptive adjustment of parameters. When the image noise is relatively serious,
the neighborhood information of the pixel may also be polluted, so the neighborhood information
based on the local space of the image cannot play an active guiding role in the image segmentation,
making the fuzzy clustering algorithm that integrates the local space information unable to meet the
requirements of high-precision image segmentation. To solve this problem, Zhao et al. [16] proposed a
fuzzy c-means clustering algorithm based on non-local spatial information (the FCM_NLS algorithm).
The algorithm first uses the non-local spatial information of image pixels to filter the original image,
and then directly calls the result in the iteration, narrowing the time complexity of the algorithm.
However, the FCM_NLS algorithm ignores the non-uniformity of noise distribution, so it is sensitive to
noise and still has yet to be improved. Gong et al. [17] proposed a fuzzy c-means clustering algorithm
based on local information and kernel metric (the KWFLICM algorithm). On the basis of the FLICM
algorithm, this algorithm introduces kernel space and a similarity measurement factor, which greatly
improve the segmentation effect and denoising ability. Although the FLICM and KWFLICM algorithms
do not need to set additional parameters, their estimation of pixel attenuation in the neighborhood
is still inaccurate, and part of the image information is not fully utilized, resulting in unsatisfactory
anti-noise performance of the algorithm and inaccurate cutting results.

It is worth mentioning that nature-inspired computing is attracting more and more attention.
Metaheuristic algorithms can find the segmentation threshold more accurately in image segmentation [18].
Two of the most popular algorithms are swarm intelligence (SI) and evolutionary algorithms (EAs).
The stability and accuracy of the grey wolf optimization (GWO) algorithm has been clearly proved to
be better than particle swarm optimization (PSO), gravitational search algorithm (GSA), differential
evolution (DE), evolutionary programming (EP) and evolution strategy (ES), which are all well-known
meta-heuristics [19]. Using the GWO algorithm to find the initial clustering center of the image is very
beneficial. The initial clustering center can be found more accurately and stably to be prepared for
subsequent calculations. However, in some cases, due to the lack of diversity of wolves, the GWO
algorithm still faces the risk of local extreme stagnation when the traditional GWO algorithm cannot
realize the smooth transition from exploration potential to development potential through multiple
iterations. In the literature [20], the improved differential evolution grey wolf optimization (DEGWO)
algorithm is used to find the segmentation threshold of synthetic aperture radar (SAR) images, and
good segmentation effect is obtained. The Lévy GWO (LGWO) algorithm [21] is utilized to solve the
global problem by introducing Lévy flight algorithm and balancing the exploration and development
stage of the algorithm.
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In this paper, an adaptive fuzzy c-means segmentation image algorithm based on global spatial
information (the AFCM_GSI algorithm) is proposed. The LGWO algorithm was adopted to calculate
the initial clustering center. By combining the neighborhood and non-neighborhood information of the
image, the corresponding weight was calculated adaptively, and neighborhood spatial information
was added to the clustering model. The information entropy is utilized to automatically balance
the relationship between the pixel information and the non-neighborhood spatial information.
The segmentation results of different images show that this algorithm can achieve better segmentation
performance under intense noise.

2. Related Work and Background

2.1. Traditional FCM Algorithm

The fuzzy clustering algorithm (FCM) was first proposed by Dunn, then expanded by Bezdek et al.
and has been applied in many fields. In essence, the FCM algorithm classifies samples according to
the intensity of membership, and the objective function is weighted distance sum, which is defined
as follows:

JFCM =
c∑

i=1

n∑
j=1

um
ij d

2
(
x j, vi

)
(1)

where c is the number of clusters, n is the number of pixels in the image, ui j denotes the membership

degree of x j in the ith cluster, has a value inside [0,1] and satisfies the condition 0 ≤ ui j ≤ 1,
c∑

i=1
ui j = 1,

m is the fuzzy weight index and is generally a value of 2, d
(
x j, vi

)
represents the Euclidean distance

from the jth pixel x j to the ith clustering center vi.
While the FCM algorithm is built on the initial parameter set, it determines the minimum objective

function JFCM through an iterative process. u and v are described as in Equations (2) and (3):

ui j =
1

c∑
k=1

(
di j
dkj

) 2
m−1

(2)

vi =

n∑
j=1

um
ij x j

n∑
j=1

um
ij

(3)

where ui j, vi denote the membership function and cluster centers, respectively.
The FCM algorithm calculates the membership of each pixel in the image by minimizing the

objective function, but the FCM algorithm ignores the contribution of neighborhood pixels to the
clustering center, so it is sensitive to noise.

2.2. FCM_S Algorithm

The FCM_S algorithm [12] overcomes the influence of noise on image clustering to a certain extent
by introducing neighborhood space constraints. The objective function of FCM_S is as follows:

JFCM_S =
c∑

i=1

n∑
j=1

um
ij

∥∥∥x j − vi
∥∥∥2

+
α

NR

c∑
i=1

n∑
j=1

um
ij

∑
r∈N j

‖xr − vi‖
2 (4)
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ui j =

d2
i j +

α
NR

∑
r∈N j

d2
ir

−1/(m−1)

c∑
k=1

d2
i j +

α
NR

∑
r∈N j

d2
ir

−1/(m−1)
(5)

vi =

n∑
j=1

um
ij

x j +
α

NR

∑
r∈N j

xr


(1 + α)

n∑
j=1

um
ij

(6)

where c is the number of clusters, n is the number of pixels in the image, ui j denotes the membership

degree of x j in the ith cluster, has a value inside [0,1] and t satisfies the condition 0 ≤ ui j ≤ 1,
c∑

i=1
ui j = 1, m

is the fuzzy weight index and is generally a value of 2,
∥∥∥x j − vi

∥∥∥ represents the Euclidean distance from
the jth pixel x j to the ith clustering center vi, NR is the window cardinality, xr denotes the neighborhood
pixel set centered on the jth pixel x j, α is the influence factor of neighborhood spatial information on
the center pixel. The larger the value of α, the greater the role of neighborhood spatial information in
the clustering process, and vice versa. When α is 0, the FCM_S algorithm reverts to the FCM algorithm.

The FCM_S algorithm has a certain inhibitory effect on noise, but the algorithm needs to set up the
parameters between the noise removal and the preservation of the image details; in general, different
parameters are required for different images, and as these parameters are selected by a large number
of experiments, the adaptive ability of the algorithm is poor. Because the FCM_S algorithm needs
to calculate the neighborhood information of the pixels in each iteration, the time complexity of the
FCM_S algorithm is high. It is still a difficult and hot topic to reduce the computation time of the
algorithm under the premise of ensuring segmentation precision.

2.3. FLICM Algorithm

The FLICM algorithm [15] avoids the introduction of supervised parameters and enhances the
practicability of the algorithm when calculating the contribution of neighborhood information to
the pixels of the center. The FLICM algorithm combines the spatial and grey information about the
neighborhood pixels by constructing the fuzzy factor Gki, which strengthens the insensitivity of the
algorithm to the noise. The expression of Gki is as follows:

Gki =
∑

j < Ni
i , j

1
di j + 1

(
1− ukj

)m∥∥∥x j − vk
∥∥∥2

(7)

where di j is the Euclidean distance between neighborhood pixels x j and center pixel xi, 1/
(
di j + 1

)
denotes the spatial action intensity of neighborhood pixels on central pixels, ukj is the membership
strength of neighborhood pixels x j relative to the kth cluster center vk,

∥∥∥x j − vk
∥∥∥ denotes the Euclidean

distance between neighborhood pixels x j and cluster center vk and m is the fuzzy weight index and is
generally a value of 2. The objective function of the FLICM algorithm is defined as follows:

JFLICM =
N∑

i=1

c∑
k=1

[
um

ki‖xi − vk‖
2 + Gki

]
(8)

The objective function of the FLICM algorithm is different from that of the FCM algorithm, but
their clustering centers are the same. By transplanting the cluster center of the FCM algorithm, the
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iterative updating of the cluster center is completed. Fuzzy membership and the clustering center of
FLICM algorithm is as follows:

uki =
1

c∑
j=1

(
‖xi−vk‖

2
+Gki∥∥∥xi−v j

∥∥∥2
+G ji

)1/(m−1)
(9)

vk =

N∑
i=1

um
kixi

N∑
i=1

um
ki

(10)

Although FLICM improves the fuzzy factor and makes the algorithm more adaptive, it has the
disadvantages of slow convergence speed, more iterations and more sensitive to salt and pepper noise.

2.4. Parallel LGWO Algorithm

The LGWO algorithm [21] uses Lévy flight algorithm to help GWO obtain the global optimal
solution. It has strong global convergence and robustness and the stagnation problem can also be
relieved. By integrating the Lévy flight algorithm into LGWO, the search capabilities are stronger
because each pioneer wolf gets the chance to survive and then share its observed info with other hunters
during the next steps of the searching process. Using LGWO to search for a set of global optimal
centers can significantly explore and localize the possible situations of the victim more effectually.
However, the LGWO algorithm is a probabilistic search algorithm, and its performance is affected by
control parameters such as the size of the wolves and random mutation probability. As the algorithm
requires a large wolf pack size, it needs to continuously calculate the fitness function. In this paper,
the computational complexity is related to the number of image clusters, and the computational
complexity is O(NP× T_LGWO×C), where NP is the number of wolves, T_LGWO is the total number
of iterations, and C is the number of clustering centers of the image. Therefore, this paper proposes a
parallel LGWO algorithm to improve the reliability and efficiency of the algorithm. The computation
time of the algorithm is greatly reduced.

In nature, wolves can be thought of as being made up of several subgroups, so groups can be
divided into several subgroups. Each subgroup contains multiple individuals, and each subgroup is
allocated a processor to execute the search process independently in parallel. The best individuals
in each subgroup migrate to neighboring subgroups after a certain period of time, a phenomenon
known as “drift”. This is the coarse-grained parallel LGWO algorithm and its block diagram is shown
in Figure 1:

Figure 1. Parallel Lévy grey wolf optimization (LGWO) algorithm block diagram.
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In this paper, parallel computing is used to speed up the computation of the program. Parallel
LGWO algorithm flow is shown in Figure 1. Each wolf subpopulation is assigned a processing core
to perform the search independently, and the optimal individuals are recorded after each iteration.
The best individuals in each subpopulation will migrate to the adjacent subpopulation after a certain
number of iterations. The optimal individual will be obtained after the completion of the iteration.

3. The Proposed Methods

3.1. Initial Cluster Center

A parallel LGWO algorithm is used to solve the initial clustering center of the original image.
The pseudo-code of the initial image clustering center estimated by the parallel LGWO algorithm is
as follows:

Input: Image data

(1) Determine the initial swarm size NP and the number of iterations T_LGWO. The population is
initialized into NP_s subpopulations, and the corresponding number of threads is opened up.
Each thread is responsible for one subpopulation. Each subpopulation is iterated L times to
transfer its best individuals to the adjacent subpopulation.

(2) Randomly generate the initial subpopulations of wolves
(3) Initialize temporal parameter a, random value p, random vectors A, C
(4) Compute the fitness of each wolf
(5) Set to be the best wolf
(6) Set to be the second best wolf
(7) while (t < T_LGWO) or (stopping condition) do
(8) for each wolf
(9) Update the position of current wolves
(10) perform the greedy selection(GS)
(11) end for
(12) Update parameters a, p, A, C
(13) Compute the fitness of each wolf
(14) Update,
(15) The number of iterations t = t + 1
(16) if modulo operation mod (t,L) = 0, transfer the best individuals of each subpopulation to

adjacent subpopulations.
(17) end while
(18) Walk through the optimal solution in each subpopulation, find a global optimal solution, as the

final solution.
(19) Return

Output: Partition matrix, cluster center

3.2. Fast Non-Local Mean Denoising

Non-local mean (nl-means) [22] is a useful denoising technique. This method makes full use of
the redundant information in the image and can preserve the details of the image to the greatest extent
while denoising. The basic idea is that the current pixel estimate is a weighted average of pixels in the
image with similar neighborhood structures. nl-means use the non-local spatial information of image
pixels to filter the original image, and the formula is as follows:

η j =
∑

p∈Wr
j

w jpxp (11)
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where η j is the pixel of the filtered image, Wr
j denotes the pixel area with pixel j as the center and

window size is r × r, xp is the neighborhood pixel in the window, w jp is the weight determined by
non-local spatial information, and its size depends on the similarity between the center pixel block and
the neighborhood pixel block, and 0 ≤ w jp ≤ 1,

∑
p∈Wr

j

w jp = 1.

The formula of w jp is as follows:

w jp =
1

Z j
exp

−
∥∥∥x(N j) − x(Np)

∥∥∥2
2,α

h jhp

 (12)

where N j is the pixel region centered on pixel x j, x
(
N j

)
denotes the vector composed of all pixels in the

central pixel region, x
(
Np

)
denotes the vector composed of all pixels in the neighborhood pixel region,∥∥∥x(N j) − x(Np)

∥∥∥2
2,α is the similarity between the center pixel block and the neighborhood pixel block, α

is the standard deviation of the gaussian kernel function, reflecting the spatial structure between the
center pixel and the neighborhood pixel, and h j and hp are the filtering attenuation parameters of the
central pixel region and the adjacent pixel region, respectively, which can be adjusted appropriately
according to the noise intensity. The filtering attenuation parameter h j is obtained according to the
adaptive grey level difference in the pixel block [23], and the formula is as follows:

h j =
∥∥∥x j − x(N jl)

∥∥∥
2,α (13)

where x j is the center pixel of the pixel block N j, x
(
N jl

)
is the neighborhood pixel xl of x j in the same

pixel block, and h j reflects the similarity between the neighborhood pixel and the center pixel through
the grey level difference in the pixel block. hp can also be calculated using the same principle. The
greater the difference between the neighborhood pixel and the center pixel in the pixel block, the more
serious the noise pollution of the pixel block will be, and the greater the filtering intensity of the pixel
block, and vice versa. Z j is the normalized constant, defined as follows:

Z j =
∑

p∈Wr
j

exp

−
∥∥∥x(N j) − x(Np)

∥∥∥2
2,α

h jhp

 (14)

where h j and hp make use of the greyscale statistical information of the central pixel block and the
neighboring pixel block, respectively, and adjust the filtering attenuation parameters adaptively. w jp is
to determine the similarity between the center pixel and the neighborhood pixel by using the redundant
information of the image. The closer the center pixel is to the neighborhood pixel, the greater the weight
w jp corresponding to the neighborhood pixel will be, and vice versa. Non-local spatial information can
avoid the loss of detail information caused by the larger local neighborhood window, and this method
can play a better guiding role in the noisy image.

nl-means has good denoising effect, but the maximum defect of this algorithm is too high in
computational complexity. Assuming that the image is a total of M pixels, the size of the search
window is R×R, the neighborhood window size is r× r. The complexity of the nl-means algorithm
is O

(
MR2r2

)
. Therefore, integral image technology is used to accelerate this algorithm [24]. First, an

integral image about pixel difference is constructed:

St(x) =
∑

{κ=(κ1,κ2)∈M2:0≤κ1≤x1,0≤κ2≤x2}

st(x), x = (x1, x2) (15)

st(x) =
∥∥∥x(N j) − x(N j+t)

∥∥∥2
(16)
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∥∥∥x(N j) − x(Np)
∥∥∥2

= 1
r2 (St(x1 + rs, x2 + rs)+St(x1 − rs− 1, x2 − rs− 1)

−St(x1 + rs, x2 − rs− 1) − St(x1 − rs− 1, x2 + rs))
(17)

where the search window side length is R = 2 ∗Rs + 1, and the search window side half-length is RS.
The neighborhood window side length is r = 2 ∗ rs + 1,and the neighborhood window side half-length
is rs. In order to reduce the space complexity, the above algorithm takes the offset as the outermost
loop, and only needs to calculate the integral image in one offset direction at a time, and then process
the integral image. After the above processing, the complexity of the whole algorithm will be reduced
to O

(
MR2

)
.

3.3. Improved Value Function

The AFCM_GSI algorithm makes full use of the neighborhood and non-neighborhood information
about pixels and adaptively adjusts the corresponding weight. The main objective function is as
follows:

J(U, V) =
N∑

j=1

c∑
k=1

[
um

kj(1− β j)d2
r (xi, vk)+um

kjβ jd2
r (η j, vk) + Kkj

]
(18)

where c is the number of clusters, N is the number of pixels in the image, ukj denotes the membership
degree of x j in the ith cluster and has a value inside [0,1], m is the weighting exponent on each fuzzy
membership and generally has a value of 2,vk is the ith cluster center, η j is the pixel of the image after
fast non-local mean processing and filtering, β j is the adjustment parameter calculated by information
entropy, and d2

r (xi, vk) is the improved distance measure. Using the Lagrange multiplier method to
minimize the value function, the fuzzy membership degree ukj and clustering center vk can be obtained
as:

ukj =
1

c∑
k=1

(
(1−β j)(1−r(x,vk))+β j(1−r(η,vk))+Kki
(1−β j)(1−r(x,vk))+β j(1−r(η,vk))+Kki

)1/(m−1)
(19)

vk =

N∑
j=1

(um
kjr(x j, vk)(1− β j)x + um

kjr(η j, vk)β jη)

N∑
j=1

(um
kjr(x j, vk)(1− β j) + um

kjr(η j, vk)β j)

(20)

Traditional Euclidean distance cannot solve the problem of noise sensitivity of the algorithm [25].
Although nuclear induced distance [26] can make up for the deficiency of Euclidean distance to some
extent, it is sometimes difficult to overcome the influence of noise on clustering performance and it
cannot fundamentally solve the problem of noise sensitivity. In order to make up for this deficiency, an
improved distance measurement method is adopted in this paper, specifically as follows:

dr(xi, vk) =
√

1− r(xi, vk) (21)

r(xi, vk) = exp(−ψ‖xi − vk‖
2) (22)

ψ =


n∑

i=1

∥∥∥xi − x
∥∥∥2

n


−1

(23)

x =
1
n

n∑
i=1

xi (24)

The improved distance measurement method is based on robust statistics theory and has strong
stability to noise or outliers. Although the distance measurement is similar to the nuclear induced
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distance in form, its essence is still processed in the original image space, and the pixels are not mapped
to the high-dimensional feature space [27].

Parameter β j can adjust the balance between pixel information and non-neighborhood spatial
information. The calculation method of this parameter is as follows:

β j =
E j − Emin

Emax − Emin
, (25)

E j = −
c∑
k

ukj log2 ukj, (26)

where E j represents the information entropy of the jth pixel, and Emax and Emin respectively represent
the maximum and minimum information entropy of all pixel points. Equation (25) can map the
range of information entropy to [0,1]. If the jth point belongs to a certain class explicitly, the entropy
corresponding to that point is relatively small. If the membership degree of this point is average,
indicating that it does not clearly belong to a certain class, the corresponding entropy of this point is
relatively large, which can increase the weight of non-neighborhood pixel information.

In the literature [15], the fuzzy factor uses the spatial distance between the neighborhood pixel
and the center pixel to measure the degree of influence of the neighborhood pixel. The spatial distance
is defined as follows:

δsd =
1

di j + 1
(27)

where δsd denotes the spatial intensity of neighborhood pixels on central pixels. However, spatial
distance alone cannot accurately measure the influence of neighborhood points on the center points.
By introducing the local variation coefficient that has an important influence on the central pixel, the
variation coefficient of the local window is defined as:

δsv = 1− log2(
√
ϕ j + 1) (28)

ϕ j =
C j −Cmin

Cmax −Cmin
(29)

Cu =
V(x)

(x)2 (30)

where V(x) is the variance of grey value in a local window, x denotes the average grey level of
neighborhood pixels, Cmin is the minimum coefficient of variation in all local windows of an image,
Cmax is the maximum value, δsv denotes the discretization of pixel grey values in the local window of
neighborhood points and has a value inside [0,1], δsv is inversely proportional to ϕ j when the value of
ϕ j is close to 0, the δsv value is close to 1, and the logarithmic function can ensure that when the ϕ j is
far away from 0, δsv decreases rapidly; when ϕ j is close to 1, δsv is close to 0. That is to say, when the
neighborhood point is seriously affected by the noise or at the edge, the value of the δsv is close to 0
and the influence of the neighborhood point on the center point is also close to 0, and the value of δsv is
larger when neighborhood points of the window are smooth, the influence of the neighborhood point
on the center point is larger.

Based on testing and analysis, the influence of neighborhood pixels on the center point is redefined
as follows:

δi j =
δsd

2 + δsv
2

δsd + δsv
(31)
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According to Equation (31), the influence of a pixel’s neighborhood spatial information on image
segmentation is defined as:

Kki =
∑
j∈Ni

δi j(1− ukj)
m∥∥∥x j − vk

∥∥∥2
(32)

The specific steps of the AFCM_GSI algorithm are as follows:

Step 1: Determine the number of clusters c, fuzzy weighted index m, the number of iterations T_max,
the iterative termination threshold ε, the size of the search window R ∗ R, the size of the
neighborhood window r ∗ r, and the number of current iterations t = 1;

Step 2: The initial clustering center V(0) is obtained by the LGWO algorithm, calculate the filtered
image η j.

Step 3: Initialization of the membership degree matrix U(0).
Step 4: Compute weight parameter β j.
Step 5: Compute the new objective function value J.
Step 6: Update membership degree matrix U by Equation (19).
Step 7: Update cluster centers V by Equation (20).

Step 8: If
∥∥∥J(t+1)

− J(t)
∥∥∥ < ε or the current iteration number t > T _max, then terminate the iteration,

output the membership matrix U and the cluster center V; otherwise, return Step 4 and continue
the next iteration.

4. Experimental Results and Performance Analysis

4.1. Evaluation Index of Fuzzy Clustering Algorithm

In order to verify the effectiveness of the clustering algorithm, scholars have proposed a variety of
evaluation indicators [28–33]. SA (segmentation accuracy) and CS (comparison score) are widely used
and approved.

SA =
G∩ S

S
(33)

CS =
G∩ S
G∪ S

(34)

where SA represents the proportion of pixels in the region detected by the segmentation algorithm in
the whole region and CS is a measure of similarity. The area of the given annotation is represented by
G. The pixel area detected by the algorithm is represented by S. As the natural image has no standard
segmentation results, the corresponding segmentation accuracy and comparison scores cannot be
calculated. In order to effectively evaluate the segmentation results of natural images, the PSNR (peak
signal to noise ratio) and MSSIM (mean structural similarity) are introduced in this paper.

PSNR = 10 log10(
(2n
− 1)2

MSE
) (35)

MSE =
1

H ×W

H∑
i=1

W∑
j=1

(X(i, j) −Y(i, j))2 (36)

MSSIM =
1
N

N∑
k=1

SSIM(xk, yk) (37)

SSIM(X, Y) =
(2µX·µY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ2
X + σ2

Y + C2)
(38)
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µX =
H∑

i=1

W∑
j=1

ωi jX(i, j) (39)

σX = (
H∑

i=1

W∑
j=1

ωi j(X(i, j) − µX))

1/2

(40)

σXY =
H∑

i=1

W∑
j=1

ωi j(X(i, j) − µX)(Y(i, j) − µY) (41)

where MSE denotes the mean square error of the current image X and the reference image Y, and H
and W are the height and width of the image respectively. The unit of PSNR is dB; the larger the value,
the smaller the distortion. N is equal to the number of bits per pixel, and the average grey level image
is 8; that is, the grey scale of pixels is 256. ωi j is the weight of each window, H and W are the height and
width of the image respectively, µX and µY are the mean values of images X and Y respectively. σX

and σY denote the variance of X and Y respectively, and σXY indicates the covariance of image X and Y.
C1,C2 and C3 are constants; in order to avoid the denominator being 0, they are usually defined as
C1 = (K1 ∗ L)2,C2 = (K2 ∗ L)2, C3 = C2/2, and K1 = 0.01, K2 = 0.03, L = 255. In practical applications,
the image can be partitioned by a sliding window. The total number of blocks is N. Considering the
influence of window shape to the partition, the mean, variance and covariance of each window are
calculated by weighting. The Gauss kernel is usually used, the structure similarity of the corresponding
block is computed, and the structure similarity (SSIM) of the corresponding block is calculated. Finally,
the average value (MSSIM) is used to measure the structural similarity of two images.

PSNR is the most widely used image objective evaluation index, but it is based on the error between
the corresponding pixels, which is based on the error of sensitive image quality evaluation. Because
the human eye is more sensitive to the contrast difference of the spatial frequency, the sensitivity of the
human eye to the contrast difference is higher than that of the color, but the perception of the human eye
is affected by the surrounding area in a region. Therefore, it often appears that the evaluation results
are not consistent with the subjective feelings of the people. MSSIM is used to measure similarity
between two images. One of the two images used by SSIM is an unimpressed undistorted image and
the other is a distorted image. It is another excellent algorithm for image quality evaluation.

4.2. Algorithm Performance Test

In order to verify the effectiveness of the algorithm, synthetic images, optical images, and remote
sensing images were used to conduct experiments, respectively. Images polluted by synthetic noise
(composed of salt and pepper noise with density = 0.02, speckle noise with variance = 0.005, and
Gaussian noise with mean = 0 and variance = 0.01). This algorithm is compared with several algorithms
such as FCM_S [12], FGFCM [14], FLICM [15], and KWFLICM [17] to test the segmentation effect of the
algorithm. The parameters in numerous comparison algorithms are set according to corresponding
documents. In order to achieve good experimental results, the relevant parameters in this experiment
are set as follows: m = 2, ε = 10−5, T_max = 300, search window size R = 5 and neighborhood
window size r = 3. Among them, the iteration termination threshold ε is a smaller number, and its
value is usually selected based on human experience. The results obtained from experiments are the
mean value of the algorithm running several times.

In the segmentation and comparison experiment of synthetic image 1 and 2, clustering numbers of
all algorithms are set as 3 and 4, respectively. These synthetic images and their noise-polluted images
are shown in Figure 2.
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Figure 2. (a) Noise-free synthetic image 1; (b) synthetic image 1 polluted by synthetic noise; (c) noise-free
synthetic image 2; (d) synthetic image 2 polluted by synthetic noise.

In the comparison experiment of synthetic images, Figure 3 shows the segmentation effect of several
different segmentation methods. The SA and CS of different methods can be more intuitively compared
through Table 1 and Figure 4. Moreover, the more complex the image is, the lower the segmentation
accuracy will be. The values of SA and CS in the proposed method are the largest and the segmentation
effect is the best. By combining the neighborhood and non-neighborhood information of pixels, the
relationship between noise suppression and edge preservation can be well balanced. The segmentation
result is very similar to the original image and is superior to other algorithms in visual quality and
segmentation performance. Among several algorithms, the FCM_S algorithm has the weakest noise
reduction ability. Although the FCM_S algorithm introduces the neighborhood spatial information, the
processed image has too much noise. The segmentation performance is not high enough under the noise
condition, and the segmentation result is not ideal. The segmentation effect of the FGFCM algorithm
is better than that of the FCM_S algorithm, but there are still more noise points in the image and the
edges are more fuzzy, so the ideal segmentation effect and anti-noise performance cannot be obtained.
The FLICM algorithm and the KWFLICM algorithm better consider the neighborhood information of
the pixel, with higher segmentation quality and better visual effect. To sum up, the algorithm proposed
in this paper can achieve a better segmentation effect and anti-noise ability.

Figure 3. (a) segmented image by FCM_S; (b) segmented image by FGFCM; (c) segmented image by
FLICM; (d) segmented image by KWFLICM; (e) segmented image by AFCM_GSI.

Table 1. Segmentation accuracy (SA) and comparison scores (CS) of five algorithms on noisy synthetic
image 1 and 2.

Image Algorithms FCM_S FGFCM FLICM KWFLICM AFCM_GSI

b SA 0.8423 0.8976 0.9565 0.9780 0.9953
b CS 0.7275 0.8142 0.9161 0.9569 0.9907
d SA 0.6860 0.7343 0.8508 0.8701 0.9843
d CS 0.5221 0.5802 0.7409 0.7703 0.9671
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Figure 4. SA and CS of five algorithms on noisy synthetic image 1 and 2.

In the segmentation and comparison experiment of natural images and a remote sensing image
1, in order to achieve a better segmentation effect, the clustering number of all algorithms is set to 2.
In the segmentation and comparison experiment of natural image 2 and remote sensing image 1, the
clustering number of all algorithms is set to 3. These images are public images on the Internet. These
images and their noise-polluted images are shown in Figure 5.

Figure 5. (a) Noise-free natural image 1; (b) natural image 1 polluted by synthetic noise; (c) noise-free
natural image 2; (d) natural image 2 polluted by synthetic noise; (e) noise-free remote sensing image 1;
(f) remote sensing image 1 polluted by synthetic noise.

In the segmentation and contrast experiment of different kinds of remote sensing images 2–6,
the clustering number of all algorithms is set as 3. These images were manually extracted from large
images from the United States Geological Survey (USGS) National Map Urban Area Imagery collection
for various urban areas around the country [34]. These images and their synthetic noise-polluted
images are shown as follows:

In the comparison experiment of optical images and remote sensing images, the segmentation
effect of different algorithms can be observed in Figure 6. PSNR and MSSIM of different algorithms can
be compared more clearly and intuitively through Table 2 and Figure 7. In order to verify the availability
of the proposed algorithm, segmentation experiments are carried out for different types of remote
sensing images in Figure 8. Experimental results in Table 3 and Figure 9 demonstrate the advantages of
the proposed algorithm. By comparing the segmentation results of optical images and remote sensing
images, the segmentation method proposed in this paper achieves very good segmentation results.
Due to the need to balance the denoising performance and image details of the algorithm, the PSNR
value of the AFCM_GSI algorithm is sometimes not the highest among all algorithms, but the MSSIM
value is the highest among all algorithms. Since PSNR does not consider the visual characteristics of
human eyes, the similarity measure (MSSIM) between two images can represent the quality of image
segmentation. Experimental results show that the proposed algorithm has strong denoising ability
and the segmented image is very similar to the original image. The algorithm has the highest MSSIM
value and the best visual effect of image segmentation.
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Figure 6. (a) segmented image by FCM_S; (b) segmented image by FGFCM; (c) segmented image by
FLICM; (d) segmented image by KWFLICM; (e) segmented image by AFCM_GSI.

Table 2. Peak signal to noise ratio (PSNR) and mean structural similarity (MSSIM) of five algorithms
on noisy natural images and remote sensing image 1.

Image Algorithms FCM_S FGFCM FLICM KWFLICM AFCM_GSI

b PSNR 12.2791 12.4592 12.5016 12.5148 12.5284
b MSSIM 0.3987 0.5205 0.6324 0.6921 0.6934
d PSNR 11.6559 11.7341 12.1253 11.7898 12.7938
d MSSIM 0.1243 0.1931 0.3340 0.4668 0.7322
f PSNR 11.8354 12.2012 14.2452 11.5220 12.5273
f MSSIM 0.1608 0.1877 0.2398 0.2450 0.2471

Figure 7. PSNR and MSSIM of five algorithms on noisy natural images and remote sensing image 1.
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Figure 8. (a) Noise-free remote sensing image 2; (b) noise-free remote sensing image 3; (c) noise-free
remote sensing image 4; (d) noise-free remote sensing image 5; (e) noise-free remote sensing image 6; (f)
remote sensing image 2 polluted by synthetic noise; (g) remote sensing image 3 polluted by synthetic
noise; (h) remote sensing image 4 polluted by synthetic noise; (i) remote sensing image 5 polluted by
synthetic noise; (j) remote sensing image 6 polluted by synthetic noise;.

Table 3. PSNR and MSSIM of five algorithms on noisy remote sensing images 2–6.

Image Algorithms FCM_S FGFCM FLICM KWFLICM AFCM_GSI

f PSNR 12.7873 13.2223 14.1081 14.1206 14.8136
f MSSIM 0.3332 0.3666 0.4667 0.5086 0.5829
g PSNR 9.3817 9.8205 10.8840 8.6311 11.3334
g MSSIM 0.0529 0.0721 0.1321 0.1381 0.3190
h PSNR 11.8431 12.2115 12.4235 11.2166 12.2928
h MSSIM 0.2176 0.3247 0.4278 0.3557 0.5046
i PSNR 11.0907 11.3853 11.7925 11.4815 11.8863
i MSSIM 0.1009 0.1341 0.2391 0.2414 0.3552
j PSNR 12.3548 12.8767 18.0852 7.7038 18.2051
j MSSIM 0.1046 0.1306 0.6565 0.0806 0.7849

Figure 9. PSNR and MSSIM of five algorithms on noisy remote sensing images 2–6.

5. Conclusions

In this paper, an adaptive image segmentation algorithm based on global spatial information is
proposed to improve the anti-noise and precision of image segmentation. By introducing neighborhood
and non-neighborhood information of pixels, this method adaptively adjusts the corresponding weight
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and has good denoising performance. This method uses the LGWO algorithm to roughly cluster the
image and get the initial clustering center and utilizes a fast non-local mean algorithm to filter the
original image. The adaptive weight assignment strategy is adopted to assign a corresponding weight
to each pixel in the neighborhood window and make full use of the local information of the image.
The information entropy is used to balance the relationship between the pixel and the non-neighborhood
information, and the neighborhood and non-neighborhood information around the pixel is added to
the target function as spatial information. The improved distance measure is also used to replace the
traditional Euclidean distance. Experimental results show that the above improvements can make the
segmentation results more accurate. This paper proves the feasibility of this algorithm, which has the
advantages of high segmentation accuracy and good denoising effect.
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