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Abstract: An underdetermined direction of arrival (DOA) estimation method of wideband linear
frequency modulated (LFM) signals is proposed without grid mismatch. According to the
concentration property of LFM signal in the fractional Fourier (FRF) domain, the received sparse
model of wideband signals with time-variant steering vector is firstly derived based on a coprime
array. Afterwards, by interpolating virtual sensors, a virtual extended uniform linear array (ULA) is
constructed with more degrees of freedom, and its covariance matrix in the FRF domain is recovered
by employing sparse matrix reconstruction. Meanwhile, in order to avoid the grid mismatch problem,
the modified atomic norm minimization is used to retrieve the covariance matrix with the consecutive
basis. Different from the existing methods that approximately assume the frequency and the steering
vector of the wideband signals are time-invariant in every narrowband frequency bin, the proposed
method not only can directly solve more DOAs of LFM signals than the number of physical sensors
with time-variant frequency and steering vector, but also obtain higher resolution and more accurate
DOA estimation performance by the gridless sparse reconstruction. Simulation results demonstrate
the effectiveness of the proposed method.

Keywords: underdetermined DOA estimation; wideband LFM signals; fractional Fourier transform;
sparse matrix reconstruction; atomic norm minimization

1. Introduction

As typical wideband signals with rapidly time-varying frequency and large time-bandwidth
product, linear frequency modulated (LFM) signals have been widely adopted in radar [1], sonar [2],
mobile communications [3], and seismic detection fields. Direction of arrival (DOA) estimation for
wideband LFM signals has played an important role in position [4], navigation and interference
suppression [5] of these fields.

Due to the wideband nonstationary characteristics of the LFM signals, the traditional
high-resolution DOA estimation methods based on narrowband and wide-sense stationary signals [6–8]
cannot be applied for wideband LFM signals. The typical wideband DOA estimation methods include
the incoherent signal-subspace method (ISM) [9] and the coherent signal-subspace method (CSM) [10].
The ISM decomposes the wideband signals into several independent narrowband signals by using
discrete Fourier transform (DFT), and approximately assumes that the frequency is time-invariant in
every frequency bin without taking the whole wideband information into account. Thus, it has a large
amount of calculation and is invalid for the coherent signals. The CSM transforms the wideband signal
into a certain reference frequency by the focusing matrices and takes the average of the covariance
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matrix to decorrelation. Although the CSM improves the accuracy of the wideband DOA estimation
and has relatively low computational complexity, the focusing matrices are sensitive to a priori
knowledge of the DOA which is hard to be known beforehand.

With the development of the time-frequency (TF) analysis methods, the special concentration
property of wideband nonstationary signals in the TF domain can be used to distinguish from stationary
signals and estimate its time-frequency signature, which motivates several approaches for the DOA
estimation of wideband nonstationary signals. In [11], the DOA estimation for wideband LFM signals
is realized by interpolating the spatial time–frequency distribution (STFD) matrices. Besides the
disturbance of cross-terms induced by the choice of the time–frequency points, this approach mainly
suffers from time consuming and model biases. To improve the performance of wideband DOA
estimation, several modified algorithms based on the short-time Fourier transform (STFT) [12] and
Wigner–Ville distribution (WVD) [13] have been presented. Nevertheless, the narrow time-window
in STFT limits the time–frequency resolution, and the WVD requires great computational cost and
suffers from cross-terms interference when nonstationary signals are multicomponent. As a linear
transformation without the cross-terms interference, the fractional Fourier transform (FRFT) has no
frequency point selection problem in secondary TF distribution, and can be considered as a rotation
operator in the TF plane [14,15]. Moreover, owing to the excellent aggregation characteristic for the
LFM signals, the FRFT is especially suitable to deal with wideband LFM signals compared with other
TF analysis approaches. By using the FRFT and multiple signal classification (FRFT-MUSIC) algorithm,
the DOA estimation of uncorrelated wideband LFM signals based on uniform linear array (ULA) is
presented in [16], and the new received model in the fractional Fourier (FRF) domain is constructed,
but it is invalid for coherent signals. The DOA estimations of coherent wideband LFM signals are
proposed in [17,18] by performing a subspace smoothing and Toeplitz decorrelation scheme on the
covariance matrix in FRF domain, respectively, at the cost of a reduction in array aperture.

Meanwhile, compressive sensing (CS) and sparse representation (SR) have been rapidly
developed, and the spatial sparsity has been introduced in the DOA estimation of wideband signals.
In [19,20], using the idea of the ISM or the CSM methods, the wideband signals are decomposed
or transformed into narrowband signals, and then the spatial sparse solution of DOA is obtained
by using the CS algorithms, such as orthogonal matching pursuit (OMP) [19] or singular value
decomposition (l1-SVD) reconstruction [20]. Motivated by the FRFT-MUSIC algorithm, the received
model of wideband signals in the FRF domain is in accordance with the CS framework, and the spatial
sparse solution of DOA can be recovered under the maximizing a posteriori (MAP) criterion based on
lp norm [21]. In [22], a spatial compressed sensing framework is employed for DOA estimation with a
randomly thinned phased array. The above methods based on the CS framework are also applicable to
correlated sources, even with a single snapshot. However, there is an inherent disadvantage in these
methods, i.e., the grid mismatch problem, which is inevitable to bring substantial bias especially when
the DOAs of signals deviate from the discrete grids or SNR increases. Their performance would be
compromised with the grid sparsity in the CS methods. Furthermore, the aforementioned CS-based
and TF-based algorithms are all based on ULA or random array, so the degrees of freedom (DOFs) are
limited by the number of physical sensors, i.e., the number of wideband signals identified by these
methods should be less than the number of physical sensors in the array.

In order to increase DOFs and address the scenario where the number of signal sources is more
than that of physical sensors, the nested arrays [23] and the coprime arrays [24–29], as two typical
sparse arrays, have been used in the underdetermined DOA estimation algorithms. In [24–28], by
adopting a coprime array as the received array of narrowband signals, a virtual extended array is
constructed by vectoring the covariance matrix, which is also called the difference co-array. Although
the difference co-array has some holes, which make it discontiguous, there are more virtual sensors
in it than the physical sensors in a coprime array. In [26,27], discrete grids are defined at the spatial
directions and the CS framework is used in the difference co-array, so the underdetermined DOA
estimation of a narrowband signal is transformed to a spatial sparse recovery problem based on the
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CS framework, and many CS recovery algorithms, such as the least absolute shrinkage and selection
operator (LASSO) [26] and the OMP [27], can be adopted. Nevertheless, the grid mismatch problem still
exists due to the usage of the CS algorithms. In [29], by extending the difference co-array to wideband
cases, a two-step off-grid group sparsity approach for wideband DOA estimation is proposed to solve
the underdetermined and grid mismatch problem. It firstly yields a coarser grid estimation, and then a
bias vector is estimated by the optimization. However, it still uses the idea of ISM with time-invariant
frequency and steering vector in every frequency bin, and mismatches with the wideband LFM signals
model, which has the contiguous and linearly time-varying frequency and the time-variant steering
vector. Moreover, the off-grid DOA estimation is still based on the discrete grids of spatial parameters,
so the recovery deviation is only improved to a certain extent.

Recently, the grid-free compressed sensing approach based on a continuous dictionary has been
proposed by atomic norm minimization (ANM) [30], which can recover continuous-valued frequencies
of the spectrally sparse signal from a few time-domain samples. Authors of [31] modified the ANM to
recover super-resolution frequencies with the prior knowledge from the structure of a spectrally sparse
and undersampled signal. In [32], an iterative reweighted ANM algorithm is proposed to improve
frequency recovery performance with faster speed. Although these methods are applied to recover
continuous-valued frequencies in spectral estimation, they provide an effective approach to solve the
discrete grid mismatch problem for non-uniformly sampled or irregularly spaced signals.

The focus of the proposed method is to solve the underdetermined DOA estimation of wideband
LFM signals with gridless sparse reconstruction. By using the concentration property of wideband
LFM signals in the FRF domain, the received sparse model in the FRF domain is firstly constructed
based on the coprime array. Then, by interpolating virtual sensors into a difference co-array, the sparse
covariance matrix of virtual ULA is recovered by modified atomic norm minimization, which increases
the DOFs and provides a contiguous basis to avoid discrete grids mismatch. Unlike some existing
algorithms that assume the steering vector of wideband signals is time-invariant in every frequency
bin, the proposed method not only can resolve more wideband LFM sources than physical sensors
with time-variant steering vector in FRF domain, but can also obtain more accurate DOA estimation
performance with gridless sparse reconstruction.

Notations: The superscripts (·)T, (·)∗, (·)H and (·)−1 respectively represent the transpose,
conjugation, conjugate transpose and inverse of a matrix. Let the operator rank (·) and Tr (·) indicate
the rank and the trace of a matrix, respectively. The notation ⊗ and � respectively signify the
Kronecker product and Hadamard product between matrices. ‖·‖F and | · |mean the Frobenius norm
and cardinality of a set, respectively.

2. The Received Model of Wideband LFM Signal

Consider there is a pair of sparse ULAs with M and N isotropic sensors, respectively, where M
and N are coprime integers. As shown in Figure 1a, align the first sensor of both sparse ULAs as the
reference, and keep the inter-element distances of the two sparse ULAs with Md and Nd, respectively,
where d denotes the half of wavelength. According to the coprimality, M + N − 1 sensors constitute a
coprime array without overlap which can be seen in Figure 1b, and the ith sensor locates at qid, where
i = 1, 2, · · · , M + N − 1 and qi ∈ Q = {Mn} ∪ {Nm}, 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M− 1.
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Figure 1. The structure of coprime array with M = 3 and N = 5.

2.1. The Received Signal Model in Time Domain

Without loss of generality, assume there are K wideband LFM signals from different directions
θk, k = 1, 2, · · · , K impinging on the coprime array. The output of the ith sensor can be described as

xi(t) =
K

∑
k=1

sk(t− τk,i) + ni(t), (1)

where sk(t) = ej2π( fkt+ 1
2 µkt2) is the kth wideband LFM signal, τk,i = qid sin θk/c is the time delay of kth

signal at ith senor, fk and µk are respectively its initial frequency and frequency modulation rate, c is
light velocity, i = 1, 2, · · · , M + N − 1, and k = 1, 2, · · · , K. The received signals based on coprime
array can be written as

x(t) = [x1(t), x2(t), · · · , xM+N−1(t)]
T

=
K

∑
k=1

sk(t− τk) + n(t)

=
K

∑
k=1

a(θk, t)sk(t) + n(t)

= As(t) + n(t),

(2)

where sk(t) and a(θk, t) are respectively the kth wideband LFM signal and its steering vector, n(t) is
the additive white Gaussian noise vector which is statistically independent of signals, and where,
for simplicity, s(t) = [s1(t), · · · , sK(t)]T and A = [a(θ1, t), · · · , a(θK, t)] denote the signal vector and
the array manifold, respectively. The steering vector a(θk, t) of the kth wideband LFM signal is given by

a(θk, t) =
[
1, e−j2π( fk+µkt)τk,2+jπµk(τk,2)

2
, · · · , e−j2π( fk+µkt)τk,(M+N−1)+jπµk(τk,(M+N−1))

2] T

=
[
1, e−j2π fk(t)τk,2 ejπµk(τk,2)

2
, · · · , e−j2π fk(t)τk,(M+N−1) ejπµk(τk,(M+N−1))

2] T,
(3)

where fk(t) = fk + µkt and τk,i = qid sin θk/c. We can clearly observe that fk(t) and a(θk, t) of the kth
wideband LFM signal both change with time. It should be noted that a(θk, t) is not only relevant to
DOAs of signals, but also varies with time. Since the frequency and steering vector of the LFM signal
are time-variant, the DOA estimation methods based on narrow and stationary signals which assume
the time-invariant frequency and steering vector in [6–8] cannot be applied to resolve wideband signals
in the receiver. Moreover, the traditional wideband DOA estimation methods, such as ISM-based
methods [9,19,20,28] approximately assume that the frequency and steering vector of wideband signals
are time-invariant in every frequency bin when the received signals are modeled, are different from the
model of the proposed method in Equation (2). The proposed method considers the scenarios where
frequencies of wideband signal continuously and linearly change with time, and is suitable for the
DOA estimation of wideband LFM signal.
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2.2. FRFT of Wideband LFM Signal

As a generalization of Fourier transform (FT), FRFT is regarded as a counterclockwise rotation of
the signal coordinates around the origin in the TF plane. The definition of FRFT for the kth LFM signal
sk(t) is written as

Sk(α, u) = Fp[sk(t)] =
∫ +∞

−∞
Kp(u, t)sk(t) dt (4)

where p presents the order of FRFT, α = pπ/2 denotes a counterclockwise rotation angle of the signal
coordinates and u stands for the FRF domain. Kp(u, t) means the FRFT kernel function, i.e.,

Kp(u, t) =


√

1− j cot αejπ[(t2+u2) cot α−2tu csc α], α 6= nπ

δ(t− u), α = 2nπ

δ(t + u), α = (2n + 1)π.

(5)

From the above definition in Equations (4) and (5), we can easily find that the FRFT is a linear
transformation without the cross-terms interference especially when sk(t) includes multicomponents.
The inverse FRFT can be expressed as

sk(t) = F−p[Sk(α, u)] =
∫ ∞

−∞
K−p(u, t)Sk(α, u) du. (6)

It reveals that sk(t) can be decomposed to a basis formed by the orthonormal LFM functions in the
FRF domain, which is especially appropriate to process the LFM signals. Furthermore, an LFM signal
can be transformed into an impulse δ-function in a certain fractional domain, which would generate
an obvious peak in the FRF domain as shown in Figure 2. Therefore, as for the LFM signal, the best
aggregation performance can be obtained by FRFT in a certain FRF domain [14].

(a) The DFRFT spectrum of the kth wideband LFM
signal

(b) The p0-order DFRFT spectrum of the kth
wideband LFM signal

Figure 2. The spectrum for the DFRFT of the kth wideband LFM signal.

According to the decomposition algorithm proposed by Ozaktas [15], sk(t) is sampled into
snapshots sk(n) at the sampling rate fs, and the discrete FRFT (DFRFT) of sk(n) can be expressed as

Sk(α, m) =
(P−1)/2

∑
n=−(P−1)/2

Kp(m, n)sk(n) =

√
1− j cot α

P
ejπ( m2 cot α

P ) ·
(P−1)/2

∑
n=−(P−1)/2

ejπn( −2m csc α
P +

2 fk
fs
)e

jπn2( cot α
P +

µk
f 2
s
)
, (7)
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where P is the number of snapshots and m denotes the quantification of u in the FRF domain, which
can be seen in Figure 2. According to the concentration property of LFM signal in FRF domain, it has
been proved Sk(α, m) has the best concentration at αk0=− cot−1( µk P

f 2
s
), i.e.,

Sk(αk0, m) =

√
1− j cot αk0

P
ejπ(

m2 cot αk0
P ) ·

(P−1)/2

∑
n=−(P−1)/2

ej2πn(
−m csc αk0

P +
fk
fs
). (8)

It is obvious that when mk0 = fk P sin αk0
fs

, Sk(αk0, m) reaches the maximum value

Sk(αk0, mk0) =
√

P(1− j cot αk0)ejπ(
m2

k0 cot αk0
P ). (9)

At this moment, the parameters (µk, fk) of the kth LFM signal can be estimated by the coordinates
(αk0, mk0) corresponding to the peak Sk(αk0, mk0) [16]{

µ̂k = − f 2
s cot αk0/P

f̂k = mk0 fs csc αk0/P.
(10)

2.3. The Received Signal Model of Wideband LFM Signal Based on Coprime Array in FRF Domain

The kth LFM signal received by the ith sensor can be expressed as

sk,i(t) = sk(t− τk,i)

= ej2π(− fkτk,i+
1
2 µkτ2

k,i) · ej2π(( fk−µkτk,i)t+
1
2 µkt2)

= bk(τk,i) · ej2π( f ′kt+ 1
2 µkt2),

(11)

where bk(τk,i) = ej2π(− fkτk,i+
1
2 µkτ2

k,i) and f ′k = fk − µkτk,i. Compared with the signal sk(t) received by
the reference sensor, the phase and initial frequency of sk,i(t) both change, and only its frequency
modulation rate µk remains the same. Combined with Equation (10), we can deduce that the DFRFT
Sk,i(α, m) remains the best aggregation at αk0. It can be derived that the coordinates and amplitude
corresponding to the peak of Sk,i(αk0, m) are changed into (αk0, mk,i) and Sk,i(αk0, mk,i), where{

αk0 = −arc cot(µkP/ f 2
s )

mk,i = mk0 + fsτk,i cos αk0
(12)

Sk,i(αk0, mk,i) = Sk(αk0, mk0) · e−j2π fsτk,imk0 sin αk0/P · e−jπ f 2
s τ2

k,i sin αk0 cos αk0/P

= Sk(αk0, mk0) · ck(τk,i),
(13)

where ck(τk,i) = e−j2π fsτk,imk0 sin αk0/Pe−jπ f 2
s τ2

k,i sin αk0 cos αk0/P. Meanwhile, according to the time-shifting
characteristics of FRFT [14], the same deduction as Equation (13) also can be proved again. It is
noteworthy that the quadratic term about time delay τ2

k,i in Equation (13) is so small that it can be
ignored in processing [5,16–18,33]. Hence, ck(τk,i) can be approximated as

ck(τk,i) = e−j2π fsτk,imk0 sin αk0/P. (14)

According to the aforementioned analysis, the peaks of received signals based on coprime array
in the FRF domain can be expressed as

XF = [X1, X2, · · · , XM+N−1]
T

= C · SF + NF,
(15)
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where SF and NF are the kth wideband LFM signal and noise components of the peak of received
signals in the FRF domain, respectively, and where

SF = diag (S1(α10, m10), S2(α20, m20), · · · , SK(αK0, mK0)) , (16)

C = [c1, c2, · · · , cK ](M+N−1)×K =


1 1 · · · 1

c1(τ1,2) c2(τ2,2) · · · cK(τK,2)
...

...
. . .

...
c1(τ1,M+N−1) c2(τ2,M+N−1) · · · cK(τK,M+N−1)

 , (17)

where diag(·) means a diagonal matrix and ck = [1, ck(τk,2), · · · , ck(τk,M+N−1)]
T

denotes the steering
vector of the kth LFM signal in the FRF domain. From Equation (14), it can be clearly seen that ck is a
time-invariant steering vector and only varies with θk. The covariance matrix of XF is given by

RXF = E
{

XFX
H
F

}
=

K

∑
k=1

pkck(θk)c
H
k (θk) + σ2

nI

= CRSC
H
+ RN ,

(18)

where E{·} denotes the statistical expectation, RS and RN are respectively the covariance matrices

of SF and NF, I denotes the identity matrix and pk = E
[∣∣∣Sk(αk0, mk0)

∣∣∣2] denotes the second-order

statistics of peak Sk(αk0, mk0) of the kth LFM signal in the FRF domain.

3. Covariance Matrix Reconstruction by Using Atomic Norm Based on Difference
Co-Array Interpolation

3.1. Interpolating Virtual Sensors in the Difference Co-Array to Form the Virtual ULA

By vectoring the covariance matrix RXF , the virtual received signal can be expressed as

YF = vec(RXF )

= vec(
K

∑
k=1

pkck(θk)c
H
k (θk) + σ2

nI)

= Dp + σ2
ni,

(19)

where vec(·) is the vectorization operator, D=[c∗1(θ1)⊗ c1(θ1) c∗2(θ2)⊗ c2(θ2) · · · c∗K(θK)⊗ cK(θK)],

p = [p1, p2, · · · , pK]
T

and i = vec(I). The dimensions of the virtual received signal YF are increased
to (M + N − 1)2 × 1. Compared with Equation (15), we found that YF behaves in a similar linear
structure as Equation (15), whose manifold D plays the same role as the manifold of a virtual array.
The sensors corresponding to manifold D are located at the set {skd}, where

S = {sk} =
{

qi − qj |i, j = 0, 1, · · · , M + N − 1
}

. (20)

By extracting the different elements and removing the repetitive elements from S, a subset
Sv = {vk} is built. And then, a difference co-array Av is derived with the sensors located at
Svd = {vkd}, whose configuration is shown in Figure 3a. Correspondingly, the virtual received
signals Yv of the difference co-array Av can be obtained by selecting the corresponding rows from YF
as follows

Yv = Dvp + σ2
n Ĩ, (21)
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where Dv ∈ C|Sv |×K denotes the array manifold of the difference co-array Av. As demonstrated
in [25], the set Sv ranges from −M(N− 1) to M(N− 1), but it is not continuous. Compared with ULA,
there are several holes in Av as shown in Figure 3a. Since the non-uniformity and sparsity of an array
result in the model mismatch by using the traditional DOA estimation methods, Ref. [25] selects the
consecutive part Sc in Av to avoid this problem, but the information of the discontiguous part in Av is
apparently discarded, which inevitably degrades the estimation performance as analyzed in [24,26].

Figure 3. The structure of virtual extension arrays based on coprime array with M = 3 and N = 5.

In order to make the most of all sensors in the difference co-array Av, by interpolating
virtual sensors at discontiguous position, the missing sensors at holes of Av are added on.
Then, a virtual longer ULA AU is built with 2M(N − 1) + 1 sensors located at SUd =

{[−M(N − 1), · · · ,−1, 0, 1, · · · , M(N − 1)]d}, which is shown in Figure 3b. It should be noted that
the received signals corresponding to the interpolated virtual sensors are set to zero, which are only
the virtual signals in the mathematical rather than physical sense. Therefore, the 2M(N − 1) + 1
dimensional virtual received signals YU for virtual ULA AU can be defined as

〈YU〉i =
{
〈Yv〉i , i ∈ Sv

0, i ∈ SU − Sv,
(22)

where 〈·〉i means the signal received by the ith sensor of virtual ULA AU . If we can recover the
unknown virtual signals corresponding to the interpolated virtual sensors by sparse signal processing,
the reconstructed received signals corresponding to the longer virtual ULA AU can be applied by the
traditional DOA estimation methods in order to improve the accuracy and DOFs.

3.2. Sparse Covariance Matrix Reconstruction by Atomic Norm Minimization

Assume the signals received by the interpolated virtual sensors are actually existed rather than
the nominal as in Equation (22), but they are unknow. Then, the signals received by the virtual ULA
AU can be expressed as

Y =
K

∑
k=1

u(θk)p(θk) = Up, (23)

where U = [u(θ1), u(θ2), · · · , u(θK)] ∈ C|SU |×K represents the array manifold of virtual ULA AU .
Seen from the outside, the received signal Y in Equation (23) also has a similar linear structure as the
received signal XF on coprime array without noise, but Y actually includes a second-order statistics
derived from the covariance matrix of signal peaks in FRF domain Equation (18). Furthermore, Y is
a column vector and has similar characteristic as a single snapshot, so the low-rank problem of
second-order statistics in Y would bring difficulty to estimate DOAs of multiple sources.

On account of the low-rank problem, taking the middle sensor as the reference, the virtual ULA
SU can be divided into L = M(N − 1) + 1 overlapping sub-arrays, and each sub-array includes
L contiguous virtual sensors, which is shown in Figure 4. Accordingly, Y can be divided into L
sub-vectors {y1, y2, · · · , yL}.
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Figure 4. The division of sub-array in virtual ULA SU with M = 3 and N = 5.

The first sub-array could be taken as the reference virtual sub-array, and its steering vector can be
written as

r(θk) = u1(θk)

=
[
e−j2π fsτk,L(mk0 sin αk0)/P, e−j2π fsτk,L+1(mk0 sin αk0)/P, · · · , e−j2π fsτk,2L−1(mk0 sin αk0)/P

]T

=
[
1, e−j2π fsd sin(θk)(mk0 sin αk0)/Pc, · · · , e−j2π fs(L−1)d sin(θk)(mk0 sin αk0)/Pc

]T
.

(24)

Likewise, the steering vector of the kth signal received by the lth virtual sub-array is

ul(θk) =
[
e−j2π fsτk,L−l+1(mk0 sin αk0)/P, e−j2π fsτk,L−l+2(mk0 sin αk0)/P, · · · , e−j2π fsτk,2L−l (mk0 sin αk0)/P

]T

=
[
e−j2π fs(−l+1)d sin θk(mk0 sin αk0)/Pc, e−j2π fs(−l+2)d sin θk(mk0 sin αk0)/Pc, · · · , e−j2π fs(−l+L)d sin θk(mk0 sin αk0)/Pc

]T
,

(25)

where τk,L−l+i = (−l + i)d sin θk/c denotes the time delay of the kth signal at the ith sensor in the lth
virtual sub-array. Hence, the signal received by the lth virtual sub-array is expressed as

yl =
K

∑
k=1

ul(θk)pk = Ulp, l = 1, 2, · · · , L (26)

where Ul = [ul(θ1), ul(θ2), · · · , ul(θK)] ∈ CL×K. Note that the virtual received signal yl by the lth
virtual sub-array denotes the second-order statistics of peak Sk(αk0, mk0), unlike the received model in
Equation (15) which contains the peak Sk(αk0, mk0) of the kth wideband LFM signal in FRF domain.
The division of the L sub-arrays would result in the phase offsets among virtual received signal yl .
The phase offsets between reference virtual sub-array and the L-1 sub-arrays can be deduced as

b(θ) =
[
1, e−j2π fsd sin(θ)(m0 sin α0)/Pc, · · · , e−j2π fs(L−1)d sin(θ)(m0 sin α0)/Pc

]T
, (27)

which represents the difference among each virtual sub-array. From the above analysis, the steering
vector and received signal of the lth sub-array also can be respectively expressed as

ul(θ) = u1(θ)
〈

bH(θ)
〉

l
= r(θ)

〈
bH(θ)

〉
l

(28)

and

yl =
K

∑
k=1

ul(θk)pk =
K

∑
k=1

r(θk)
〈

bH(θk)
〉

l
pk = r · diag(bH

l )p. (29)

By aligning the L sub-vectors as follows

Ỹ = [yl , y2, · · · , yL] ∈ CL×L, (30)
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a virtual received signal model is constructed. Based on the deduction of Equation (29), Ỹ is regarded
as L different measurements of the virtual signals received by the reference virtual sub-array, but it
contains all elements in Y, so it includes all the information in the virtual ULA AU . Hence, Ỹ is used to
estimate DOA instead of Y, which not only solves the low-rank problem of Y, but also retains all the
elements in Y to improve the estimation performance.

In the sparse recovery, as a continuous representation method without discrete basis and grid
mismatch, atomic norm is used to exactly reconstruct signal. In order to recover Ỹ, the definition of the
atomic norm about Ỹ is introduced as follows∥∥∥Ỹ

∥∥∥
A,0

= inf
K

{
K

∑
k=1

r(θk)b
H(θk)pk, pk ≥ 0

}
= inf

K

{
K

∑
k=1

B(θk)pk, pk ≥ 0

}
, (31)

where A = {B(θ)} =
{

r(θ)bH(θ)|θ ∈ [−90◦, 90◦]
}

is the atomic set, and the spatial parameter θ varies
continuously. Using the least atoms to represent Ỹ is an NP-hard problem, which is equivalent to
minimize Equation (31). It can be relaxed to the convex optimization problem

∥∥∥Ỹ
∥∥∥

A
= inf

{
∑
k

pk

∣∣∣Ỹ = ∑
k

B(θk)pk, pk ≥ 0

}
, (32)

and can be further represented as a semi-definite programming (SDP) form [30] as follows

∥∥∥Ỹ
∥∥∥

A
= inf

z ∈ CL, W ∈ CL×L

{
1

2L
Tr(T(z)) +

1
2L

Tr(W)

∣∣∣∣∣
[

T(z) Ỹ
ỸH W

]
≥ 0

}
, (33)

where T(z) denotes a Hermitian Toeplitz matrix and z is its first column. Combined with Vandermonde
decomposition [34], T(z) can be denoted as

T(z) =
K

∑
k=1

r(θk)r
H(θk)pk, (34)

where pk = E
[∣∣∣Sk(αk0, mk0)

∣∣∣2] denotes the second-order statistics of the kth LFM signal peak

Sk(αk0, mk0) in FRF domain. If z∗ is the optimum solution for Equation (33), T(z∗) equals to the
covariance matrix of Sk(αk0, mk0) in the FRF domain received by the reference virtual array.

Compared Equation (24) with Equation (27), it is obvious that r(θ) = b(θ). And then combined
with Equations (29) and (34) can be further expressed as

T(z∗) =
K

∑
k=1

r(θk)b
H(θk)pk = Ỹ, (35)

where z∗ denotes the optimum solution to Equation (33). Meanwhile, the first column z∗ of the
Hermitian Toeplitz positive semidefinite (PSD) matrix T(z∗) also can be expressed as

z∗ =
K

∑
k=1

r(θk)
〈

bH(θk)
〉

1
pk =

K

∑
k=1

u1(θk)pk = y1, (36)

i.e., the first column of Ỹ. If we can retrieve z∗ by atomic norm, T(z∗) can be reconstructed based
on the Hermitian Toeplitz property. That is also to say Ỹ and covariance matrix of reference virtual
sub-array are acquired, which could be used to precisely estimate DOA by traditional methods. Due to
the continuous direction parameter by atomic norm, there is no discrete grid mismatch problem. Thus,
focus of the following work is to recover the first column z∗.
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As derivation in Equation (36), we can get the atomic norm of z as follows

∥∥∥z
∥∥∥

Ar
= inf

{
∑
k

pk

∣∣∣z = ∑
k

r(θk)pk, pk ≥ 0

}
, (37)

where Ar = {r(θ) = u1(θ)|θ ∈ [−90◦, 90◦]} is the atomic set of z with continuous direction parameter.
Note that compared

∥∥∥z
∥∥∥

Ar
in Equation (37) with

∥∥∥Ỹ
∥∥∥

A
in Equation (32), the atom set Ar of z is the

same as the atom set A of Ỹ, and minimizing
∥∥∥Ỹ
∥∥∥

A
is equivalent to minimizing

∥∥∥z
∥∥∥

Ar
because of〈

bH(θk)
〉

1 = 1. Therefore, the reconstruction of Ỹ, i.e., the covariance matrix T(z∗) on reference virtual

array, can be achieved by minimizing
∥∥∥z
∥∥∥

Ar
.

In actual application, according to Equations (35) and (30), the covariance matrix of received
signal peaks on the reference virtual array in the FRF domain can be obtained by virtual received
signals YU as

R̃ = T(y1) =


〈YU〉L 〈YU〉∗L+1 · · · 〈YU〉∗2L−1
〈YU〉L+1 〈YU〉L · · · 〈YU〉∗2L−2

...
...

. . .
...

〈YU〉2L−1 〈YU〉2L−2 · · · 〈YU〉L

 . (38)

From Equation (22), we know there are some zero elements in YU , so several elements in R̃
corresponding to the interpolated virtual sensors may be zeros. In order to reconstruct covariance
matrix, taking the Hermitian Toeplitz PSD property and sparse covariance matrix R̃ as the prior
knowledge, an atomic norm minimization method can be formulated as

min
z∈CL

∥∥∥z
∥∥∥

Ar

subject to
∥∥∥(T(z)− R̃)�H

∥∥∥2

F
≤ ε

T(z) ≥ 0

(39)

where H = hhT ∈ RL×L, and h ∈ RL is a binary vector defined to represent the reference virtual
array, in which the elements corresponding to interpolated virtual sensors are set to 0 and others
corresponding to derived virtual sensors are defined to 1. Accordingly, H is a binary matrix to
distinguish the zero and non-zero elements in covariance matrix. ε denotes an error threshold to
restrict noise and deviation between the non-zero elements in R̃ and the elements corresponding to
derived virtual sensors in the reconstructed covariance matrix T(z), which guarantees to reduce noise.
By Equation (39), all observations received by the derived virtual sensors in difference co-array Av are
used to denoise. Meanwhile, the zero elements corresponding to interpolated virtual sensors in R̃ can
be recovered as

T = T(z)� (I−H), (40)

where I denotes the identity matrix. Using the Lagrange interpolation method, the optimization
problem can be further reformulated as

min
z∈CL

1
2

∥∥∥(T(z)− R̃)�H
∥∥∥2

F
+ τ

∥∥∥z
∥∥∥

Ar

subject to T(z) ≥ 0
(41)

where τ is a penalty factor to adjust the deviation and the atomic norm term. Owing to Equation (34),
we found

Tr(T(z)) = L
K

∑
k=1

pk = L
∥∥∥z
∥∥∥

Ar
. (42)
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Substitute Equation (42) into Equation (41), the optimization can be rewritten as

min
z∈CL

1
2

∥∥∥(T(z)− R̃)�H
∥∥∥2

F
+ λTr(T(z))

subject to T(z) ≥ 0
(43)

where λ = τ/L is also the penalty factor. The above optimization equation is convex, and its optimum
solution z∗ can be solved by CVX software tool based on the interior point methods. And then, using
z∗ as the first column, the covariance matrix T(z∗) of reference virtual array can also be reconstructed
with more DOFs than the number of physical sensors. Finally, applying the traditional DOA estimation
methods such as MUSIC or ESPRINT [35] to T(z∗), the DOAs of wideband LFM signals can be solved
with more DOFs and better accuracy. Throughout the theoretical derivation above, the proposed
method is summarized in Algorithm 1.

Algorithm 1 Underdetermined DOA Estimation of Wideband LFM Signals Based on Gridless Sparse
Reconstruction in FRF Domain.
Input: the received signals based on the coprime array x(t);
Output: θ̂k;

1: Initialize: M, N, L = M(N − 1) + 1;
2: Derive the peaks model XF of received signals in FRF domain based on coprime array by Equation

(15);
3: Derive the virtual received signals Yv of difference co-array by Equation (21);
4: Construct the virtual received signals YU of virtual ULA according to Equation (22) by interpolating

virtual sensors into difference co-array;
5: Construct the covariance matrix of virtual ULA R̃ according to Equation (38);
6: Defined a binary vector h to respectively represent the interpolated and derived virtual sensors,

and construct H to distinguish the zero and non-zero elements in covariance matrix R̃;
7: Solve the atomic norm minimization in Equation (39), and use the equivalent version Equation (43)

to get z and T(z);
8: Substitute T(z) as the recovered covariance matrix of reference virtual array into MUSIC algorithm

to estimate the DOAs θ̂k.

4. Simulation Results

In this section, the simulation results will be presented to verify the performance of the proposed
method with respect to resolution, DOFs and accuracy of DOA estimation. Consider a pair of coprime
arrays with M+ N− 1 = 7 isotropic physical sensors located at {0, 3d, 5d, 6d, 9d, 10d, 12d}, where M = 3
and N = 5. As for the wideband LFM signals, the ratio between bandwidth and the center frequency
Wb/ fc is equal to 2/3. The sampling frequency fs is three times as much as the highest frequency of
the signal. The number of snapshots is P = 1024. For simplicity, assume that the power of wideband
LFM signal is σ2

s , the SNR is defined as 10log10(σ
2
s /σ2

n). The proposed method would be compared
with the wideband DOA estimation algorithms based on incoherent signal-subspace method (ISM)
[9], FRFT (FRFT-MUSIC) [16], sparse representation with lp-norm (FRFT-MAP) [21], sparse sampling
MUSIC (FRFT-CSSM) [25], sparse recovery by compressive sensing (FRFT-OMP) [27] nuclear norm
sparse recovery (FRFT-NN) [28] and spatial compressive sensing using randomly thinned array
(ISM-CSRTA) [22], respectively. FRFT-CSSM, FRFT-OMP and FRFT-NN methods are obtained by
performing FRFT on the received signals and then using CSSM, OMP and nuclear norm algorithms
to estimate DOAs, respectively. The interval of the pre-defined grids is set to 0.1◦ for the FRFT-MAP,
FRFT-OMP and ISM-CSRTA algorithms. The penalty factor λ for the proposed algorithm is set to
be 0.25.

The first simulation takes the resolution of DOA estimation into consideration, and assumes that
there are two closely spaced wideband LFM signals impinging on the coprime array with SNR = 10 dB,
respectively. The first wideband signal comes from θ1 = 20◦ fixedly, and the DOA of the second
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wideband signal is set as θ2 = θ1 + ∆θ, where ∆θ is the angular difference varied from 2◦ to 1◦. That is
also to say the second LFM signal comes from 22◦ and 21◦, respectively. In Figure 5, when ∆θ is 2◦,
it can be clearly seen that the FRFT-MUSIC and FRFT-MAP are unable to resolve the two signals,
but FRFT-CSSM and the proposed method can accurately estimate DOAs of two wideband signals.
That is because FRFT-MUSIC and FRFT-MAP methods are both based on ULA, which results in their
resolutions constricted by the number of physical sensors in ULA. If the DOAs of two wideband signals
stay too close, which exceeds their resolution abilities, these two methods cannot distinguish the DOAs
of signals. FRFT-CSSM and the proposed method are based on the coprime array, and their DOFs
are extended by vectoring covariance matrix, which are greater than the number of physical sensors,
so their resolutions have been improved. Meanwhile, compared FRFT-CSSM with the proposed
method in Figure 5c,d, we can observe that although peaks of FRFT-CSSM point at the directions
of wideband signals, its spectrum is not as sharp as that of the proposed method. Theoretically
speaking, this is because the FRFT-CSSM algorithm only exploits the consecutive part in the difference
co-array and discards the information of the non-consecutive part, its DOF is smaller than that of the
proposed method and its resolution would decline. As shown in Figure 6, when ∆θ decreases to 1◦,
the FRFT-MUSIC, FRFT-MAP and FRFT-CSSM methods all fail to identify the two sources, but only
the proposed method has two shape peaks at the DOAs of two closely spaced signals. This is because
the proposed method not only uses all the sensors in the difference co-array, but also interpolates
virtual sensors whose information is recovered by the gridless sparse reconstruction. It exhibits a more
superior resolution than the other algorithms with the same number of physical sensors, owing to the
DOF increase.

Figure 5. The normalized MUSIC spatial spectrums by four different algorithms with SNR = 10 dB,
∆θ = 2◦. (a) FRFT-MUSIC; (b) FRFT-MAP; (c) FRFT-CSSM; (d) The proposed method.
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Figure 6. The normalized MUSIC spatial spectrums by four different algorithms with SNR = 10 dB,
∆θ = 1◦. (a) FRFT-MUSIC; (b) FRFT-MAP; (c) FRFT-CSSM; (d) The proposed method.

In what follows, to validate the DOFs improvement by the proposed method, the second
simulation is carried out, when the number of wideband LFM signals exceeds the number of physical
sensors. The tested algorithms all use seven physical sensors in received array with SNR = 10 dB
and P = 1024. In Figure 7, suppose that there are eight uncorrelated wideband signals arriving from
different directions {−60◦,−45◦,−15◦, 10◦, 20◦, 30◦, 45◦, 60◦} impinging on the array, which are drew
as the vertical pink lines in Figure 7. As can be seen in Figure 7a–c, while the number of signals
surpasses the DOFs of algorithms, the FRFT-MUSIC, FRFT-MAP and FRFT-CSSM methods only can
resolved some signals, but the other peaks of spatial spectrum become flatter and mix together, which
results in the loss of DOAs of some signals and the unprecise resolution. Theoretically, FRFT-MUSIC
and FRFT-MAP methods are both based on ULA, and their DOFs cannot be greater than the number of
physical sensors, i.e., DOF ≤ 7, which are not able to estimate 8 uncorrelated signals simultaneously.
As for FRFT-CSSM, because it is based on coprime array with seven sensors, the number of available
consecutive virtual sensors in the difference co-array is increased to eight. Its DOF ≤ 8, which means it
can resolve seven uncorrelated signals at most. In Figure 7d, it can be clearly observed that when there
are eight wideband signals impinging on the array, the proposed method has the ability to estimate
their DOAs correctly at the same time. The number of available sensors is significantly increased to
M(N − 1) + 1 = 13 by interpolating the virtual sensors. That is also to say the DOF of the proposed
method reaches 13, and it can resolve 12 different wideband signals at most. Hence, when there are
eight wideband signals impinging on the array, the other algorithms all fail, but the proposed method
is valid to estimate the DOAs of eight or more wideband signals accurately.
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Figure 7. DOFs performance comparison with respect to spatial spectrum when 8 wideband
LFM signals impose on the array. (a) FRFT-MUSIC; (b) FRFT-MAP; (c) FRFT-CSSM; (d) The
proposed method.

Afterwards, the accuracy performance of DOA estimation algorithms would be assessed by the
subsequent simulations in detail. The root mean square error (RMSE) of the DOA estimations is
adopted as the performance index

RMSE =

√√√√ K

∑
k=1

Q

∑
q=1

(θ̂k(q)− θk)2

QK
(44)

where θ̂k(q) is the estimation of θk for the qth Monte Carlo trial, K is the number of wideband LFM
signals and Q denotes the number of Monte Carlo trials. In subsequent simulations, we run 500 Monte
Carlo trials for each level. Consider the three signals impinging on the coprime array come from
distinct directions {−20◦, 30◦, 60◦}, respectively.

In the third simulation, the RMSE of the DOA estimations is compared in respect of different
input SNRs, which vary from −20 to 20 dB with an interval of 5 dB. The number of snapshots is 1024.
As shown in Figure 8, the result illustrates that the DOA estimations by the proposed method become
more and more accurate as SNR increases, and obviously outperform those by ISM, ISM-CSRTA,
FRFT-MUSIC, FRFT-CSSM and FRFT-OMP approaches. Theoretically speaking, ISM-based algorithms
decompose the wideband signals into several independent narrowband signals, and approximately
assume that the frequency stays time-invariant in every frequency bin, without taking the continuous
and linear time-varying characteristic of frequency and the whole wideband information into account.
Moreover, they are based on the ULA or random array, and their DOFs are limited by the number of
physical sensors. Hence, their accuracies of DOA estimation would be seriously affected. In view of a
bigger aperture in the random array than that in the ULA, the RMSE of the ISM-CSRTA is slightly better
than that of the ISM at high SNR. By contrast, the FRFT-based methods can estimate DOA of wideband
LFM signals with time-variant frequency and steering vector, by transforming to time-invariant ones
in FRF domain as shown in Equation (15). The RMSE of DOA estimation by FRFT-MUSIC is improved,
but still based on the ULA, which is also constrained by the number of physical sensors. FRFT-CSSM
method selects the maximum contiguous part of the difference co-array and forms an ULA, which has
more sensors than FRFT-MUSIC method, so its DOF is improved to a certain extent and its accuracy
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of DOA estimation is better than that of FRFT-MUSIC method. Nevertheless, this method gives
up the information of the discontiguous part in the difference co-array, so its accuracy performance
would be compromised. Although FRFT-OMP method adopts all sensors of the difference co-array
to improve DOF, it is based on the CS framework. Because the discrete grids are pre-defined at
several spatial directions, it inherently has the grid mismatch problem, which would significantly
degrade the accuracy of DOA estimation especially when DOAs of signals deviate from the discrete
grids. Moreover, it exploits discrete basis (such as l1 norm) to recover signal without noise, which is
inevitable to bring substantial bias. In order to overcome the above shortcomings, in the proposed
method, atomic norm minimization is adopted to reconstruct the covariance matrix, which has a
continuous spatial parameter and effectively avoids the discrete grid mismatch problem. Moreover,
the proposed method constructs a longer ULA by interpolating the virtual sensors, whose DOF is
much bigger than that of the other algorithms. Therefore, the proposed method has a more accurate
DOA estimation performance.

Figure 8. RMSE of the DOA estimations vs. input SNR.

The fourth simulation further investigates the same scenario as the above one yet at a different
number of physical sensors in the coprime array, which illustrates the influence of the number of
physical sensors on accuracy. The number of physical sensors varies from 4 to 13 with SNR = −10 dB.
As can be seen in Figure 9, the proposed method improves the estimation performance as the
number of physical sensors increases, and its RMSE is much smaller than that of ISM, ISM-CSRTA,
FRFT-MUSIC, FRFT-CSSM and FRFT-OMP methods, especially with less physical sensors. As analysis
in FTFT-MUSIC [16], once the number of wideband sources remains the same, the smaller the number
of physical sensors becomes, the bigger its RMSE is. Likewise, FRFT-CSSM employs the maximum
contiguous ULA part of the difference co-array to increase available virtual sensors, but if the number
of physical sensors decreases, the available virtual sensors would drastically reduce, and the RMSE
would also become bigger. Although FRFT-OMP employs all the virtual sensors of the difference
co-array to increase DOFs, the CS recovery approach would result in the grid mismatch and deviation
from discrete grids. Furthermore, with the reduction of number of physical sensors, the number of
virtual sensors in the difference co-array also declines sharply, which causes the accuracy of DOA
estimation degrade severely. With the same number of physical sensors, the DOF of the proposed
method is much bigger than that of the other methods. The result also shows that the accuracy of the
proposed algorithm is significantly improved, which surpasses that of the other methods, especially
with less sensors.
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Figure 9. RMSE of the DOA estimations vs. number of physical sensors.

In the following, estimation accuracy of the proposed method with respect to the number of
snapshots would be verified in the fifth simulation. The number of snapshots varies from 768 to 1792
with an interval of 256. The number of physical sensors is 7 in the coprime array and SNR = −10 dB.
From Figure 10, the result illustrates that RMSE of the DOA estimations by the proposed method
becomes smaller and smaller as the number of snapshots increases, and is superior to that of ISM,
ISM-CSRTA, FRFT-MUSIC, FRFT-CSSM and FRFT-OMP approaches once again.

Figure 10. RMSE of the DOA estimations vs. the number of snapshots.

The sixth simulation discusses the influence of the penalty factor λ. Consider the same scenario
as the aforementioned ones yet at different penalty factors in optimization. In Figure 11, it is evident
that the RMSE remains the same while the penalty factor λ increases from 0.00025 to 25, even with the
different SNR, the number of physical sensors or the number of snapshots, respectively. The proposed
method is robust with respect to the change of the penalty factor λ. That is also the reason why we
choose λ = 0.25 in the simulation.
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Figure 11. RMSE of the DOA estimations vs. the penalty factor λ.

In the last simulation, the computational complexity measured by the computation time is verified
for 100 Monte Carlo trials, which uses on a desktop with an Intel Core i7-7600U CPU. The sampling
interval is varied from to 1◦ to 0.01◦. In Figure 12, it can be clearly observed that the computation
times of the CS-based algorithms, such as ISM-CSRTA, FRFT-OMP and FRFT-MAP, increase when the
grid intervals reduce and the pre-defined discrete grids become denser. However, the gridless DOA
algorithms have nothing to do with the discrete grids, so they do not change with grid interval. Among
them, ISM has a higher computational complexity than other gridless wideband DOA estimation
algorithms, because it needs to estimate the DOA in every frequency bin and repeat this process in all
frequency bins. The proposed method based on the continuous dictionary solves the optimization
and recovers the sparse signals without the pre-defined discrete grids, so its computation time also
has no connection with discrete grids and its sampling interval. Although it has slightly longer
computation time than FRFT-MUSIC and FRFT-CSSM algorithms, it solves the underdetermined
problem in wideband DOA estimation, which is insolvable by the other algorithms, and its DOF and
estimation performance became better than the other wideband DOA algorithms.

Figure 12. The computation time of DOA estimations vs. the sampling interval.
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5. Conclusions

In the proposed method, the received model of wideband LFM signals based on the coprime
array is constructed in the FRF domain. In order to obtain more DOFs, by vectoring the covariance
matrix and interpolating the virtual sensors, a virtual extended ULA is obtained, and its covariance
matrix is recovered by using the sparse matrix reconstruction. Compared with some existing sparse
reconstruction algorithms that exploit l0 norm, l1 norm or nuclear norm, atomic norm minimization,
as a continuous dictionary without discrete grids, is used to recover the covariance matrix in order
to avoid the grid mismatch problem. Moreover, unlike the existing algorithms that assume the
steering vector of wideband signals is time-invariant in every frequency bin, the proposed method
can resolve more wideband LFM sources than physical sensors with a time-variant steering vector
in the FRF domain, but also obtain more accurate DOA estimation performance with gridless sparse
reconstruction. Simulation results also demonstrate that the proposed wideband DOA estimation
algorithm can to resolve the wideband LFM sources more than the number of physical sensors,
and acheive more accurate DOA estimation performance.
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