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Abstract: Geometric calibration is an important means of improving the absolute positioning accuracy
of space-borne synthetic aperture radar imagery. The conventional calibration method is based
on a calibration field, which is simple and convenient, but requires a great deal of manpower and
material resources to obtain ground control points. Although newer cross-calibration methods do not
require ground control points, calibration accuracy still depends on a periodically updated reference
image. Accordingly, this study proposes a geometric self-calibration method based on the positioning
consistency constraint of conjugate image points to provide rapid and accurate calibration of the
YaoGan-13 satellite. The proposed method can accurately calibrate geometric parameters without
requiring ground control points or high-precision reference images. To verify the absolute positioning
accuracy obtained using the proposed self-calibration method, YaoGan-13 Stripmap images of
multiple regions were collected and evaluated. The results indicate that high-accuracy absolute
positioning can be achieved with a plane accuracy of 3.83 m or better for Stripmap data, without
regarding elevation error. Compared to the conventional calibration method using high-accuracy
control data, the difference between the two methods is only about 2.53 m, less than the 3-m resolution
of the image, verifying the effectiveness of the proposed self-calibration method.
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1. Introduction

The Chinese YaoGan-13 (YG-13) satellite mission, launched in November 2015, is equipped with a
high-resolution synthetic aperture radar (SAR) X-band sensor. Synthetic aperture radar image products
can be acquired using ScanSAR, Stripmap, and Sliding-spot modes, with the last of these providing
SAR images at a very high resolution of about 0.5 m. The launch of YG-13 provided China with the
ability to acquire high-resolution SAR images globally [1,2]. However, despite the strong capability
of YG-13 in acquiring high-resolution SAR images, most of the images obtained by the satellite have
exhibited poor absolute positioning accuracy, due to systematic timing offsets in the SAR system,
including the time shift between the radar time and Global Positioning System (GPS) time (i.e., azimuth
or along-track), and the internal electronic delay of the SAR instrument itself (i.e., the range delay
time) [3]. As a result, the application of YG-13 images in activities such as resource monitoring has
been significantly restricted.

Using high-accuracy control data, a conventional geometric calibration method can eliminate
systematic errors, such as those experienced by YG-13 (including the internal electronic delay of the
instrument and systematic azimuth shifts), improving the geometric positioning accuracy of the images.
The conventional geometric calibration method has been thoroughly studied by many researchers
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and fully validated using the ERS-1/2, ENVISAT-ASAR, ALOS-PALSAR, TerraSAR-X/TanDEM-X,
Sentinel-1A/1B, YaoGan-13, GaoFen-3, and other high-resolution satellites [4–14]. However, the
conventional calibration method requires satellites to acquire images of calibration fields prior to
conducting geometric calibration, reducing its timeliness in practical applications. Additionally, the
conventional calibration method typically uses a high-precision corner reflector to generate control
data, which can be expensive.

In the optical remote sensing field, many scholars have researched methods for geometric
self-calibration that do not rely on control data, achieving notable success [15,16]. In the field of
SAR geometric calibration, researchers have also begun to study geometric calibration without field
calibration control data. Deng et al. performed cross calibration without using corner reflectors or
high-precision digital elevation models to improve the absolute positioning accuracy of images collected
by the GaoFen-3 (GF-3) satellite [2]. However, this method does not completely eliminate dependence
on control data, as it still requires high-precision reference images. To the authors’ knowledge, no
studies of completely independent SAR geometric self-calibration have been reported to date.

In this paper, a novel self-calibration method is proposed to determine the systematic timing
offsets in the SAR system, independent of ground control points (GCPs). This method uses at least three
images containing overlapping areas and takes advantage of the spatial intersection residual between
conjugate points in these images to detect the timing offsets. The proposed method is free from the
constraint of field control data present in traditional calibration methods. To demonstrate the accuracy of
the proposed method, a series of experiments using Stripmap images collected by YG-13 is presented.
The results show that the proposed method is able to effectively eliminate the systematic errors, due to the
internal electronic delay of the instrument and the systematic azimuth shifts. After calibration, the plane
absolute positioning accuracy of the YaoGan-13 Stripmap image was better than 3.83 m, just larger than
the 3-m resolution of the images, verifying the effectiveness of the proposed method.

2. Methodology

2.1. Fundamental Theory of the Proposed Method

Figure 1 illustrates the proposed method of SAR image geometric self-calibration. In Figure 1a,
S1 and S2 correspond to the two SAR antenna phase centers when the ground surface at Point A is
photographed twice. The slant range between S1 and A is R1 and the slant range between S2 and A is
R2, and so the intersection point between R1 and R2 is Point A. If a slant range measurement error ∆R
exists due to the geolocation parameter error, the slant range R1 becomes R1 + ∆R, the slant range R2
becomes R2 + ∆R, and the new spatial intersection is at Point B. In this way, the spatial intersection point
is affected by the error of the geometric positioning parameters. However, this could be true for another
case: The changes in the slant range R1 and R2 can be caused by the position error of the ground point,
because the ground surface position of Point A is unknown. Therefore, we can conclude that when using
only two images, the exact reason for the changes in slant ranges R1 and R2 is uncertain.
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Figure 1. Schematic diagram of synthetic aperture radar (SAR) image geometric self-calibration. 
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Accordingly, in Figure 1b, we add a third image, and the slant range between S3 and A is given
by R3. However, due to the aforementioned errors, slant range R3 becomes R3 + ∆R. New spatial
intersection points then exist between S3 and S1 at Point C, and between S3 and S2 at Point D. If the
change in slant range is caused by a ground point error, then spatial intersection Points B, C, and D
should all be the same. If, however, the change in slant range is caused by a geolocation parameter
error, then the spatial intersection Points B, C, and D are likely to be different. This difference is
called the spatial intersection residual. A minimum spatial intersection residual can thus be used as a
constraint condition for solving the self-calibration equation.

2.2. Proposed Geometric Self-Calibration Method

The physical imaging process of SAR can be represented by the slant range equation and Doppler
equation [17,18].

The slant range equation is given by:

R =

√
(Xs −X)2 + (Ys −Y)2 + (Zs −Z)2, (1)

where R is the slant range between the sensor and the target, and (Xs, Ys, Zs) and (X, Y, Z) are the
sensor and target position vectors, respectively.

The Doppler equation is given by:

fD = −
2
λR

[(Xs −X)Xv + (Ys −Y)Yv + (Zs −Z)Zv], (2)

where fD is the Doppler center frequency for the SAR image, λ is the SAR wavelength, and Xv, Yv, Zv

is the phase center velocity vector of the SAR antenna.
Based on the slant range and Doppler equations, the geometric self-calibration model of a SAR

image can be written as follows: R =

√
(Xs −X)2 + (Ys −Y)2 + (Zs −Z)2 + Rs + Ratmo

fD = − 2
λ(R−Rs−Ratmo)

[(Xs −X)Xv + (Ys −Y)Yv + (Zs −Z)Zv]
, (3)

where Rs is the slant range correction and Ratmo is the atmospheric path delay, calculated using the
atmospheric delay correction model [19–21].

The error equations for Equation (3) are given by: VR = ∂R
∂X ∆X + ∂R

∂Y ∆Y + ∂R
∂Z ∆Z + ∂R

∂Rs
∆Rs + (R) −R

V fD =
∂ fD
∂X ∆X +

∂ fD
∂Y ∆Y +

∂ fD
∂Z ∆Z +

∂ fD
∂Rs

∆Rs + ( fD) − fD
, (4)



Sensors 2019, 19, 2367 4 of 11

where (R) and ( fD) are the approximate values of the slant range and Doppler center
frequency, respectively.

Equation (4) can be expressed as the following matrix equation:

V = AK − L, (5)

where

K = [∆X, ∆Y, ∆Z, ∆Rs]
T V =

[
VR, V fD

]T
,

L =
[
lR, l fD

]T
= [R− (R), fD − ( fD)]

T, and

A =

[
a11, a12, a13, a14

a21, a22, a23, a24

]T

.

The values of the partial derivatives in Equation (4) are:

a11 = X−Xs√
(X−Xs)

2+(Y−Ys)
2+(Z−Zs)

2
,

a12 = Y−Ys√
(X−Xs)

2+(Y−Ys)
2+(Z−Zs)

2
,

a13 = Z−Zs√
(X−Xs)

2+(Y−Ys)
2+(Z−Zs)

2
,

a14 = 1,

a21 = 2Xv
(R−Rs−Ratmo)λ

,

a22 = 2Yv
(R−Rs−Ratmo)λ

,

a23 = 2Zv
(R−Rs−Ratmo)λ

, and

a24 =
2[(Xs−X)Xv+(Ys−Y)Yv+(Zs−Z)Zv]

λ(R−Rs−Ratmo)(R−Rs−Ratmo)
,

where the initial value Rs = 0 and the initial values of [X Y Z] are calculated using the least
squares spatial point intersection.

According to the least squares principle of indirect adjustment, the normal form of Equation (5)
can be expressed as follows:

ATAK = ATL. (6)

The expression of the solution of Equation (6) can then be obtained by:

K =
(
ATA

)−1
ATL. (7)

The corrected ground coordinates of conjugate point [∆X ∆Y ∆Z] and the slant range error dRs can then
be obtained, using an iterative procedure to calculate [∆X, ∆Y, ∆Z, ∆Rs]

T, expressed by the following
algorithm steps:

1. Select the conjugate points. Measure the image plane coordinates of the conjugate points on
each image;

2. Obtain information on geometric positioning parameters. Find and calculate the imaging time t,
Doppler center frequency fD, and slant range R of the target point from the auxiliary files. Find
and calculate the position vector Xs, Ys, Zs and velocity vector Xv, Yv, Zv of the satellite;

3. Determine the initial value of the unknown parameters. The measurement errors of the slant
range and the systematic azimuth shifts are typically not large, so the initial values of the slant
range correction and systematic azimuth shifts can be set to 0. The initial values of [X Y Z] are
then calculated using a least squares spatial point intersection [22];

4. Calculate the approximate values of the slant range and the Doppler center frequency for each
conjugate point. The approximate values of these unknown parameters are then substituted into
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the slant range equation (Equation (1)) and the Doppler equation (Equation (2)) to calculate the
approximate values of the slant range (R) and the Doppler center frequency ( fD), respectively,
for each conjugate point;

5. Calculate the coefficient and constant terms of the error equation (Equation (4)), point by point to
establish the error equation;

6. Calculate the coefficient matrix ATA and constant term ATL of the normal equation (Equation (6))
to establish the normal equation;

7. Calculate the slant range and ground coordinate corrections of the conjugate points and add them
to the corresponding approximate values to obtain the new approximate ground coordinates of
the conjugate points and the slant range correction;

8. Calculate the slant range error. Check if the calculation converges by comparing the ground
coordinate corrections of the conjugate points and the slant range error with the prescribed error
limits: The correction of the slant range error is usually evaluated against a limit of 0.1 m. When
the correction of the slant range error is less than 0.1 m, the iteration ends and proceeds to Step 9,
otherwise, repeat Steps 4–8 with the newest approximation until the error limits are met;

9. Calculate the systematic azimuth shifts ∆ta. Calculate the image plane coordinates of the conjugate
points by using the inverse location algorithm with the new approximate ground coordinates of
the conjugate points, then update the azimuth imaging time [23]. Recalculate the position vectors
Xs, Ys, Zs and the velocity vectors Xv, Yv, Zv of the satellite. Set the slant range correction to 0 and
the initial ground coordinates of the conjugate points used are the results of the previous iteration.
Repeat Steps 4–9 until the correction of the systematic azimuth shift is less than the limit;

10. The accurate values of [∆X, ∆Y, ∆Z, ∆Rs]
T and ∆ta are obtained.

3. Experiment and Analysis

3.1. Experimental Study Areas and Data Sources

In order to verify the accuracy of the self-calibration method proposed in this paper, Stripmap
images from the YaoGan-13 satellite acquired between 18 December, 2015 (2015-12-18) and 30 March,
2016 (2016-03-30) were used as experimental data. The resolution of the Stripmap images was 3 m
and the swath width was 10 km. The internal electronic delay of the instrument (slant range error) is
related to the bandwidth and pulse width of the radar signal. Therefore, the experimental data were
divided into two groups according to the differences in the bandwidth and pulse width: Calibration
Group A, with a bandwidth of 200 MHz and a pulse width of 24.4 µs, summarized in Table 1, and
Calibration Group B, with a bandwidth of 150 MHz and a pulse width of 24.4 µs, summarized in
Table 2. As can be seen in Figure 2, the data in Calibration Group A and Calibration Group B cover
overlapping areas. The conjugate points were selected in this overlapping area.

Table 1. Calibration Group A image data.

Bandwidth and Pulse Width Image ID Imaging Time Central Angle Orbit Look-Side

200 MHz and 24.4 µs

A1 2015-12-28 36.1◦ Asc R
B1 2016-01-03 43.1◦ Desc R
C1 2016-01-16 26.8◦ Asc R
D1 2016-01-18 31.4◦ Desc R
E1 2016-01-19 37.5◦ Asc L
F1 2016-03-03b 24.8◦ Asc L
G1 2016-03-11 37.1◦ Desc R
H1 2016-03-26a 23.6◦ Desc R
I1 2016-03-27a 15.2◦ Desc L
J1 2016-03-27b 31.2◦ Asc L

Desc = Descending; Asc = Ascending; L = Left; R = Right.
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Table 2. Calibration Group B image data.

Bandwidth and Pulse Width Image ID Imaging Time Central Angle Orbit Look-Side

150 MHz and 24.4 µs

A2 2015-12-29 46.1◦ Desc R
B2 2016-01-04 46.9◦ Asc L
C2 2016-01-07a 54.6◦ Desc R
D2 2016-01-17a 50.9◦ Desc R
E2 2016-01-17b 48.9◦ Asc R
F2 2016-03-10 45.5◦ Asc R
G2 2016-03-15 48.0◦ Asc R
H2 2016-03-26b 50.4◦ Asc L
I2 2016-03-29b 38.0◦ Asc R
J2 2016-03-30 53.8◦ Asc R

Desc = Descending; Asc = Ascending; L = Left; R = Right.
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3.2. Results of Proposed Self-Calibration Method

According to the theory presented in Section 2.1, the proposed geometric self-calibration method
requires at least three images; these necessary redundant observations can be obtained by adding
calibration images to the data set. As shown in Table 3 (for Calibration Group A) and Table 4
(for Calibration Group B), the number of images was increased sequentially according to the image
acquisition time, resulting in a total of eight image combinations in Calibration Group A and eight
image combinations in Calibration Group B. Three pairs of well-distributed conjugate points were
then manually acquired from the calibration images. Using these conjugate points, self-calibration
was conducted using the proposed method. The slant range correction and systematic azimuth shifts
obtained by self-calibration using each image combination in Calibration Groups A and B are also
shown in Tables 3 and 4, respectively, in which it can be seen that the geometric calibration parameters
obtained using different calibration combinations are similar. The difference between the maximum and
minimum value of the slant range correction was 1.83 m, while the difference between the maximum
and minimum value of the systematic azimuth shifts was about 0.153 ms with an accompanying 1.16-m
azimuth geolocation error, given a spacecraft velocity of 7600 m/s. These ranges demonstrate that the
calibration results are stable.
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Table 3. Geometric calibration results for Calibration Group A (200 MHz and 24.4 µs).

Combination Slant Range Correction (m) Systematic Azimuth Shifts (ms)

A1-B1-C1 15.96 −0.126
A1-B1-C1-D1 15.72 −0.131

A1-B1-C1-D1-E1 15.88 −0.140
A1-B1-C1-D1-E1-F1 16.35 −0.126

A1-B1-C1-D1-E1-F1-G1 16.19 −0.118
A1-B1-C1-D1-E1-F1-G1-H1 17.55 −0.120

A1-B1-C1-D1-E1-F1-G1-H1-I1 16.61 −0.128
A1-B1-C1-D1-E1-F1-G1-H1-I1-J1 16.57 −0.134

Table 4. Geometric calibration results for Calibration Group B (150 MHz and 24.4 µs).

Combination Slant Range Correction (m) Systematic Azimuth Shifts (ms)

A2-B2-C2 17.34 0.009
A2-B2-C2-D2 17.16 −0.000

A2-B2-C2-D2-E2 16.90 −0.083
A2-B2-C2-D2-E2-F2 15.81 −0.131

A2-B2-C2-D2-E2-F2-G2 15.73 −0.133
A2-B2-C2-D2-E2-F2-G2-H2 16.12 −0.130

A2-B2-C2-D2-E2-F2-G2-H2-I2 17.13 −0.144
A2-B2-C2-D2-E2-F2-G2-H2-I2-J2 16.97 −0.137

3.3. Validation of Self-Calibration Accuracy

In order to verify the accuracy of the proposed method for self-calibration, Validation Groups
A and B, consisting of Stripmap images collected from the Songshan, Taiyuan, Anping, Xianning,
and Tianjin areas, were evaluated with bandwidth and pulse width parameters matching Calibration
Groups A and B and control data, as provided in Table 5. The terrain of the Taiyuan, Tianjin, and
Anping test sites was almost flat, while that of Songshan and Xianning test sites was hilly. Several
independent check points (ICPs) were manually extracted from the control data and the distributions
of these ICPs in the validation images are shown in Figure 3. The sources of the three types of control
data used are shown in Figure 4. The difference between the predicted location of the ICPs in the object
space and their measured locations is the absolute positioning error, generally expressed in the north,
east, and plane dimensions, separately. In this system, the “Plane” error is numerically equal to the
square root of the sum of the squares of the “East” and “North” errors.
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Table 5. Image data used in Validation Groups A and B.

Validation
Group

Bandwidth and
Pulse Width Test Site Imaging Time Control Data Number of

ICPs

A 200 MHz and 24.4 µs
Songshan 2016-03-29b Six Corner reflectors 4
Taiyuan 2016-05-28 1:5000 DOM/DEM 4
Tianjin 2016-05-29 1:2000 DOM/DEM 4

B 150 MHz and 24.4 µs

Songshan 2016-04-02 Six Corner reflectors 3
Taiyuan 2016-06-01 1:5000 DOM/DEM 3
Anping 2016-06-09 GPS control points 6
Tianjin 2016-06-10 1:2000 DOM/DEM 3

Xianning 2016-06-12 GPS control points 4
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Figure 4. Sources of the three types of control data used for verification.

The root-mean-square error (RMSE) of the absolute positioning accuracy (north, east, and plane)
was then calculated for the images in Validation Group A (Table 6) and Validation Group B (Table 7)
before and after calibration. In the tables, Plan 1 represents the absolute positioning accuracy without
calibration, while Plans 2–9 represent the absolute positioning accuracy for the different self-calibration
combinations defined in each group. The results of the statistical analysis show that without calibration,
the absolute positioning accuracy of both Validation Group A and Validation Group B is very poor at
29.47 m and 22.76 m, respectively. After calibration, the absolute positioning accuracy clearly shows
significant improvement: High-accuracy absolute positioning is achieved with a plane accuracy of
3.83 m or better for Validation Group A and 3.41 m or better for Validation Group B.

Table 6. Comparison of absolute positioning accuracy of Validation Group A before and after
compensating for geometric calibration parameters.

Calibration Plan Combination
Absolute Positioning Accuracy (m)

North East Plane

Plan 1 * None 6.93 28.64 29.47
Plan 2 A1-B1-C1 1.65 3.06 3.47
Plan 3 A1-B1-C1-D1 1.74 3.41 3.83
Plan 4 A1-B1-C1-D1-E1 1.70 3.16 3.59
Plan 5 A1-B1-C1-D1-E1-F1 1.52 2.46 2.89
Plan 6 A1-B1-C1-D1-E1-F1-G1 1.56 2.70 3.12
Plan 7 A1-B1-C1-D1-E1-F1-G1-H1 1.12 0.87 1.42
Plan 8 A1-B1-C1-D1-E1-F1-G1-H1-I1 1.43 2.06 2.51
Plan 9 A1-B1-C1-D1-E1-F1-G1-H1-I1-J1 1.45 2.11 2.56

* Plan 1 denotes no calibration performed.
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Table 7. Comparison of absolute positioning accuracy of Validation Group B before and after
compensating for geometric calibration parameters.

Calibration Plan Combination
Absolute Positioning Accuracy (m)

North East Plane

Plan 1 * None 5.41 22.11 22.76
Plan 2 A2-B2-C2 1.44 1.54 2.11
Plan 3 A2-B2-C2-D2 1.40 1.71 2.21
Plan 4 A2-B2-C2-D2-E2 0.96 1.97 2.19
Plan 5 A2-B2-C2-D2-E2-F2 0.94 3.18 3.31
Plan 6 A2-B2-C2-D2-E2-F2-G2 0.95 3.27 3.41
Plan 7 A2-B2-C2-D2-E2-F2-G2-H2 0.89 2.82 2.96
Plan 8 A2-B2-C2-D2-E2-F2-G2-H2-I2 0.70 1.75 1.89
Plan 9 A2-B2-C2-D2-E2-F2-G2-H2-I2-J2 0.74 1.91 2.05

* Plan 1 denotes no calibration performed.

To further illustrate the effectiveness of the proposed self-calibration method, corner reflectors
were used as control points to conduct a conventional field calibration for Calibration Groups A and
B. The absolute positioning accuracies of Validation Groups A and B using the reflectors were then
compared with those determined by the self-calibration method, as shown in Table 8. The maximum
positioning errors from among Plans 2–8 (shaded) in Tables 6 and 7 were selected to represent the
self-calibration results. Notably, the difference between the positioning accuracy provided by the
proposed self-calibration method and the conventional field calibration is not large: For Validation
Groups A and B, there was a difference of 2.53 m and 1.74 m, respectively, in plane positioning accuracy,
both smaller than the 3-m resolution of the images.

Table 8. Comparison between conventional field calibration and proposed self-calibration method.

Validation Group Calibration Method
Absolute Positioning Accuracy (m)

North East Plane

A
Conventional field calibration 1.04 0.78 1.30

Self-calibration 1.74 3.41 3.83

Difference between the two methods — 2.53

B
Conventional field calibration 0.70 1.52 1.67

Self-calibration 0.95 3.27 3.41
Difference between the two methods — 1.74

4. Conclusions

It is generally known that the most critical aspect of improving the geolocation accuracy of
satellite imagery is geometric calibration. Conventional field calibration and cross calibration methods
cannot satisfy the demands for fast and accurate calibration. In this study, a novel self-calibration
method based on the positioning consistency constraint of conjugate points was proposed to calibrate
satellite geometric parameters without requiring ground control points or high-precision reference
images. The proposed method uses at least three overlapping images and takes advantage of the
spatial intersection residual between corresponding points in the images to calculate systematic errors
(such as the internal electronic delay of the instrument and systematic azimuth shifts). YaoGan-13
Stripmap-mode images were collected as experimental data and analyzed using the proposed method.
The results show that the plane absolute positioning accuracy after self-calibration is better than
3.83 m. The difference in accuracy compared to the conventional method was only about 2.53 m,
which is less than the 3-m resolution of the images, verifying the effectiveness of the proposed
self-calibration method.
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