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Abstract: In this paper, an l1-penalized maximum likelihood (ML) approach is developed for
estimating the directions of arrival (DOAs) of source signals from the complex elliptically symmetric
(CES) array outputs. This approach employs the l1-norm penalty to exploit the sparsity of the
gridded directions, and the CES distribution setting has a merit of robustness to the uncertainty of
the distribution of array output. To solve the constructed non-convex penalized ML optimization
for spatially either uniform or non-uniform sensor noise, two majorization-minimization (MM)
algorithms based on different majorizing functions are developed. The computational complexities of
the above two algorithms are analyzed. A modified Bayesian information criterion (BIC) is provided
for selecting an appropriate penalty parameter. The effectiveness and superiority of the proposed
methods in producing high DOA estimation accuracy are shown in numerical experiments.

Keywords: direction of arrival (DOA); complex elliptically symmetric (CES) distributions; sparse
penalized likelihood method; majorization-minimization (MM) algorithm

1. Introduction

Estimating the directions of arrival (DOAs) of a number of far-field narrow-band source signals
is an important problem in signal processing. Many DOA estimation methods were proposed early
on, such as multiple signal classification (MUSIC) [1], estimation of signal parameters via rotation
invariance techniques (ESPRIT) [2] and their variants [3,4]. Many of them work well when having
accurate estimates of the array output covariance matrix and source number. In scenarios with
sufficient array snapshots and a moderately high signal-to-noise (SNR), the array output covariance
matrix and source number can be accurately estimated.

Recently, some sparse DOA estimation methods are popularly proposed based on sparse
constructions of the array output model. They are applicable if the number of sources is unknown
and many of them are effective when with a limited number of data snapshots. In [5], the sparse
DOA estimation methods are categorized into three groups: the on-grid, the off-grid and the grid-less.
The on-grid method, which is widely studied and straightforward to implement, assumes that the
true DOAs are on a predefined grid [6–22]. The off-grid method also uses a prior grid but does not
constrain the DOA estimates to be on this grid, while it introduces more unknown parameters to be
estimated and complicates the algorithm [23–28]. The grid-less method directly operates in the entire
direction domain without a pre-specified grid but, currently, is developed mainly for linear array and
encounters rather large computational burden [29–31]. Although the on-grid methods may induce
the grid mismatch, it is still attractive due to its easy accessibility in a wide range of applications (see,
e.g., [28,32,33]). To alleviate the grid mismatch, methods for selecting an appropriate prior grid are
proposed in [9,34].
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During the past two decades, various on-grid sparse techniques, such as linear least-square,
covariance-based and maximum-likelihood (ML) type methods, were researched. The linear
least-square methods [6,9,11,12], minimizing the l2-norm of the noise residual of the deterministic
model, enforce the sparsity by constraining the lp-norm of the signal vector for p ∈ [0, 1] (note that
lp-norm for p ∈ [0, 1) is defined as the same form as the one for p ≥ 1 but is not truly a norm in
mathematics). The covariance-based methods, such as the sparse iterative covariance-based estimation
(SPICE) method [13,14] and its variants [15,16], and those proposed in [17–22], are derived from
different covariance-fitting criteria and use the lp-norm penalty to enforce the sparsity. The ML type
methods, including the sparse Bayesian learning (SBL) methods [7,8,10] and the likelihood-based
estimation of sparse parameters (LIKES) method [15,16], are deduced under the assumption that
the array output signal is multivariate Gaussian distributed. The SBL methods use different prior
distributions to model the sparsity. The LIKES method appears to be not explicitly utilizing the sparsity,
but provides sparse estimates.

The ML principle is generally believed to be statistically more sound than the covariance-fitting
principle [15]. The existing on-grid ML methods are developed on the Gaussian distribution
assumption that are not satisfied in many signal processing practical applications. The complex
elliptically symmetric (CES) distributions, containing the t-distribution, the K-distribution,
the Gaussian distribution and so on, can be used to characterise the Gaussian and non-Gaussian
random variables. Particularly, the heavy-tailed data, which usually appear in the field of radar and
array signal processing [35,36], can be modeled by some CES distributions.

The lp-norm penalty with p ∈ [0, 1] is well-known for its contributions in deriving sparse
solutions [37]. In particular, the convex l1-norm penalty, also known as the least absolute shrinkage
and selection operator (LASSO) penalty, is easy to handle and widely used in various applications.
Generally, a sparse and accurate estimate of the unknown sparse parameter can be expected when
minimizing the negative likelihood plus an lp-norm penalty.

For estimating the DOAs from the CES distributed array outputs, we provide an l1-norm penalized
ML method based on a sparse reconstruction of the array output covariance matrix. The characteristics
and advantages of our method are explained as follows:

1. Our method is a sparse on-grid method based on the penalized ML principle, and is designed
especially for the CES random output signals. The Gaussian distribution and many heavy-tailed
and light-tailed distributions are included in the class of the CES distributions, and it is worth
mentioning that the heavy-tailed output signals that are non-Gaussian are common in the field of
signal processing [35,36].

2. The sparsity of the unknown sparse vector is enforced by penalizing its l1-norm. When the penalty
parameter becomes zero, the proposed method is actually the general ML DOA estimation method
that is applicable to the scenarios with CES random output signals.

3. Two penalized ML optimization problems are formulated for spatially uniform and non-uniform
white sensor noise, respectively. Since it is difficult to solve the two non-convex penalized
ML optimizations globally, two majorization-minimization (MM) algorithms having different
iterative procedures are developed for seeking the optimal solutions locally for each of them.
Some discussions on the computational complexities of the above two algorithms are provided.
In addition, the optimal penalty parameter is suggested.

4. The proposed methods are evaluated numerically in scenarios with Gaussian and non-Gaussian
output signals. Particularly, the performance gains originated from the added l1-norm penalty
are numerically demonstrated.

The remainder of this paper is organized as follows. Section 2 introduces a sparse CES data model
of the array output. In Section 3, a sparse penalized ML method is developed to estimate the DOAs.
For solving the proposed l1-penalized ML optimizations that are non-convex, algorithms in the MM
framework are developed in Section 4. Section 5 numerically shows the performance of our method in
Gaussian and non-Gaussian scenarios. Finally, some conclusions are given in Section 6.
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Notations

The notation Cm(Rm) denotes the set of all m-dimensional complex- (real-) valued vectors,
and Cm×n(Rm×n) denotes the set of all m × n complex- (real-) valued matrices. 1p and 0p are the
p-dimensional vectors with all elements equal to 1 and 0, respectively. Ip is the p× p identity matrix.
‖ · ‖1 and ‖ · ‖2 denote the l1-norm and l2-norm of a vector, respectively. The superscripts (·)T and (·)H ,
respectively, denote the transpose and the conjugate transpose of a vector or matrix. The imaginary
unit is denoted as ı defined by ı2 = −1.

For a vector x = [x1, . . . , xp]T ∈ Cp, define element-wise square root function sqrt(x) =

[
√
|x1|, . . . ,

√
|xp|]T and element-wise division operation x� y = [x1/y1, . . . , xp/yp]T for a vector

y = [y1, . . . , yp]T ∈ Cp with non-zero elements. max(x) = max{x1, . . . , xp}, x[a:b] = [xa, . . . , xb]
T for

1 ≤ a ≤ b ≤ p, x > 0(≥ 0) means xi > 0 (≥ 0) for i = 1, . . . , p, [x; z] denotes the stacked vector of
the column vectors x and z. Diag(x) denotes a square diagonal matrix with the elements of vector
x on the main diagonal, and (Diag(x))−1 denotes the diagonal matrix with main diagonal elements
1/xi (i = 1, . . . , p) by taking 1/0 = ∞.

For a square matrix X ∈ Cp×p, Xi,j denotes the (i, j)th entry of X, X > 0 (≥ 0) means that X is
Hermitian and positive definite (semidefinite), tr(X) denotes the trace of X, and diag(X) denotes a
column vector of the main diagonal elements of X.

2. Problem Formulation

Consider the problem of estimating the DOAs of k0 narrow-band signals impinging on an array
of m sensors.

Given a set of grid points
{θ1, · · · , θk}, (1)

we assume that the true k0 (k0 � k) DOAs, respectively, denoted as ξ1, . . . , ξk0 , take values in it.
The array output measurement at the instant t, denoted as x(t) ∈ Cm, can be modeled as

x(t) = A(θ)s(t) + v(t), (2)

where

• θ = [θ1, . . . , θk]
T ,

• A(θ) = [a(θ1), . . . , a(θk)] ∈ Cm×k is the known array manifold matrix with a(θi) being the steering
vector corresponding to θi, i = 1, . . . , k;

• s(t) = [s1(t), . . . , sk(t)]T ∈ Ck is the source signal vector at the time instant t, in which si(t) is the
unknown random signal from a possible source at θi and then is zero if θi is not in the true DOA
set {ξ1, · · · , ξk0}, i = 1, . . . , k;

• v(t) = [v1(t), . . . , vm(t)]T ∈ Cm is the noise vector impinging on the sensor array at the time
instant t.

Some necessary statistical assumptions are made as follows:

• The possible source signals s1(t), . . . , sk(t) are uncorrelated and zero-mean at any time instant t.
• The noise components v1(t), . . . , vm(t) are uncorrelated, zero-mean, and independent of

s1(t), . . . , sk(t) for any time instant t.
• The n (n > m) snapshots x(1), . . . , x(n) of sensor array signals are independent and identically

distributed from a CES distribution.

Note that the zero-mean assumptions above are common in the signal processing literature [5,35].
The CES distribution setting of the array output x(t) enables us to effectively process the Gaussian,
heavy-tailed or light-tailed array snapshots, because the class of CES distributions [38] includes the
Gaussian distribution, the t-distribution, the K-distribution and so on.
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For the simplicity of the notations, we denote A(θ) as A and a(θi) as ai for i = 1, . . . , k in the
following. Under the above assumptions, we can find that the array output x(t) in Equation (2) at any
time instant t has mean zero and covariance matrix

R = E[x(t)x(t)H ] = APAH + V, (3)

where

P = E[s(t)s(t)H ] = Diag(p) (4)

is the (unknown) source signal covariance matrix with signal power vector p = [p1, . . . , pk]
T , and

V = E[v(t)v(t)H ] = Diag(σ) (5)

is the (unknown) noise covariance matrix with the noise power vector σ = [σ2
1 , . . . , σ2

m]
T . The matrix R

can be rewritten as

R = [A, Im]Diag([p; σ])[A, Im]
H . (6)

For any i = 1, . . . , k, the signal power pi = 0 if θi is not in the set of the true DOAs. Therefore,
the true DOAs can be identified by the locations of nonzero elements of the power vector p. In the
following, the DOA estimation problem is formulated as a problem of estimating the locations of
nonzero elements of the power vector p.

3. Sparse DOA Estimation

The array output x(t) in Equation (2) is CES distributed with mean zero and covariance matrix R,
and then the normalized random vector

y(t) , x(t)/‖x(t)‖2, (7)

which actually refers to the angle of the array output vector x(t), has a complex angular central
Gaussian (ACG) distribution [35] with the probability density function

p(y(t); R) ∝ det(R)−1(y(t)HR−1y(t))−m. (8)

Denote

L0(R) = log det(R) +
m
n

n

∑
t=1

log(x(t)HR−1x(t)), (9)

and then the negative log-likelihood of y(t) = x(t)/‖x(t)‖2, t = 1, . . . , n, becomes

nL0(R)−m
n

∑
t=1

log(‖x(t)‖2
2) + c1, (10)

where c1 is a constant.



Sensors 2019, 19, 2356 5 of 22

3.1. Spatially Non-Uniform White Noise

In the case of spatially non-uniform white sensor noise, not all noise variances σ2
i , i = 1, . . . , m,

are equal. Assuming σ2
m > 0, we denote

r = [p; σ[1:m−1]]/σ2
m, (11)

W = B Diag(r)BH + Jm, (12)

where B ∈ Cm×(k+m−1) is the first (k + m− 1) columns of [A, Im] and Jm is an m×m matrix with the
(m, m)-entry being 1 and the other entries being 0. Since

W = R/σ2
m, (13)

L0(aR) = L0(R), ∀a > 0 (14)

and that the locations of nonzero elements of the sparse vector r[1:k] identify the true DOAs,
we formulate the DOA estimation problem as solving the penalized likelihood optimization problem

arg min
r∈Ω

L0(W) + λ‖r[1:k]‖1, (15)

where
Ω = {t ∈ Rk+m−1 | t ≥ 0, B Diag(t)BH + Jm > 0} (16)

and λ ≥ 0 is pre-specified. The l1-norm penalty term λ‖r[1:k]‖1 would help deduce a sparse solution,
and the penalty parameter λ controls the sparsity level [37].

Remark 1. We explain why the DOAs are not estimated by solving the plausible l1-penalized ML
optimization problem

arg min
p,σ

L0(R) + λ‖p‖1. (17)

Recalling Equation (6), we find for any λ1 > 0 and λ2 > 0,

L0(R) + λ1‖p‖1 = L0

(
[A, Im]Diag

([
λ1

λ2
p;

λ1

λ2
σ

])
[A, Im]

H
)
+ λ2

∥∥∥∥λ1

λ2
p
∥∥∥∥

1
. (18)

Thus, [p, σ] is a locally optimal solution of Equation (17) with λ = λ1 if and only if
[

λ1
λ2

p; λ1
λ2

σ
]

is a locally
optimal solution of Equation (17) with λ = λ2. This means if we estimate p by Equation (17), the parameter λ

cannot work theoretically in adjusting the sparsity level of the estimate of p. Instead of considering Equation (17),
we formulate the optimization (Equation (15)) for the DOA estimation. In Equation (15), noticing the
constant matrix Jm in Equation (12), we find that different values of λ would result in solutions with different
sparsity levels.

3.2. Spatially Uniform White Noise

In the case of spatially uniform white sensor noise, σ1 = · · · = σm = σ. Assuming σ2 > 0,
we denote

q = p/σ2, (19)

Q = A Diag(q)AH + Im. (20)
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Estimating the DOAs means identifying the locations of nonzero elements of the vector
q. Considering Q = R/σ2, we can estimate q through solving the penalized likelihood
optimization problem

arg min
q≥0

L0(Q) + λ‖q‖1 (21)

with λ ≥ 0, where the term λ‖q‖1 plays the same role as the penalty term in Equation (15).
Note that the number of unknown parameters to be estimated is k in the case of spatially uniform

noise in contrast to k + m− 1 in the case of spatially non-uniform noise.

4. DOA Estimation Algorithms

In this section, we provide methods to solve the optimization problems in Equations (15) and (21)
with λ fixed. As Equations (15) and (21) are non-convex, it is generally hard to give their globally
optimal solutions. Based on the MM framework [39,40], we develop algorithms to find the locally
optimal solutions of Equations (15) and (21).

A function f (x) is said to be majorized by a function g(x|x0) at x0, if f (x) ≤ g(x|x0) for all x and
f (x0) = g(x0|x0). In the MM framework, the problem arg minx f (x) can be solved through iteratively
solving xu+1 = arg minx g(x|xu).

When solving the problems in Equations (15) and (21) in the MM framework, majorizing functions
can be constructed based on the following two inequalities. For any positive definite matrices
U ∈ Cm×m and Uu ∈ Cm×m [40],

log det(U) ≤ log det(Uu) + tr(U−1
u U)−m (22)

and

log(x(t)HU−1x(t)) ≤ log(x(t)HU−1
u x(t)) +

x(t)HU−1x(t)
x(t)HU−1

u x(t)
− 1, (23)

where both equalities are achieved at U = Uu.

4.1. Algorithms for Spatially Non-Uniform White Noise

In this subsection, using two different majorizing functions of the objection function in
Equation (15), we develop two different MM algorithms named MM1 and MM2 to solve Equation (15).

4.1.1. MM1 Algorithm

Denote
Wu = B Diag(ru)BH + Jm, (24)

where ru ∈ Ω. Replacing the U and Uu in Equations (22) and (23) by W and Wu, respectively, we have
for any W > 0, Wu > 0,

L0(W) ≤ tr(W−1
u W) +

m
n

n

∑
t=1

x(t)HW−1x(t)
x(t)HW−1

u x(t)
+ c2 (25)

= tr(W−1
u W) + tr(MuW−1) + c2 (26)

where c2 is a constant, the equality in Equation (25) is achieved at W = Wu, and

Mu =
m
n

n

∑
t=1

x(t)x(t)H

x(t)HW−1
u x(t)

. (27)
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Denote the sum of the first two terms on the right side of Equation (26) and the l1-norm penalty
term in Equation (15) as g1(r | ru, λ), and then due to Equation (12), g1(r | ru, λ) can be rewritten as

g1(r | ru, λ) = tr(MuW−1) + wT
u r (28)

with

wu = diag(BHW−1
u B) + [λ1k; 0m−1]. (29)

From Equation (25), g1(r | ru, λ) + c2 is found to be a majorizing convex function of the objective
function in Equation (15). Based on the MM framework, the problem in Equation (15) can be solved by
iteratively solving the convex optimization problem

ru+1 = arg min
r∈Ω

g1(r | ru, λ). (30)

Proposition 1 (The MM1 algorithm for Equation (15)). The sequence {ru} generated by

ru+1 = arg min
r≥0

g1(r | ru, λ) (31)

with any initial value r0 ∈ Ω converges to a locally optimal solution of the optimization problem in Equation (15).

Proof. Since g1(r | ru, λ) tends to +∞ as W goes to the boundary of the positive semidefinite cone,
the optimization problems in Equations (30) and (31) are equivalent.

This proposition follows by the convergence property of the MM algorithm [40] and the fact that
L0(W)→ +∞ with probability 1 as W tends to the boundary of the positive semidefinite cone [41].

Due to Equation (11), r0 = [(r1)0, . . . , (rk+m−1)0]
T required in the iteration in Equation (31) can be

the one obtained by inserting the initial estimate of [p; σ] presented in [13]. Specifically,

(ri)0 =
bH

i R̂bi

R̂m,m‖bi‖4
2
> 0, i = 1, . . . , k + m− 1, (32)

where bi is the ith column of the matrix B and

R̂ =
1
n

n

∑
t=1

x(t)x(t)H . (33)

To solve the optimization problem in Equation (31) globally, we develop two available solvers:
the coordinate descent (CD) and SPICE-like solvers. Denote r = [r1, . . . , rk+m−1]

T in the following.

Proposition 2 (The CD solver for Equation (31)). The sequence of r generated by iterating

ri =

((√
βi
αi
− 1
)

1
γi

)
δ(βi − αi), i = 1, . . . , k + m− 1 (34)

with any initial value r ≥ 0 converges to the globally optimal solution ru+1 of the problem in Equation (31),
where δ(·) is the indicator function of the interval (0, ∞),

αi = (wi)u, (35)

βi = bH
i N−1

i MuN−1
i bi, (36)

γi = bH
i N−1

i bi, (37)
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with (wi)u being the ith element of the vector wu, and

Ni = ∑
l 6=i

rlblb
H
l + Jm. (38)

Proof. By the general analysis of the CD method in [42], it is easy to find that the convex problem in
Equation (31) can be globally solved by iterating

ri = arg min
ri≥0

g1(r | ru, λ), i = 1, . . . , k + m− 1 (39)

until convergence.
Due to

W = B Diag(r)BH + Jm = ribibH
i + Ni (40)

and

(ribibH
i + Ni)

−1 = N−1
i −

riN−1
i bibH

i N−1
i

1 + ribH
i N−1

i bi
, (41)

the iteration in Equation (39) can be reformulated as

ri = arg min
ri≥0

αiri −
βiri

1 + γiri
, i = 1 . . . , k + m− 1. (42)

In addition, αi > 0, βi > 0, γi > 0 for i = 1, . . . , k + m − 1. Solving the convex optimization
problems in Equation (42) by the gradient method, we conclude that the equations in Equation (42) are
equivalent to those in Equation (34).

As the solver in Proposition 2 is derived by the CD method, we call it the CD solver. The MM1
algorithm in Proposition 1 with the CD solver is specially named the MM1-CD algorithm.

For clarity, detailed steps of the MM1-CD algorithm for Equation (15) are presented in Algorithm 1.
Note that, in the CD solver, for i = 1, . . . , k, we have

βi =
m
n

n

∑
t=1

ζiζ
H
i (43)

where

ζi =
aH

i N−1
i x(t)√

x(t)HW−1
u x(t)

(44)

with ai being the ith column of the matrix A. The βi can be interpreted as the correlation between the
signal from a possible source at the grid θi and the array responses x(1), . . . , x(n). From the indicator
function δ(βi − αi) in Equation (34), we find that it is more likely to force to zeros the powers of the
assumed signals that are less correlated with the array responses.

Proposition 3 (The SPICE-like solver for Equation (31)). The sequence of r generated by iterating

r = sqrt(diag(Diag(r)BHW−1MuW−1B Diag(r))�wu) (45)

with any initial value r > 0 converges to the globally optimal solution ru+1 of problem in Equation (31).
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Algorithm 1 The MM1-CD algorithm for spatially non-uniform white noise.

1: Give r0 and ε,
2: u = 0,
3: repeat
4: Wu = B Diag(ru)BH + Jm,
5: Calculate Mu and wu,
6: d = 0,
7: r0 = ru, r = r0,
8: repeat
9: for i = 1 : k + m− 1 do

10: Ni = ∑l 6=i rlblbH
l + Jm,

11: Calculate αi, βi and γi,
12: if βi ≤ αi then
13: ri = 0,
14: else
15: ri = (

√
βi/αi − 1)/γi,

16: end if
17: end for
18: d = d + 1,
19: rd = [r1, . . . , rk+m−1]

T ,
20: until ‖rd − rd−1‖2/‖rd−1‖2 < ε,
21: u = u + 1,
22: ru = rd,
23: until ‖ru − ru−1‖2/‖ru−1‖2 < ε.

Proof. It is obvious that Equation (31) and the SPICE criterion in [15] are with similar forms. By the
same way as the SPICE criterion is analyzed in [15], we find that the globally optimal solution of the
problem in Equation (31) is identical to the minimizer r of the optimization problem

min
r≥0,E∈C(k+m)×n

tr(EH(Diag([r; 1]))−1E) + wT
u r

s.t. [A, Im]E = Xu,
(46)

where Xu = [x̃(1), . . . , x̃(n)] with

x̃(t) =
√

m
n

x(t)√
x(t)TW−1

u x(t)
, t = 1, . . . , n. (47)

For a fixed r, the matrix E minimizing Equation (46) can be verified to be [15]

E = Diag([r; 1])[A, Im]
HW−1Xu, (48)

and for a fixed E, the vector r minimizing Equation (46) can be readily given by

r = sqrt((diag(EEH))[1:k+m−1] �wu). (49)

The sequences of E and r, generated by alternately iterating Equations (48) and (49) from r > 0,
converge to the globally optimal solution of the convex problem in Equation (46) [14,15].
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Due to XuXH
u = Mu, iterating Equation (49) is just iterating Equation (45). Thus, the sequence of r

generated by Equation (45) converges to the minimizer r of Equation (46).

The solver in Proposition 3 is named the SPICE-like solver, and the MM1 algorithm in Proposition 1
with it is called the MM1-SPICE algorithm. Algorithm 2 summarily illustrates the MM1-SPICE
algorithm for Equation (15).

Algorithm 2 The MM1-SPICE algorithm for spatially non-uniform white noise.

1: Give r0 and ε,
2: u = 0,
3: repeat
4: Wu = B Diag(ru)BH + Jm,
5: Calculate Mu and wu,
6: d = 0,
7: r0 = ru,
8: repeat
9: Wd = B Diag(rd)BH + Jm,

10: rd+1 = sqrt(diag(Diag(rd)BH(Wd)−1Mu(Wd)−1B Diag(rd))�wu),
11: d = d + 1,
12: until ‖rd − rd−1‖2/‖rd−1‖2 < ε,
13: u = u + 1,
14: ru = rd,
15: until ‖ru − ru−1‖2/‖ru−1‖2 < ε.

From Propositions 1–3, it is found that the proposed MM1 algorithm is by an inner–outer iteration
loop. The MM1-CD and the MM1-SPICE algorithms are with the identical outer loop but different
nested inner loops. In addition, relationship and difference between the MM1-CD and the MM1-SPICE
are discussed in Section 4.3.

4.1.2. MM2 Algorithm

When ru > 0, it is found from [36] that, for any r > 0,[
Cu(Diag([r; 1]))−1CH

u Im

Im W

]
= FHF ≥ 0, (50)

where

Cu = W−1
u [A, Im]Diag([ru; 1]), (51)

F = [(Diag([r; 1]))−
1
2 CH

u , (Diag([r; 1]))
1
2 [A, Im]

H ]. (52)

From Equation (50), we have

W−1 ≤ Cu(Diag([r; 1]))−1CH
u (53)

with the equality achieved at r = ru. The inequality in Equation (53) is also valid for any r ∈ Ω due to
W > 0.

Denote
g2(r | ru, λ) = tr(CH

u MuCu(Diag([r; 1]))−1) + wT
u r. (54)
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It is clear from Equation (53) that, when ru > 0, for any r ∈ Ω,

g1(r | ru, λ) ≤ g2(r | ru, λ), (55)

where the equality is achieved at r = ru. Therefore, at any ru > 0, g2(r | ru, λ) + c2 majorizes the
objective function in Equation (15) for r ∈ Ω.

Proposition 4 (The MM2 algorithm for Equation (15)). The sequence {ru} generated by

ru+1 = sqrt(diag(Diag(ru)BHW−1
u MuW−1

u B Diag(ru))�wu) (56)

with any initial value r0 > 0 converges to a locally optimal solution of the problem in Equation (15).

Proof. Through the convergence analysis in [36], we have that, although Equation (55) is valid only
when ru > 0, the sequence {ru} generated

ru+1 = arg min
r∈Ω

g2(r | ru, λ) (57)

with any initial value r0 > 0 converges to a locally optimal solution of the problem in Equation (15).
It is worth mentioning that the elements of the coefficient vector diag(CH

u MuCu) in Equation (54) are
positive. By solving the optimization problem in Equation (57) using the gradient method, the iteration
procedure in Equation (57) is found to be exactly Equation (56)

The r0 involved in the iteration procedure in Equation (56) can be the one given in Equation (32).
Summarily, Algorithm 3 gives the detailed steps of the MM2 algorithm for the problem in Equation (15).

Algorithm 3 The MM2 algorithm for spatially non-uniform white noise.

1: Give r0 and ε,
2: u = 0,
3: repeat
4: Wu = B Diag(ru)BH + Jm,
5: Calculate Mu and wu,
6: ru+1 = sqrt(diag(Diag(ru)BHW−1

u MuW−1
u B Diag(ru))�wu),

7: u = u + 1,
8: until ‖ru − ru−1‖2/‖ru−1‖2 < ε.

4.2. DOA Estimation for Spatially Uniform White Noise

The DOA estimation in the case of spatially uniform white noise amounts to solving the
optimization problem in Equation (21). Problems in Equations (21) and (15) are with similar forms,
but Equation (21) involves a smaller number of unknown parameters. By the same way as the problem
in Equation (15) is analyzed in Section 4.1, we can naturally derive the algorithms to solve Equation (21).
The algorithms for Equation (21) are still named MM1 (including MM1-CD and MM1-SPICE) and MM2.

4.2.1. MM1 Algorithm

Proposition 5 (The MM1 algorithm for Equation (21)). Denote

h1(q | qu, λ) = tr(ZuQ−1) + eT
u q (58)
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with

Zu =
m
n

n

∑
t=1

x(t)x(t)H

x(t)HQ−1
u x(t)

, (59)

eu = diag(AHQ−1
u A) + λ1k, (60)

Qu = A Diag(qu)AH + Im, (61)

and then the sequence {qu} generated by

qu+1 = arg min
q≥0

h1(q | qu, λ) (62)

with any initial value q ≥ 0 converges to a locally optimal solution of the problem in Equation (21).

To solve the optimization problem in Equation (62), using the same method as Equation (31) is
solved, we offer two different iterative solvers for Equation (62).

Proposition 6 (The CD solver for Equation (62)). The sequence of q generated by iterating

qj =

(
β̃ j

α̃j
− 1
)

1
γ̃j

δ(β̃ j − α̃j), j = 1, . . . , k (63)

with any initial value q ≥ 0 converges to the globally optimal solution of the problem in Equation (62), where

α̃j = (ej)u, (64)

β̃ j = aH
j (Hj)

−1Zu(Hj)
−1aj, (65)

γ̃j = aH
j (Hj)

−1aj, (66)

with (ej)u being the jth element of the vector eu, aj being the jth column of the matrix A and

Hj = ∑
l 6=j

qlala
H
l + Im. (67)

Proposition 6 introduces the nested CD inner loop of the MM1 algorithm for the problem in
Equation (21), and can be proven similar to Proposition 2.

Proposition 7 (The SPICE-like solver for Equation (62)). The sequence of q generated by iterating

q = sqrt(diag(Diag(q)AHQ−1ZuQ−1A Diag(q))� eu) (68)

with any initial value q > 0 converges to the globally optimal solution of the problem in Equation (62).

The iterative procedure in Proposition 7 above is the nested SPICE-like inner loop of the MM1
algorithm for Equation (21), and can be proven similar to Proposition 3.

The MM procedure in Proposition 5 with the CD nested loop in Proposition 6 is the MM1-CD
algorithm for Equation (21). The MM1-SPICE algorithm for Equation (21) is the MM procedure in
Proposition 5 with the SPICE-like nested loop in Proposition 7.

4.2.2. MM2 Algorithm

Proposition 8 (The MM2 algorithm for Equation (21)). The sequence {qu} generated by

qu+1 = sqrt(diag(Diag(qu)AHQ−1
u ZuQ−1

u A Diag(qu))� eu) (69)
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with any initial value q > 0 converges to a locally optimal solution of the problem in Equation (21).

Due to Equation (19), by means of inserting in q the initial estimates of p and σ2 given in [13],
q0 = [(q1)0, . . . , (qk)0]

T required by the iterations in Equations (62) and (69) can be

(qj)0 =
aH

i R̂ai

σ̂‖ai‖4
2
> 0, j = 1, . . . , k, (70)

where R̂ is given by Equation (33) and σ̂ is the mean of the first m smallest values of the set{
aH

1 R̂a1

‖a1‖2
2

, . . . ,
aH

k R̂ak

‖ak‖2
2

, R̂1,1, . . . , R̂m,m

}
. (71)

4.3. Discussions on the MM1 and MM2 Algorithms

The following arguments are focused on the case of spatially non-uniform noise, which are also
applicable to the case of spatially uniform noise.

Both the MM1 and MM2 algorithms decrease the objective function in Equation (15) at each MM
iteration and converge locally, in which the different majorizing functions are adopted. Compared
to the MM2 algorithm, the MM1 algorithm has a majorizing function closer to the objective function
in Equation (15) due to Equation (55). The computational burdens of the two algorithms are mainly
caused by the matrix inversion operations.

Although the MM1-CD and MM1-SPICE algorithms have different nested inner iteration
procedures, they converge to the same local solution theoretically because their outer MM iteration
procedures are both Equation (31). Each nested inner iteration of the MM1-CD algorithm, detailed
by Steps 9–17 in Algorithm 1, requires k + m − 1 matrix inverse operations. In each nested inner
iteration of the MM1-SPICE algorithm, presented by Steps 9–10 in Algorithm 2, only one matrix
inverse operation is entailed.

It is somewhat interesting to find that the iteration of the MM2 algorithm (see Equation (56)) and
the nested inner iteration of the MM1-SPICE algorithm (see Equation (45)) have similar forms. In each
iteration of the MM2 algorithm, only one matrix inverse operation is needed.

4.4. Selection of Penalty Parameter

The penalty parameter λ in Equations (15) and (21) affects the sparsity levels of the estimates of r
and q. A modified Bayesian information criterion (BIC) method [37], which is common and statistically
sound, is provided here to choose an appropriate λ. Let r̂λ and q̂λ be the solutions of the problems
in Equations (15) and (21) with a fixed λ, respectively, and denote Ŵλ = B Diag(r̂λ)BH + Jm and
Q̂λ = A Diag(q̂λ)AH + Im. The appropriate λ for spatially non-uniform noise and uniform noise are

arg min
λ

L0(Ŵλ) + ẑλ,1 log(n)/(2n) (72)

and
arg min

λ

L0(Q̂λ) + ẑλ,2 log(n)/(2n), (73)

respectively, where ẑλ,1 and ẑλ,2 are the numbers of nonzero elements of the vectors (r̂λ)[1:k] and
q̂λ, respectively.

Note that the elements of (r̂λ)[1:k] and q̂λ can be treated as 0 if they are smaller than some certain
values respectively, e.g., ε max((r̂λ)[1:k]) and ε max(q̂λ) with a very small ε > 0.

Notice that the L0(Ŵλ) and L0(Q̂λ) in Equations (72) and (73) are substitutes for the marginal
likelihood also called as Bayesian evidence required in the BIC criterion [43]. By the way,
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when modeling in the Bayesian framework, the marginal likelihood usually cannot be analytically
calculated, but can be approximated by several computational methods in [44–46].

5. Numerical Experiments

In this section, we numerically show the performance of the proposed methods. Consider a
uniform linear array (ULA), and, for each j = 1, . . . , k0, the steering vector corresponding to the DOA
ξ j is

a(ξ j) = [1, exp(ıπ cos(ξ j)), . . . , exp(ıπ(m− 1) cos(ξ j))]
T . (74)

The array output data x(t) are generated from the model

x(t) =
k0

∑
j=1

a(ξ j)s̄j(t) + v(t), t = 1, . . . , n, (75)

and both the source signals s̄1(t), . . . , s̄k0(t) and the observation noise v(t) are temporally independent.
The SNR is defined as

SNR(dB) = 10 log10

(
tr(ĀP̄ĀH)

tr(V)

)
, (76)

where Ā = [a(ξ1), . . . , a(ξk0)], P̄ is the covariance matrix of s̄(t) = [s̄1(t), . . . , s̄k0(t)]
T , and V is the

covariance matrix of v(t). The root mean-square error (RMSE) of the DOA estimate is employed to
evaluate the estimation performance, which is approximated by R = 500 Monte Carlo runs as

RMSE =
1
R

R

∑
i=1

√√√√ 1
k0

k0

∑
j=1

(ξ̂ j,i − ξ j)2, (77)

where ξ̂ j,i is the estimate of ξ j in the ith Monte Carlo run. In the following experiments, we applied the
proposed methods and the SPICE [13,15] and LIKES methods [15] to estimate the DOAs. Set the grid
points θ = {0◦, 1◦, . . . , 180◦}, and the tolerance ε = 10−8 for convergence. All methods were coded in
MATLAB and executed on a workstation with two 2.10 GHz Intel Xeon CPUs.

5.1. Experimental Settings

5.1.1. Experiment 1

Consider a scenario with Gaussian source signals and noise:

• The number of sensors in the array is m = 15, and the number of snapshots is n = 100.
• There are k0 = 4 sources locating at ξ1 = 60◦, ξ2 = 80◦, ξ3 = 100◦, ξ4 = 120◦, respectively.
• The signal s̄(t) is zero-mean circular complex Gaussian with covariance matrix P̄ =

Diag([100, 100, 100, 100]).
• The noise v(t) is zero-mean circular complex Gaussian with covariance matrix V = σ2Im.

5.1.2. Experiment 2

Consider the scenario where both the source signals and the observation noise are non-Gaussian.
Let m = 15. We used the experimental settings:

• The k0 = 4 source signals from ξ1 = 10◦, ξ2 = 40◦, ξ3 = 40◦ + ∆ξ, ξ4 = 70◦ are, respectively,
as s̄1(t) = 5 exp(ıϕ1(t)), s̄2(t) = 10 exp(ıϕ2(t)), s̄3(t) = 10 exp(ıϕ3(t)), s̄4(t) = 5 exp(ıϕ4(t)),
where ∆ξ is the angle separation between ξ2 and ξ3, and ϕ1(t), . . . , ϕ4(t) are independent and
respectively, distributed as
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ϕ1(t) ∼ 2πGamma(1, 1),

ϕ2(t) ∼ 2πGamma(1, 1),

ϕ3(t) ∼ U[0, 2π],

ϕ4(t) ∼ U[0, 2π],

(78)

where Gamma(a, b) denotes the Gamma distribution with the shape parameter a and scale parameter
b, and U[a, b] denotes the uniform distribution on the interval [a, b]. Note that the source signals s̄1(t),
s̄2(t), s̄3(t) and s̄4(t) have constant modulus, which is common in communication applications [13].

• The observation noise v(t) is distributed as

v(t) ∼ $n1, (79)

where $ ∼ Gamma(1, 6) and n1 is zero-mean Gaussian with covariance matrix V = σ2Im.

5.1.3. Experiment 3

Consider a scenario with non-Gaussian source signals and non-Gaussian spatially non-uniform
white noise. Let m = 8 and n = 100. The k0 = 3 source signals locating at ξ1 = 40◦, ξ2 = 50◦, ξ3 = 80◦

are s̄1(t) = 10 exp(ıϕ2(t)), s̄2(t) = 30 exp(ıϕ3(t)) and s̄3(t) = 10 exp(ıϕ4(t)) with ϕ2(t), ϕ3(t), ϕ4(t)
being given by Equation (78). The observation noise is distributed as

v(t) ∼ $n2, (80)

where $ ∼ Gamma(2, 2) and n2 is zero-mean Gaussian with covariance matrix V = σ2 Diag([m, m−
1, . . . , 1]).

5.2. Experimental Results

In Experiment 1, the MM1-CD, MM1-SPICE and MM2 algorithms with λ = 0 were firstly applied.
Table 1 reports the iteration numbers n1, n2, n3, the computational time τ (in seconds), and the DOA
estimation RMSEs (in degrees). Specifically, n1 is the number of total iterations, n2 is the number of
iterations in the outer loop, amd n3 is the average of the iterations in a nested inner loop. Besides
the RMSEs, each value in Table 1 is the average of the results of 500 Monte Carlo runs. Note that,
even though n1 = n2 × n3 in a Monte Carlo run, n1 is not exactly equal to n2 × n3 in Table 1 because
they are the average of 500 Monte Carlo runs.

Table 1. Comparison of computational complexities and RMSEs.

SNR Method n1 n2 n3 τ RMSE

−1 dB
MM1-CD 525.5600 16.0440 32.7550 27.9710 0.0877

MM1-SPICE 317.6500 16.9280 18.7370 0.3805 0.0926
MM2 129.5000 − − 0.3266 0.1059

−3 dB
MM1-CD 539.2700 16.0000 33.7040 28.7700 0.2345

MM1-SPICE 310.0300 16.6260 18.6070 0.3714 0.2434
MM2 129.3800 − − 0.3260 0.2568

−5 dB
MM1-CD 561.0900 16.4380 34.1500 29.3910 0.4292

MM1-SPICE 303.1400 16.3340 18.5130 0.3590 0.4681
MM2 129.1400 − − 0.3195 0.4840

As shown in Table 1, the MM1-CD and MM1-SPICE algorithms had similar RMSEs and the
MM1-CD algorithm took much more time than the MM1-SPICE algorithm. Considering that the
MM1-CD and MM1-SPICE algorithms theoretically converge to the identical local solution, we believe
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that they will always have similar RMSEs. Moreover, the MM2 algorithm had the smallest iteration
numbers, the least computational time and satisfactory RMSEs. In the following, we present the DOA
estimation performance only of the MM1-SPICE and MM2 algorithms. Note that the MM1-SPICE
and MM2 algorithms may converge to different local solutions, and then they are referred to as two
different estimation methods hereinafter. Specifically, we compared the following six methods:

1. LIKES: The ML method proposed in [15] under the assumption that the array output x(t) is
Gaussian distributed.

2. SPICE: A sparse covariance-based estimation method proposed in [13] with no distribution
assumption.

3. MM1-SPICE-0: The MM1-SPICE method with the penalty parameter λ = 0;
4. MM1-SPICE-P: The MM1-SPICE method with the penalty parameter selected by the criterion in

Section 4.4.
5. MM2-0: The MM2 method with the penalty parameter λ = 0.
6. MM2-P: The MM2 method with the penalty parameter selected by the criterion in Section 4.4.

It is worth presenting that in, Experiments 1–3, the standard MUSIC algorithm was found to be
almost ineffective, thus we do not illustrate it.

The RMSE comparisons of the above six methods are illustrated in Figures 1–3 for Experiments 1–3
with different SNRs, respectively. Figures 4 and 5 for Experiment 2 show the DOA estimation RMSEs
of the above six methods versus the number of snapshots and the angle separation, respectively.
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Figure 1. DOA estimation RMSE versus SNR for Experiment 1.
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Figure 3. DOA estimation RMSE versus SNR for Experiment 3.
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SNR = 0 dB.
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In Figure 1, we can see that the MM1-SPICE-0 and MM2-0 methods were comparable to the
LIKES and SPICE methods in the Gaussian cases. As shown in Figures 2–5, the scenarios of
non-Gaussian random source signals and heavy-tailed random noise, the MM1-SPICE-0 and MM2-0
methods performed much better than the LIKES and SPICE methods. In other words, the ML
methods designed for the CES outputs were effective in the simulation scenarios of Gaussian and
non-Gaussian distributions.

As shown in Figures 1–5, we found that the penalized ML methods, i.e., the MM1-SPICE-P
and MM2-P methods, had smaller RMSEs than the other four methods. As shown in Figure 4,
with the increase of the number of snapshots, the performance of the MM1-SPICE-P and MM2-P
methods improved but the performance of the MM1-SPICE-0 and MM2-0 methods remained virtually
unchanged. Figure 5 shows that, as ∆ξ increased from 2◦ to 6◦, the performance of the MM1-SPICE-P
and MM2-P methods became better, while, when ∆ξ was larger than 4◦, the performance of the
MM1-SPICE-0 and MM2-0 methods no longer improved. As shown in Figures 1–3, unsurprisingly,
as the SNR increased, the performance of all the six methods became better.

For illustrating the difference between the penalized and un-penalized ML methods, we evaluated
the normalized spectrum (NS):

NS =
r̂[1:k]

max(r̂[1:k])
or

q̂
max(q̂)

, (81)

where r̂ and q̂ are, respectively, the estimates of r and q.
Figures 6–10 report the NSs of Experiments 1–3 by the MM2-0 and MM2-P methods (the curves

of the NSs of the MM-SPICE-0 and MM2-SPICE-P methods are similar to those of the MM2-0 and
MM2-P methods, respectively). Figures 6 and 10 are for Experiments 1 and 3 with SNR = 0 dB,
respectively. Figures 7 and 8 are both for Experiment 2 with n = 100 and SNR = 0 dB, but they involve
two scenarios with different angle separations. Particularly, Figure 8 is for the very small ∆ξ = 3◦,
as opposed to Figure 7 for ∆ξ = 15◦. Figures 9 is also for Experiment 2, but it is about the scenario with
small snapshot size n = 20, small SNR = −10 dB and moderate angle separation ∆ξ = 10◦. Note that
the red dashed lines mark the true DOAs and the NS curves in each figure are the results of a randomly
selected realization. We can clearly see in Figures 6–10 that the MM2-P method having the l1-norm
penalty added yielded a higher angular resolution.
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Figure 6. NSs of Experiment 1 with SNR = 0 dB.
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Figure 7. NSs of Experiment 2 with n = 100, SNR = 0 dB and ∆ξ = 15◦.
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Figure 8. NSs of Experiment 2 with n = 100, SNR = 0 dB and ∆ξ = 3◦.
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Figure 9. NSs of Experiment 2 with n = 20, SNR = −10 dB and ∆ξ = 10◦.
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Figure 10. NSs of Experiment 3 with SNR = 0 dB.

6. Conclusions

This paper provides a penalized ML method for DOA estimation under the assumption that the
array output has a CES distribution. Two MM algorithms, named MM1 and MM2, are developed for
solving the non-convex penalized ML optimization problem for spatially uniform or non-uniform
noise. They converge locally with different rates. The numerical experiments showed that the MM2
ran faster and performed as well as the MM1 when estimating the DOAs. Their rates of convergence
will be further explored theoretically in future.

It is worth mentioning that, in numerical simulations, the proposed l1-norm penalized likelihood
method effectively estimated the DOAs, although the values of nonzero elements of r or p were
not estimated very accurately. By replacing the l1-norm penalty by other proper penalties (e.g.,
the smoothly clipped absolute deviation (SCAD) [47], adaptive LASSO [48], or lp-norm penalty
(0 ≤ p < 1)), more accurate estimates of the unknown parameter may be derived in the future.

If the l1-norm penalty is replaced by the adaptive LASSO penalty, then the algorithms proposed
in this paper can be applied almost without modification because the adaptive LASSO penalty is
a weighted l1-norm penalty. When the non-convex SCAD or the lp-norm penalty (0 ≤ p < 1)
is employed, the convex majorizing functions given in [40,49] can be exploited based on the MM
framework, and then the algorithms in this paper with minor modifications are also applicable.

When we have some informative prior knowledge on the directions of source signals, the problem
of estimating the DOAs can be formulated as maximizing a sparse posterior likelihood from the
Bayesian perspective. The sparse Bayesian method of estimating DOAs from the CES array outputs
is interesting and is worth studying, while how to formulate and solve a sparse posterior likelihood
optimization and how to do model selection are challenges. The BIC criterion can be used for the model
selection, in which the Bayesian evidence difficult to be analytically derived can be approximated by
the methods in [44–46]. More research along this line will be done in the future.
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