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Abstract: Radar unconventional active jamming, including unconventional deceptive jamming
and barrage jamming, poses a serious threat to wideband radars. This paper proposes an
unconventional-active-jamming recognition method for wideband radar. In this method, the visibility
algorithm of converting the radar time series into graphs, called visibility graphs, is first given. Then,
the visibility graph of the linear-frequency-modulation (LFM) signal is proved to be a regular graph,
and the rationality of extracting features on visibility graphs is theoretically explained. Therefore,
four features on visibility graphs, average degree, average clustering coefficient, Newman assortativity
coefficient, and normalized network-structure entropy, are extracted from visibility graphs. Finally,
a random-forests (RF) classifier is chosen for unconventional-active-jamming recognition. Experiment
results show that recognition probability was over 90% when the jamming-to-noise ratio (JNR) was
above 0 dB.

Keywords: radar unconventional active jamming; jamming recognition; visibility graphs; feature
extraction; random forests

1. Introduction

Electronic countermeasure (ECM) techniques, such as active deceptive jamming, can generate
false targets imitating real ones, and even disturb target detection or tracking [1,2]. Active barrage
jamming is another ECM technique, which uses noise or noise-like signal to barrage the target echo,
preventing the radar from detecting targets or measuring target parameters. Its basic principle is
to use high-power random or pseudo-random signals, thereby reducing radar-detection probability.
On the other hand, with the rapid development of radar electronic counter-countermeasure (ECCM)
techniques, ECCM techniques, including side-lobe cancellation and blanking [3], space-time adaptive
processing [4] and adaptive beamforming [5], have gradually weakened the jamming performance of
radar conventional active jamming.

Unconventional active jamming is generated by replicating the transmitted signals of the victim
radar, followed by a series of parameter modulations based on digital-radio-frequency memory
(DRFM) technology. Compare with conventional active deceptive and barrage jamming, it is coherent
with the radar transmitted signals and can achieve some processing gain from signal processing that
includes pulse compression and coherent accumulation. Therefore, conventional ECCM techniques
become ineffective, and the jamming always enters the radar receiver. One of the most effective
schemes to weaken the jamming is the so-called signal-processing based scheme, which is designed
to recognize and suppress jamming based on the difference between the echo and the jamming.
Commonly used ways to recognize radar active jamming can be divided into two steps, feature
extraction and classifier design. The distinguishability of jamming-signal features directly affects the
recognition probability of subsequent classifier design. The majority of feature extraction operates

Sensors 2019, 19, 2344; doi:10.3390/s19102344 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1274-319X
http://www.mdpi.com/1424-8220/19/10/2344?type=check_update&version=1
http://dx.doi.org/10.3390/s19102344
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2344 2 of 18

on the time/frequency/spatial [6], polarization [7], statistical [8,9], and multiscale-joint domains [10].
These features show the information of the jamming from different perspectives, and we consider a
new perspective to extract jamming features in this paper.

Time series analysis is the use of statistical methods to analyze time series data and extract
meaningful statistics and characteristics of the data. Therefore, nonlinear time-series analysis can
be characterized by the complexity in the signal owing to jamming signals always carrying some
fingerprint features [11,12]. At the end of the 19th century, with the rapid development of computer
and Internet technology, the theory of complex networks [13,14] was proposed to outline the real-world
network. Complex-network theory could be a useful way to characterize time series, and a series of
related achievements, including visibility graphs and horizontal visibility graphs [15,16], recurrence
networks [17,18], and correlation networks [19], were presented for analyzing the structural properties
of time series by complex networks. The visibility algorithm was originally applied to computational
geometry and robot motion planning. In 2008, Reference [15] used the visibility algorithm for time-series
analysis by converting time series into graphs, called visibility graphs. Up to now, the visibility
algorithm has been used in many fields, such as financial [20], traffic [21], and geographic time series
analysis [22].

In this paper, we propose a novel method for radar unconventional-active-jamming recognition
based on visibility graphs. The representations for different types of unconventional active jamming
were derived for illustration purposes in Section 2. In Section 3, the visibility algorithm that converts a
time series into a graph is given and the concept of visibility graphs is introduced; then the feasibility of
the visibility algorithm for radar signals is analyzed. Section 4 extracts four features on visibility graphs
that are valid for jamming recognition. Then, Section 5 outlines numerical results and analysis for
unconventional-active-jamming recognition based on a random-forests classifier. Finally, in Section 6,
the main conclusions of the paper are summarized.

2. Characteristics of Unconventional Active Jamming

2.1. Unconventional Deceptive Jamming

At present, most unconventional deceptive jamming uses DRFM technology to achieve
accurate the interception of radar signals to generate various types of deceptive jamming. These
interception methods mainly include three modes: Full pulse, partial pulse and interrupted sampling.
Unconventional deceptive jamming is commonly generated by partial-pulse and interrupted-sampling
modes, which include interrupted-sampling directly jamming (ISDJ), interrupted-sampling repeater
jamming (ISRJ), interrupted-sampling circularly jamming (ISCJ), and partial-pulse dense transmitted
jamming (PDTJ).

The generation mechanism of ISDJ is to use the DRFM technology to perform fast retransmission
directly after intercepting part of the radar signal, and repeats the “interception-retransmission” process
until it detects the falling edge of the radar signal. ISDJ is expressed as follows:

JISDJ(t) =
NJ−1∑
n=0

rect
(

t− (2n + 1)TW

TW

)
s(t− TW) (1)

where s(t) stands for the intercepted radar signal, NJ is the number of slices, and TW is the slice width.
The mechanism of ISRJ is similar to ISDJ, but every intercepted signal is retransmitted multiple

times. The model of ISRJ can be written as:

JISRJ(t) =
MJ∑

m=1

NJ−1∑
n=0

rect
(

t− (nM + n + m)TW

TW

)
s(t−mTW) (2)

where MJ is the number of retransmissions.
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ISCJ also belongs to interrupted-sampling modes. Not only is intercepted signal retransmitted,
but the previously intercepted signal is also retransmitted in reverse order after primary sampling.
ISCJ can be indicated as:

JISCJ(t) =
NJ∑

m=1

NJ−m+1∑
n=1

rect
(

t− α(m) − β(m, n)
TW

)
s(t− β(m, n)), (3)

where α(m) = [m(m− 1)/2− 1]TW represents the time delay in intercepting the m-th slice, β(m, n) =
[n(n + 1)/2 + m(n− 1)]TW represents the time delay when the m-th slice is retransmitted for the
n-th time.

PDTJ uses the interception method of the partial pulse. After intercepting a portion of the radar
signal, it starts to continuously retransmit this sampled pulse, which is densely formed false targets
directly on the radar range profile, without having to wait for the jammer to intercept and store the
complete signal. PDTJ is expressed as follows:

JPDTJ(t) =
MJ∑

m=1

rect
( t−mTW

TW

)
s(t−mTW) (4)

2.2. Unconventional Barrage Jamming

According to different modulation modes, conventional barrage jamming can be divided into
radio-frequency noise jamming, noise-amplitude modulation jamming, noise-frequency modulation
jamming, etc. Their time domain models can be uniformly modeled as:

JCBJ(t) = AJ(t) exp
{
j
[
ωJ(t) · t + ϕJ(t)

]}
, (5)

where AJ(t), ωJ(t), and ϕJ(t) are the instantaneous amplitude, frequency and phase function of the
jamming signal, respectively. Regardless of the modulation method, the contradiction between power
and frequency band coverage cannot be solved.

In contrast, unconventional barrage jamming uses noise modulation on the intercepted radar
signal to improve coherence with the radar signal, while preserving random and non-stationary
jamming characteristics. It has the advantage of aiming at the radar carrier frequency with in-band high
noise power. It can be mainly divided into noise productive jamming (NPJ) and noise convolutional
jamming (NCJ).

NPJ is obtained by multiplying the intercepted radar signal by local noise in the time domain
which can be derived as:

JNPJ(t) = s(t) × n(t), (6)

where n(t) is the local noise.
Local noise shifts the intercepted radar signal in the frequency domain, and the maximum spectral

offset is the bandwidth of the local noise. When the radar signal is a pulse compression signal, since the
jamming is related to the radar signal, jamming also obtains part of the gain through the matched filter.
Therefore, the time domain of NPJ is similar to the noise, and its frequency domain automatically aligns
with the center frequency of the radar signal, effectively reducing the power required for jamming
under the premise of ensuring noise barrage.

Similarly, NCJ is to convolve the intercepted radar signal with local noise in the time domain,
which can be written as:

JNCJ(t) = s(t) ⊗ n(t). (7)

NCJ is essentially the result of delay addition of the radar signal multiplied by different coefficients,
so it can also obtain the matched filter gain, and barrage the signal in time domain with less power.
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Sparse noise convolutional jamming (SNCJ) is an improvement based on NCJ, but combined with
the interception method of interrupted-sampling. The intercepted radar signal is first sampled using a
rectangular pulse series and then convolutionally modulated onto the local noise. Compare with NCJ,
SNCJ can produce the same effect with less power. The model of the SNCJ is expressed as follows:

JSNCJ(t) =
MJ∑

m=1

NJ−1∑
n=0

rect
(

t− n(M + 1)TW −mTW

TW

)
sT(t−mTW) ⊗ n(t). (8)

We can consider ISDJ as a special case of ISRJ when the number of retransmissions is one, and we
can consider NCJ as a special case of SNCJ if the SNCJ sampling window is the entire radar signal.
Therefore, this paper focuses on the recognition of radar unconventional active jamming, including
ISRJ, ISCJ, PDTJ, NPJ, and SNCJ.

3. Principle of Visibility Graphs

3.1. Mathematic Principle

A graph is a system that contains a large number of individuals and interactions between
individuals. If individuals are regarded as vertices, and interactions between individuals are regarded
as a connection between vertices, then any complex system can be represented as a graph.

A graph can be defined as a binary set, which is referred to as G = {V, ε}. V = {v1, v2, . . . , vN}

and ε = {e1, e2, . . . , eM}, say, the vertex set and the edge set. The elements ofV and ε are the vertices
and edges, and the number of elements is denoted as order N = |V| and size M = |ε|. Each edge has
a corresponding pair of vertices. The graph is called an undirected graph if vertex pair

(
vi, v j

)
and(

v j, vi
)

corresponds to the same edge; otherwise, it is a directed graph, and
(
vi, v j

)
represents an edge

from vi to v j. Moreover, the graph is called a weighted graph if each edge is given a corresponding
weight; otherwise, it is an unweighted graph.

The visibility algorithm converts a time series into a graph and is used for time-series analysis.
Reference [15] applied the visibility algorithm and used the following definitions: Suppose S = {si}, i =
1, 2, · · · , N is a signal containing N sampled data, two arbitrary data (a, sa) and (b, sb) have visibility
and consequently become two connected vertices va and vb of the associated graph G, if any other data
(c, sc) placed between them satisfy:

sc < (sa − sb)
b− c
b− a

+ sb (9)

The associated graphs derived from the visibility algorithm are called visibility graphs, and
the number of vertices on visibility graphs is the same as the number of the data in a time series.
For illustrative purposes, we plotted an example of the visibility algorithm in Figure 1. The upper part
of Figure 1 is the first 20 data of a periodic time series; values are specifically 0.8, 0.5, 0.4, 0.6, 0.8, 0.5,
0.4, 0.6, 0.8, 0.5, 0.4, 0.6, 0.8, 0.5, 0.4, 0.6, 0.8, 0.5, 0.4, and 0.6. Each datum is represented as a column,
and the height of the column represents the numerical value of the data. Here two data have visibility
or invisibility if the tops of the corresponding two columns can or cannot be connected with a straight
line. The lower part of Figure 1 shows the results of visibility graphs in a more concise form, and every
vertex corresponds to series data in the same order on visibility graphs.

It is easy to verify that the visibility graphs obtained by the visibility algorithm have the
following properties:

1. Connectivity: Each vertex is connected to at least its left and right neighbors. If the vertex has
only left (right) neighbors, it is at least connected to its left (right) neighbor;

2. undirected and unprivileged: The generated network is an undirected and unprivileged network;
3. affine transformation invariance: After rescaling both horizontal and vertical axes or after

horizontal and vertical translations, the topology of the network does not change.
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In complex-network theory, the degree of a vertex is defined as the number of connections the
vertex has to other vertices, and degree distribution is then defined by the fraction of vertices in the
network. It is noted that numerous real-world networks and theoretical networks satisfy certain
degree distribution. Reference [15] found that the visibility algorithm can convert periodic time series
into regular networks with Dirac degree distribution, which is the fingerprint of time-series periods.
That means that visibility graphs can structurally conserve or inherit the regularity of periodic time
series. Moreover, the visibility algorithm also converts random time series into random networks with
exponential degree distribution and convert fractal time series into scale-free networks with power law
degree distribution that can be utilized to detect the difference between random and chaotic series.

Therefore, it is a natural idea that we can use the visibility algorithm to establish a natural bridge
between the jamming signal and visibility graphs. The key question is to study the degree distribution
characteristics that the signal may retain after being converted to visibility graphs.

3.2. Visibility Graphs for Analysis onSignals

3.2.1. Sinusoidal Signal

In order to facilitate the degree-distribution characteristics of wideband-signal analysis, we first
researched the sinusoidal signal on visibility graphs and assumed that a discrete sinusoidal signal
is expressed as s1(t) = cos(2π f0t). We mainly discuss three regions in one period, since a sinusoidal
signal is periodic, and defined them as A := (0, 1/4 f0), B := (1/4 f0, 3/4 f0), and C := (3/4 f0, 1/ f0).
Then, two data points that had visibility or invisibility with each other were defined to be written as
vi ↔ v j or vi = v j. Any two data points on region P that had visibility or invisibility were defined to
be written as P↔ or P =.

For any two points tB1, tB2 on region B, the following equations were satisfied:

cos
(
2π f0

( tB1 + tB2

2

))
∈ (−1, 0), (10)

cos
(
2π f0

( tB1 − tB2

2

))
∈ (0, 1). (11)
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Then we can find out that region B is a convex region:

cos(2π f0tB1)+cos(2π f0tB2)
2

= cos
(
2π f0

( tB1+tB2
2

))
· cos

(
2π f0

( tB1−tB2
2

))
> cos

(
2π f0

( tB1+tB2
2

)) (12)

For λ ∈ [0, 1], there is s1(λtB1 + (1− λ)tB2) < λs1(tB1) + (1− λ)s1(tB2). Assume tB3 = λtB1 +

(1− λ)tB2, and s1(tB3) should meet:

s1(tB3) < λs1(tB1) + (1− λ)s1(tB2)

= (s1(tB1) − s1(tB2))
tB2−λtB1−(1−λ)tB2

tB2−tB1
+ s1(tB2)

= (s1(tB1) − s1(tB2))
tB2−tB3
tB2−tB1

+ s1(tB2)

(13)

Therefore, any two points on region B always have visibility, that is, B =. Similarly, regions A
and C are concave regions; consequently, A = and C =.

For any point on region A, pass data point tA for a tangent to s1(t) at data point tLA. It is easy to
find that, for any point tM on region B or region C, when tM < tLA and tA < tP < tM are satisfied, then
[s1(tM) − s1(tP)]/(tM − tP) < [s1(tM) − s1(tA)]/(tM − tA), i.e., tA = tM; when tM > tLA and tA < tP < tM

are satisfied, then [s1(tM) − s1(tP)]/(tM − tP) > [s1(tM) − s1(tA)]/(tM − tA), i.e., tA ↔ tM .
We define tLA as the left limit visible point (LVP) of tA. Left or right LVP means it is the farthest

point of all the points, which has visibility on the left or right side of tA. tLA can be solved by
tangential properties:

s1(tLA) − s1(tA)

tLA − tA
=

ds1(tA)

dt
, (14)

cos(2π f0tLA) − cos(2π f0tA) + 2π f0(tLA − tA) sin(2π f0tA) = 0. (15)

Equation (15) is a transcendental equation. Its solution cannot be found analytically. For the tA on
region A, the approximate solution was obtained by the graphical method. The change law of tLA with
tA is shown in Figure 2a.

In addition, we should also find the right LVP tRA of tA, which passes tA and is the tangent point
of a tangent line on s1(t). It is easy to find that for any point tN on region C (because the right LVP must
be in the region C), when tN < tRA and tA < tQ < tN, there is tA ↔ tN ; when tN > tRA and tA < tQ < tN,
there is tA = tN.

Similarly, in order to get the solution of tRA, the tangential property is available:

s1(tRA) − s1(tA)

tRA − tA
=

ds1(tRA)

dt
, (16)

cos(2π f0tRA) − cos(2π f0tA) + 2π f0(tRA − tA) sin(2π f0tRA) = 0. (17)

Equation (17) is a transcendental equation and its analytical solution cannot be obtained.
The approximate solution obtained by the graphical method was also used. The change law of
tRA with tA is shown in Figure 2b. For normalization, the axes in the figure are multiplied by f0.

In Figure 2a, as tA moves from the left end to the right end of region A, the position of tLA moves
from the right end of region C to the left end of region B, and moving speed is gradually slowed down.
When tA moves to the end of region A, the intersection of the tangent coincides with the vertex itself.
In Figure 2b, as tA moves along the same route, tRA moves from the right end to the left of region C,
but moving speed was almost negligible. Until tA stopped moving, tRA moved only about 3.5% (which
we can see from the Y-axis of Figure 2b) of the total number of vertices in the entire period.
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Figure 2. Change laws of (a) tLA and (b) tRA with tA.

Then the visible region of tA is defined between tLA and tRA, which means any point in the visible
region has visibility with tA. A more intuitive schematic diagram is shown in Figure 3.
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Similarly, for any point tC on region C, there is also a left LVP tLC on region A, and the right LVP
tRC is on region A or B. The change laws of tLC and tRC are shown in Figure 4 where the change laws of
tLC and tRC are mirrored with the change laws of tRA and tLA.
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Finally, consider any point tB on convex region B, and its left LVP tLB and right LVP tRB are on
region A and region C, respectively. Similar to the derivation of tA, we can obtain the change laws
of tLB and tRB with tB, which are shown in Figure 5. It is worth noting that tLB, tRB, tRA, and tLC, are
tangent points, while tLA and tRC are not.
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As can be seen from Figure 5, as tB moves from left to right on region B, tLB moves from right to
left at a substantially constant speed in region A. When tB moves to the end, tLB does not reach the left
end of region A. As tB moves from right to left on region B, the movement laws of tRA and tLB mirror
each other.

It is obvious that the point on region C and the point on region A of the next period have invisibility
(because t = 1/ f0 has the largest data value) and do not add a new degree. Following the above
discussion, we can solve degree d1 of visibility graphs G1 corresponding to s1(t):

d1 =


fs(tRA − tLA), region A
fs(tRB − tLB), region B
fs(tRC − tLC), region C

, (18)

where fs represents the sampling frequency.
Assuming that s1(t) owns 300 data, which corresponds to three periods. The degree and its

distribution of G1 are shown in Figure 6.
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Figure 6. Related degree features of the sinusoidal signal on visibility graphs. (a) Degree of each vertex;
(b) degree distribution.

As shown in Figure 6, the degree of vertices on region B change slightly, so the peak of the
degree distribution is mainly related to the number of vertices on region B, and the peak position is
fs(tRB − tLB) ≈ 3 fs/4 f0. Near the peak position, there is about a 50% probability in total because region
B accounts for half of the entire period. Therefore, the sinusoidal signal s1(t) can be converted into a
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regular graph by the visibility algorithm, and the degree distribution of G1 can be roughly expressed
as single-spike distribution, which is given by:

P1(d) = 0.5× δ
(
d−

3 fs
4 f0

)
(19)

3.2.2. Linear Frequency Modulation Signal

Linear frequency modulation (LFM) signal is a typical radar wideband signal. Suppose baseband
LFM signal is s2(t) = cos

(
πµt2

)
and we define that the maximum repetition period (MRP) is from tm1

to tm2, where tm1 is the data point corresponding to the maximum value, and tm2 is the data point
corresponding to the next maximum value. Although s2(t) is a non-periodic signal, it can be divided
into three regions, X, Y, and Z, in one MRP. Region X is defined from tm1 to data point t01 corresponding
to the first zero value, region Y is from t01 to data point t02 corresponding to the second zero value, and
region Z is from t02 to tm2.

Similar to a sinusoidal signal, it is easy to prove that regions X and Z are concave regions, and
region Y is a convex region, i.e., X =, Y↔ , Z =. In three regions, degree d2 of any vertex is also
related to left LVP tL and right LVP tR, as expressed by:

d2 = fs(tR − tL). (20)

Assuming that s2(t) owns 500 data corresponding to five MRPs. The degree and its distribution
of s2(t) after being converted to visibility graphs G2 by the visibility algorithm are shown in Figure 7.
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In Figure 7, every MRP has some vertices whose degrees are approximately equal, so degree
distribution has a plurality of peaks with decreasing amplitude. Therefore, non-periodic baseband
LFM signal s2(t) can still be converted to a regular network by the visibility algorithm, and degree
distribution can be roughly expressed as multi-spike distribution as follows:

P2(d) =
NR∑
i=1

Pi × δ(d− di), (21)

where NR is the number of MRPs, Pi is the probability corresponding to the i-th MRP, di is the degree
corresponding to the i-th MRP.

Actually, the received signal includes not only the echo but also the noise signal obeying Gaussian
distribution. In visibility graphs, it is easy to find that data with large values always have a large
degree, and the degree of their adjacent data is relatively small. According to this property, the degree
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distribution of the Gaussian noise begins to exhibit Poisson distribution, but because of the existence
of some vertices with large degree values (called hubs), the tail of the degree distribution gradually
satisfies the exponential distribution. Therefore, Gaussian noise can be converted to an exponential
random network by the visibility algorithm, whose degree distribution is different from sinusoidal and
LFM signals which proves that degree distribution can distinguish radar signals and noises. Figure 8
illustrates the degree and its distribution of Gaussian noise with 300 data after converted to visibility
graphs G3.

In additive Gaussian noise environment, the actual received signal is randomly increased or
decreased by a certain amount based on the original signal, which can be converted into the problem
of the change of time-series local values. For a datum on the convex or concave region, the change
(increase or decrease) of a local value causes a degree change of more than two vertices, indicating that
network-structure changes amplify time-series changes to some extent. Hence, features on visibility
graphs are more sensitive to noise than other features on the time or frequency domain.Sensors 2019, 19, x FOR PEER REVIEW 11 of 19 
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We first consider the LFM signal with signal-to-noise ratio (SNR) is 10 dB, which owns 500 data.
The degree and its distribution are shown in Figure 9.
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(a) Degree of each vertex; (b) degree distribution.

Comparing Figure 9 with Figure 7, it can be seen that the degree of each vertex changed significantly
after the introduction of Gaussian noise. The head and tail of degree distribution still satisfy Poisson
distribution and exponential distribution which meet the degree distribution of Gaussian noise.
The middle of the degree distribution had a spike, just like the LFM signal. Accordingly, we can
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understand the degree distribution of the actual LFM signal as a transition from multi-spike distribution
to the exponential distribution.

3.2.3. Jamming Signal

ISRJ, ISCJ, and PDTJ have a different number of MRPs while NPJ and SNCJ have noise
characteristics similar to Gaussian noise in the time domain. That means that the degree distribution
of different unconventional active jamming should have different characteristics owing to the above
analysis. Because of the limitation of written space, we only show the degree distribution of ISRJ and
NPJ in Figure 10 to verify the differences between the jamming.Sensors 2019, 19, x FOR PEER REVIEW 12 of 19 
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Therefore, we have the following conclusions: The degree distribution of the sinusoidal and LFM
signals satisfies single-spike distribution and multi-spike distribution, respectively, and the degree
distribution of Gaussian noise is an exponential distribution. Moreover, the degree distribution of
the actual received signal is between the ideal signal and the noise signal. Most importantly, different
types of unconventional active jamming have different degree distributions on visibility graphs, which
prepares for extracting more features (not only degree features) on visibility graphs, as shown below.

4. Feature Extraction on Visibility Graphs

An adjacency matrix is a matrix used to characterize a graph adjacency relation. For a given graph
G of order N, its adjacency matrix A is an N ×N square matrix. If vi and v j on graph G have connected
edges, the corresponding elements (A)i j of matrix A represent the weights of the edges; otherwise,
by definition, (A)i j = 0. Because visibility graphs are unweighted, (A)i j = 1 if vi and v j on G have
edges. According to this definition method, the adjacency of vertices on the graph can be completely
represented by its adjacency matrix.

4.1. Average Degree

In addition to degree distribution, the average degree is another simple and important concept
that describes the properties of the whole network. It averages the degree of all vertices in the graph to
get the average degree d, and is shown as:

d =
1
N

N∑
i=1

di, (22)
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where di is the degree of vi. In addition, visibility graphs are undirected and unweighted, and the
sum of the elements of the row or column of the adjacency matrix is also called the degree, so that the
average degree is the sum of the diagonal elements of A2:

d =
tr
(
A2

)
N

, (23)

where tr
(
A2

)
represent the trace of matrix A2.

The average degree can reflect the stability of the signal, and the larger the average degree is, the
more stable the signal, since Gaussian noise can cause a sharp drop at the end of the degree distribution.

4.2. Average Clustering Coefficient

There is a phenomenon that, if a vertex has multiple vertices directly connected to it, then these
neighbor vertices may also be directly connected to each other. This feature that is used to represent
the clustering situation of vertices in the network is the clustering coefficient [23]. The clustering
coefficient Ci of a vertex vi is defined as:

Ci =
2ei

di(di − 1)
, (24)

where ei reflects the number of edges. When considering the undirected and unweighted graphs, the
clustering coefficient of their vertices can also be obtained from:

Ci =

(
A3

)
ii(

A2
)
ii

[(
A2

)
ii
− 1

] . (25)

Averaging the clustering coefficients of all vertices, we obtain the average clustering coefficient of
the network:

C =
1
N

N∑
i=1

Ci, (26)

obviously, 0 ≤ C ≤ 1. When C = 0, all vertices in the network are isolated vertices, and no edges are
connected; when C = 1, the network is a complete graph, that is, all vertices have edge connections
between them. For a completely random network, C→ O(1/N) when the number of vertices is large
enough. For jamming signals, the denser the vertices on visibility graphs are, the larger the average
clustering coefficient.

4.3. Newman Assortativity Coefficient

In addition to the completely random network, there is always a correlation between different
vertices, and degree distribution does not fully describe the characteristics of the network. In social
networks, vertices tend to be connected with other vertices with similar degree values, which is referred
to as assortativity; on the other hand, in biological networks, high degree vertices tend to attach to low
degree vertices, referred to as disassortativity.

The assortativity coefficient calculation method based on the Pearson correlation coefficient was
proposed by Newman [24]. This idea assumes that two vertices can be found by any one edge, and
then two degrees are obtained. All edges are traversed, so that two sequences are obtained, and the
Pearson correlation of the two sequences is analyzed, which is specifically defined as:
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r =

M−1 ∑
ei j∈ε

did j −

M−1 ∑
ei j∈ε

1
2

(
di + d j

)2

M−1 ∑
ei j∈ε

1
2

(
d2

i + d2
j

)
−

M−1 ∑
ei j∈ε

1
2

(
di + d j

)2 , (27)

where M represents the total number of edges of the network. Obviously, 0 ≤ |r| ≤ 1. When r > 0,
the network is perfectly assortative; when r < 0, the network is completely disassortative; when r
= 0, the network is non-assortative. Therefore, the Newman assortativity coefficient can reflect the
autocorrelation of data after the signal is converted to visibility graphs to some extent.

4.4. Normalized Network-Structure Entropy

Entropy is a measure used to describe the degree of disorder in a system and is often used in
thermodynamics to characterize the state of a substance. In random networks, the importance of each
vertex is equivalent, and its structure is considered to be disordered and has large entropy; in scale-free
networks, there are a small number of vertices with large degree values (called hubs) and many vertices
with small degree values, that is, its degree-distribution curve tends to decrease. Therefore, its structure
is considered to be ordered and has small entropy.

Network-structure entropy is used to more succinctly measure the order state of complex networks.
It is defined as:

E = −
N∑

i=1

Ii· lnIi, (28)

where Ii indicates the importance of vertex vi.
It is easy to prove that a homogeneous network (Ii = 1/N) has maximal entropy Emax = ln N;

for a completely inhomogeneous network (I1 = 1/2, Ii = 1/[2(N − 1)](i > 1)), the network has minimal
entropy. Therefore, in order to eliminate the influence of number of vertices N on the entropy of the
network structure, we normalize it to obtain normalized network-structure entropy Enorm:

Enorm =
E− Emin

Emax − Emin
=

−2
N∑

i=1
Ii· ln Ii − ln 4(N − 1)

2 ln N − ln 4(N − 1)
. (29)

5. Simulation and Discussion

In order to verify the effectiveness of the above features on visibility graphs, simulation experiments
were performed with the parameters of the radar signal and the jamming signal, shown in Tables 1 and 2.

Table 1. Simulation parameters for the radar signal.

Signal
System

Sampling
Frequency

Signal
Bandwidth

Receiver
Bandwidth Pulse Width Pulse Repetition

Interval

LFM signal 50 MHz 5 MHz 10 MHz 20 µs 200 µs

Table 2. Simulation parameters for the jamming signal. Note: ISCJ, interrupted-sampling circularly
jamming; PDTJ, partial-pulse dense transmitted jamming; SNCJ, sparse noise convolution jamming.

Jamming Type Parameter and Value

ISRJ Slice width, 1 µs; retransmitted count, 3
ISCJ Slice width, 1 µs
PDTJ Slice width, 4 µs
SNCJ Gaussian white noise; slice width, 4 µs; noise bandwidth, 10 MHz
NPJ Gaussian white noise; pulse width, 20 µs; noise bandwidth, 10 MHz
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After the received signal is converted to visibility graphs: (a) Average degree; (b) average clustering
coefficient; (c) Newman assortativity coefficient; and (d) normalized network-structure entropy is
selected to perform unconventional-active-jamming recognition. JNR was set in steps of 1 dB, and
100 Monte Carlo simulations were performed in the range of 0–25 dB. Figure 11 shows the values of
these features, respectively. From Figure 11a, it can be seen that the average degree of unconventional
barrage jamming (SNCJ, NPJ) was almost independent (always near 6) of the JNR, and the average
degree of unconventional deceptive jamming (ISRJ, ISCJ, and PDTJ) increased with the increase of the
JNR. Each jamming showed good separability when the JNR was greater than 10dB, and separability
was greater when the JNR increases. In fact, in order to exhibit dense false-target characteristics after
matching the filter, the JNR of the above-mentioned jamming was always more than 10 dB, so the
average degree could be used well to distinguish unconventional active jamming.

Figure 11b shows that the average clustering coefficient of ISRJ increased with the increase of JNR
while PDTJ decreased, and the average clustering coefficient of ISCJ was little affected by JNR. Through
numerical analysis of the Newman assortativity coefficient of Figure 11c, it can be seen that the Newman
assortativity coefficient of unconventional barrage jamming was always stable and SNCJ could be
distinguished from NPJ. Moreover, unconventional barrage jamming on visibility graphs is assortative,
since it has a positive Newman assortativity coefficient. Therefore, unconventional deceptive jamming
can be distinguished through the average clustering coefficient and the Newman assortativity coefficient
can be used as a visibility-graph feature of unconventional barrage jamming recognition.
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As can be seen from Figure 11d that, after conversion to visibility graphs by the visibility
algorithm, all jamming signals had very large normalized network-structure entropy. We can analyze
unconventional deceptive jamming and barrage jamming separately: Unconventional deceptive
jamming can be well-distinguished under the condition that JNR is greater than 10 dB through
normalized network-structure entropy; unconventional barrage jamming changes little with JNR and
is always distinguishable. Therefore, normalized network-structure entropy is a suitable feature for
radar unconventional-active-jamming recognition.

Random forests (RF) is a machine-learning method proposed by Leo Breiman and Adele Cutler for
classification [25]. RF combines decision-tree classifiers with the Bagging algorithm, specific for using
each sample subset obtained by the Bagging algorithm to construct the decision trees. The significance
of constructing the RF classifier is to randomly generate multiple decision trees, and each decision tree
does not need to have high classification accuracy (a weak classifier). At the same time, by using the
Bagging algorithm to combine multiple decision trees, the over-fitting problem is well-solved, and
overall generalization ability is improved.

Therefore, we realized a radar unconventional-active-jamming recognition scheme by using the RF
classifier, and an RF structure diagram was illustrated in Figure 12. The radar unconventional-active-jamming
recognition method based on the RF algorithm is summarized as follows:

1. Converting unconventional active jamming from the time domain to visibility graphs using the
visibility algorithm;

2. Extracting the average degree, average clustering coefficient, Newman assortativity coefficient,
and normalized network-structure entropy as four-dimensional features;

3. Applying the Bagging algorithm to extract training samples from four-dimensional features and
corresponding jamming category labels. Training decision trees until the number of decision trees
reaches the preset threshold;

4. Generating RF structures according to Figure 12a;
5. Sending the test samples to the RF classifier, and the classification results of all decision trees are

voted according to Figure 12b. The category of jamming with the largest number of votes is taken
as the final output of the algorithm.

In the RF classifier, we can further improve recognition performance by (a) adding number of
decision trees NDT, (b) increasing maximum depth of decision trees DDT, (c) adding number of splits NS,
and (d) changing the decision-tree splitting algorithm. Table 3 shows recognition performance based
on the RF classifier under different parameters. According to Table 3, we found that the performance
of the RF classifier was hardly affected by adding the number of splits, and could be improved well
by adding the number of decision trees. Although the computational time of the algorithm increases
rapidly with the deepening of the decision trees, it obviously improves the recognition probability
under a different JNR, especially at a low JNR. Moreover, the ID3 algorithm is always used as the
splitting algorithm of decision trees because other algorithms negligibly improve for small training
samples and need the extra computational time. Therefore, in the actual situation, we prefer to choose
a minor number of decision trees and splits, and appropriate decision-tree depth to ensure a balance
between recognition probability and computational time.

We chose Groups 6 and 7 as the ultimate simulation parameters. The recognition probability of
unconventional active jamming with a JNR setting from 0 to 25 dB, in 1 dB steps, is shown in Figure 13.
In Figure 13a,b it is shown that, when the JNR was higher than 0 dB, the average recognition probability
of the algorithm was over 90%. In Figure 13b, we can see that the recognition probability for each type
of jamming was always higher than 95% when the JNR was 5 dB or higher. This simulation proves
that the unconventional-active-jamming recognition method proposed in this paper is robust to the
presence of noise in the jamming, and effective in identifying the type of jamming after the JNR is
higher than 5 dB, which can often be satisfied.
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Table 3. Recognition performance based on the RF classifier. Note: ARP, average recognition probability;
CT, computational time.

Group
Parameter Result

NDT DDT NS
ARP

(JNR = 0 dB)
ARP

(JNR = 5 dB)
ARP

(JNR=10 dB)
ARP

(JNR=15 dB) CT

1 20 2 2 66.8% 72.8% 76.4% 86.0% 0.25 s
2 40 2 2 68.4% 74.4% 83.6% 89.2% 0.51 s
3 80 2 2 69.6% 76.8% 87.6% 95.2% 0.92 s
4 160 2 2 72.4% 78.0% 88.0% 96.0% 1.91 s
5 20 4 2 76.0% 84.0% 92.8% 95.6% 1.11 s
6 20 8 2 90.0% 93.2% 97.2% 99.2% 13.57 s
7 20 12 2 97.2% 98.0% 98.8% 100.0% 125.22 s
8 20 2 4 66.0% 72.4% 77.2% 87.2% 0.30 s
9 20 2 8 67.6% 70.0% 78.4% 87.5% 0.42 s

10 20 2 16 64.4% 70.4% 79.2% 88.0% 0.63 s
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6. Conclusions

In this paper, a visibility-graph based unconventional-active-jamming recognition scheme is
proposed. Theoretical analyses first showed that different types of jamming exhibit different degree
distributions on visibility graphs. Then, other valid features on visibility graphs were calculated:
Average degree, average clustering coefficient, Newman assortativity coefficient, and normalized
network-structure entropy. Finally, an RF classifier based on these four features was proposed to
achieve the recognition of unconventional active jamming. Numerical simulations demonstrated that
average recognition probability is always greater than 97%, regardless of JNR, by reasonably selecting
the classifier parameters. Further studies will be carried out on the combination of different types
of jamming.
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