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Abstract: With the development of the internet of things (IoTs), big data, smart sensing technology,
and cloud technology, the industry has entered a new stage of revolution. Traditional manufacturing
enterprises are transforming into service-oriented manufacturing based on prognostic and health
management (PHM). However, there is a lack of a systematic and comprehensive framework of
PHM to create more added value. In this paper, the authors proposed an integrative framework to
systematically solve the problem from three levels: Strategic level of PHM to create added value,
tactical level of PHM to make the implementation route, and operational level of PHM in a detailed
application. At the strategic level, the authors provided the innovative business model to create
added value through the big data. Moreover, to monitor the equipment status, the health index
(HI) based on a condition-based maintenance (CBM) method was proposed. At the tactical level,
the authors provided the implementation route in application integration, analysis service, and visual
management to satisfy the different stakeholders’ functional requirements through a convolutional
neural network (CNN). At the operational level, the authors constructed a self-sensing network based
on anti-inference and self-organizing Zigbee to capture the real-time data from the equipment group.
Finally, the authors verified the feasibility of the framework in a real case from China.

Keywords: prognostic and health management; integrative framework; internet of things;
convolutional neural network; conditioned-based maintenance

1. Introduction

Prognostic and health management (PHM) [1] is a reliable engineering approach that provides
real-time health assessment and predicts its future state by using sensing technologies, machine
learning, failure physics, etc. The main goal of PHM technologies is to provide the real-time health
state of machines in order to improve the machine’s performance by taking proactive actions including
diagnostics and prognostics [2,3]. The classification of prognostic models includes physical models,
knowledge-based models, data driven models, and hybrid models [4]. The fault detection and failure
progression was solved by the Kalman filter state-space predictor, and fuzzy logic classifiers method
in an actuator case [5]. Additionally, PHM is usually studied in a laboratory without considering
the influence of aging, the effect of people and a working environment, and the subject is usually
a single component like gear, bearing and so on, which does not involve multi-sensor information
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fusion. In study [6], the authors used a 1D convolutional neural network (CNN) in a structural damage
detection system. The prognostic algorithms were an effective method to solve fault prognosis in
CBM systems for improving prediction accuracy and precision [7]. Meanwhile, Internet of Things
(IoTs) is used in tracking, environment monitoring, sensing, and data collection in PHM [8], which
is continually being adopted by the industry [9]. The PHM research was considered only from the
application layer not involving the management and value layer.

Therefore, the authors proposed an integrative framework including three levels: Strategic level,
tactical level, and operational level to study the online PHM of heavy equipment by using IoTs and
a two-layer CNN. The main aim was to provide more added value by effectively and efficiently
managing the heavy equipment and using the data from massive sensors. In fact, the usage of massive
amounts of sensors and IoTs appears only in recent years, and there are no sufficient data especially for
heavy equipment whose lifespan is more than twenty years to train weights of the value from different
sensors. The authors designed a self-sensing network based on Zigbee [10], which decreased energy
consumption by automatically adjusting the transmitting speed of data according to the distance to the
failure threshold. Additionally, this paper only focused on the forward transmission of CNN and the
weights of sensors were determined by experts.

The rest of this paper is organized as follows: Related research is reviewed in Section 2. The
research methodology is illustrated in Section 3. A case study of PHM was carried out in Section 4.
The results of implementing the integrative framework are analyzed in Section 5. Conclusions are
presented in Section 6.

2. Literature Review

Prognostics and health management are widely used in the product, manufacturing environments,
mainly including the monitoring, diagnostics, and prognostics from components, system, network,
and related methods. Therefore, this section investigates different aspects of PHM through the previous
research efforts.

2.1. Component Layer of Prognostics and Health Management

A lot of researchers paid attention to components problems in PHM, such as the feature selection
and management of rolling element bearings [11]. Byington et al. [12] developed a dynamic model of
flight actuator to detect faults and predict failure for flight control actuators. Kacprzynski et al. [13]
used statistical models to predict degradation rates of turbine compressor. Mba et al. [14] introduced
a classification system of health state for a gearbox by integrating stochastic resonance method and
hidden Markov modeling (HMM) method. Wang et al. [15] developed a stochastic degradation model
to study the capacity degradation of batteries. Li et al. [16] used an ensemble learning method to
predict the health degradation of aircraft engines. The studies usually focused on one type of part and
there was no application of integrating a lot of sensors.

2.2. System Layer of Prognostics and Health Management

Some researchers studied the PHM of machines from a system aspect and promoted the synthetic
application of sensors. Fitouhi and Nourelfath [17] solved a single machine’s integrating problem
to provide preventive maintenance. Li et al. [18] developed an ensemble degradation model
for engineering systems with multiple sensors using the health index synthesis (HIS) approach.
Moghaddass and Zuo [19] proposed an integrated framework for a gradual degrading device using
multistate stochastic process. Sensor systems [20] were used in the PHM to monitor operational,
environmental, performance-related characteristics. Therefore, the number of sensors was small and
the studies only referred to the operational level. Researchers have been making inroads into using
emerging technologies to improve current practice, but it is not enough.
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2.3. Network Layer of Prognostics and Health Management

The network layer of PHM involves equipment to equipment communication, environmental
sensing, online monitoring of key parts, and so on. Internet of Things and wireless sensor networks
(WSNs) are widely used to get data in the industry [21]. Data aggregation is the strategy of wireless
sensor networks [22], which is used in PHM for the communication of information between the
equipment. Internet of Things is a network system that connects equipment with sensors, hardware
network, and cloud servers [10,23]. Yang et al. [24] proposed a cloud-based prognostics system which
was able to provide a low-cost solution for big data collected from a factory. Xia et al. [25] developed a
condition monitoring system based on IoTs to resolve potential weaknesses. Korkua et al. [26] proposed
a PHM system based on ZigBee to study rotor vibration under different conditions. Li et al. developed
a real-time monitoring system for transport machines by using Radio Frequency Identification (RFID)
and Global Positioning System (GPS) [27]. These methods only provided partial function applications
in PHM and there is still a lack of multi-layer integrating research about PHM.

2.4. Related Method of Prognostics and Health Management

In past research, Bayesian networks [28], time domain analysis [29], gaussian mixture model [30],
logistic regression [31], neural network [32], Kalman filter [33], and other algorithms were used in the
PHM. Convolutional neural network is excellent in feature extraction of the data and is usually used
as artificial intelligent algorithms through back propagation in the prediction of residual useful life
(RUL) or fault recognition of parts, which needs a lot of historical data to train weights. Jing et al. [34]
developed an innovative CNN for mechanical diagnosis to learn features directly from vibration signals.
Jia et al. [35] proposed a local CNN to directly learn the health conditions of machines. Guo et al. [36]
predicted bearings’ RUL by proposing a recurrent neural network based on a health indicator. Shao et
al. [37] developed a deep CNN for rotating machines to provide accurate diagnosis of a certain part by
fusing the monitoring data. Jia et al. [38] proposed an intelligent method based on CNN to predict
the health condition of gearboxes and bearings. Chen et al. [39] employed three deep CNN models
to identify the fault condition of rolling bearings based on the health condition. With the increasing
development of IoTs and CNN in the field of processing massive data and things, more research efforts
are needed to adapt to the development of the times [40,41]. Although the researchers promoted the
development of PHM by using CNN, the results were usually not good because of the lack of data.
To better use the CNN under this condition, the weights of the extracted features had to be determined
reasonably by experts at the beginning.

2.5. Motivation and Objectives

Therefore, based on the analysis of the literature review, an innovative framework for PHM that
integrates CNN technologies and IoTs into current health management practices was proposed to
systematically solve management questions of equipment group with little historical data. This paper
aims to provide the systematic and comprehensive framework of PHM for the traditional manufacturers
to provide continuous service to their customers, by integrating a two-layer CNN and self-sensing
network to deal with the complex state of equipment group. This paper reports the first stage of the
development, implementation, and evaluation of the framework which demonstrates how a two-layer
CNN and Zigbee network can support the integrative framework for PHM innovation from strategy,
tactic and operation levels, although not all of the features in the framework were developed in the
current research.

3. Methodology

Following the review of literature, a three-level framework based on CNN and IoTs technology
was proposed (Figure 1), including the strategic level of PHM, tactical level of PHM, and operational
level of PHM. The operational level of PHM which contained products, sensors, network, and database



Sensors 2019, 19, 2338 4 of 14

was in charge of the effective and efficient utilization of hardware by resisting interference and reducing
energy consumption. The tactical level of PHM which integrated the advanced software and hardware
to effectively and efficiently process data, mainly focused on the functional setting, including the visual
management, analysis service, and application integrating function. The strategic level of PHM was in
charge of defining goals and value types of different stakeholders, including value-added services and
business system optimization.
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3.1. Strategic Level Innovation

The strategic level defines the companies’ objective of health management and creates a
value-added method. Business system optimization and a value-added service helps companies reduce
accidents and improve customer satisfaction by predicting service, continuously improving equipment
performance in the design phase and extending equipment life.

At this level, HI supported by the tactic level was proposed to reflect the health state.
A condition-based maintenance (CBM) method was applied to improve equipment’s health state
through real-time observation of HI. While HI decreases to a conditioned level, the maintenance will
be carried out. The worst part of the equipment and the worst equipment of the batch which were
important for the design optimization are also indicated by the framework at this level. A linear
function (Equation (1)) was used as the display function by which the range of the HI was magnified
from 1 to 100 and the change direction of the HI became positive to the equipment’s health state.

f (x) = 100 ∗
(
1−

x
T

)
(1)

where, x represents the output value from max pooling layer or convolutional layer and T is the
threshold value of x.

3.2. Tactical Level Innovation

At this level, the authors provided application integrating, analysis service, and visual management
module for the related stakeholder through CNN with two convolutional layers and two max pooling
layers. The CBM-CNN was built to effectively extract the features for the purpose of data analysis, fault
correlation analysis, timely detection of potential problems. The expression of the general activation
function of CNN is shown in Equation (2).

y = f (W ×X + B) (2)
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where, W represents the weight vector of sensors from equipment; X represents the vector of input
value of real-time data from the equipment; B represents the bias of each sensor; f represents the
activity function; y represents the health index value of each equipment.

In this paper, the authors use a two-layer CNN to process the data from sensors (Figure 2).
The input value X is convoluted through the equipment layer and the output layer and then sent to the
display function with the max pooling value from X and equipment layer. The f in the convolution
layer (CL) is a rectified linear unit (ReLU) function (Equation (3)).

f (x) =
{

0, x < 0
x, x ≥ 0

(3)
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Figure 2. Architecture of the CNN.

The schematic diagram of the CNN is shown in Figure 3. Every row represents an equipment
and every column represents the same sensor installed on different equipment. The relevant symbols
represent the following meanings:
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Figure 3. Schematic diagram of the CNN.

xmn is the value from the nth sensor installed on the mth equipment;
Mm represents the synthetic health status of the mth equipment obtained from the first convolution

of X and W1;
xmP is the max pooling value of the mth row, which indicates the worst part of the mth equipment;
xPn is the max pooling value the nth column, which indicates the worst equipment for the

same part;
Ox represents the worst part of all equipment, which is the max pooling value of xmP or xPn;
OM represents the worst health status of equipment, which is the max pooling value of Mm;
Oc represents the synthetic health status of all equipment, which is the convolutional value of M

and W2;
Through the display function, Ox, OM, and Oc will be finally displayed in the control center.
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3.3. Operational Level Innovation

Technologies of IoTs and smart connection satisfies the requirements of the sensing layer and
network layer of PHM. To better resist interference and reduce energy consumption, a self-sensing
network based on ZigBee was constructed and the topological structure is illustrated in Figure 4.Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 
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Figure 4. ZigBee topological structure.

In the ZigBee network, there are three kinds of nodes: Coordinator, router and end device. Every
network has a coordinator which is the command center. The end devices are installed together with
sensors, which are like the dendrites of neurons. The routers are just like the nucleus of neurons
which collect data from end devices and communicate with each other. When a certain router breaks
down, the corresponding end devices are able to communicate with nearby routers automatically.
A self-sensing network is constructed to better balance the data requirements and energy consumption.
The transmitting speed varies according to the value x of sensors and frequency f is shown in
Equation (4).

f = max(int(100 ∗
x
T
)/100, 0.01) ∗ f0 (4)

where f is the transmitting frequency of the node; f0 is the initial transmitting frequency of the system;
T is the failure threshold of the corresponding component; x is the value of the sensor; ‘int’ means to
retain the integer component of the value.

The transmitting speed of this node depends on the real-time value from sensors. When the value
is nearer to the failure threshold, the transmitting speed of this node becomes faster so as not to miss
important information. The transmitting frequency of the node varies from 0.01 ∗ f0 to f0.

4. Case Study

To validate the feasibility of the proposed approach, a prototype was developed and tested by
crane health management (CHM) practitioners. The current version named crane health management
systems (CHMS) focuses on cluster health management and only has the ability to provide short-term
forecast. The application was built in H company who is a big supplier of port equipment. With the
saturation of the market, they wanted to change their role by CHMS innovation so as to create
sustainable profits. The framework of CHMS is illustrated in Figure 5.
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At the operational level, the important parts such as suspension bridge structure, motor and 
reducer were respectively monitored by corresponding sensors including stress sensor, vibration 
sensor, acceleration sensor, and so on. In the port, there were 10 cranes and every crane had 67 sensors 
installed (in Table 1). The designing and choosing principle of the placement of each sensor depended 
on the historical experience of the fault point and structure characteristic of the equipment. 
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sensors were installed on motors and gear boxes to measure vibration. Full bridge strain gauges were 
installed on the booms and their connections to measure strain and stress. Fiber Bragg grating 
temperature sensors were installed in motors and gear boxes to monitor temperature.  
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Figure 5. Application of the innovative CHMS framework.

At the operational level, the important parts such as suspension bridge structure, motor and
reducer were respectively monitored by corresponding sensors including stress sensor, vibration sensor,
acceleration sensor, and so on. In the port, there were 10 cranes and every crane had 67 sensors installed
(in Table 1). The designing and choosing principle of the placement of each sensor depended on the
historical experience of the fault point and structure characteristic of the equipment. Displacement
sensors were installed nearby the holes of the steel structure. Fiber optic acceleration sensors were
installed on motors and gear boxes to measure vibration. Full bridge strain gauges were installed on
the booms and their connections to measure strain and stress. Fiber Bragg grating temperature sensors
were installed in motors and gear boxes to monitor temperature.
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Table 1. Sensors installed in each equipment.

Symbol Description

X1 ∼ X32 Displacement sensors need to be arranged at steel structure whose threshold value is 20 mm.
X33 ∼ X38 Stress sensors need to be arranged at different places that are X33 ∼ X38, whose threshold value is 100 MPa
X39 ∼ X40 Strain sensors need to be arranged at different places whose threshold value is 3 mm.
X41 ∼ X50 Axial vibration sensors need to be arranged at different places whose threshold value is 2 mm.
X51 ∼ X54 Radial vibration sensors for main motors need to be arranged at different places whose threshold value is 15 mm.
X55 ∼ X60 Radial vibration sensors for small motors need to be arranged at different places whose threshold value is 10 mm.
X61 ∼ X67 Temperature sensors need to be arranged at gear boxes whose threshold value is 95 ◦C.

ZigBee wireless network is applied as shown in Figure 6. Each end device was paired with one
sensor and all equipment worked with one router. There were still several routers between the cranes
and the local servers to amplify the signal and improve the robustness of the network. The data was
saved in the local servers and copied to the cloud. The database in the cloud was based on the Hadoop,
which was good for dealing with large data and assuring the integrity.
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At the tactical level, the CNN with two convolutional layers and two max pooling layers were
used to analyze the input data including producing HI, finding the worst part and finding the worst
equipment. According to the experts, the weights and bias value of CHMS are listed in Table 2.
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Table 2. Weights and bias of the CNN for CHMS.

Weights of Sensors W1
w11~w132 w133~w138 w139~w140 w141~w150 w151~w154 w155~w160 ω1161~ω1167

1/20 1/100 1/3 1/2 1/15 1/10 1/30

Bias of sensors B1
b11 ∼ b160 b161 ∼ b167

0 −2.2

Weights of crane W2
w21 ∼ w210

1/67

Bias of crane B2
b21 ∼ b210

0

There was seven new equipment and three old equipment in the port. The input values at a
certain time t to the different routers are listed in the Table 3.

Table 3. Matrix of the input values from sensors to different equipment in CHMS.

X
Ten Equipment in CHMS

XM1~XM7 XM8~XM10

Value of 67 sensors

x1 ∼ x32 1.0 8.0
x33 ∼ x38 1.7 41.1
x39 ∼ x40 0.2 1.2
x41 ∼ x50 0.1 0.7
x51 ∼ x54 0.7 6.1
x55 ∼ x60 0.4 3.9
x61 ∼ x67 48.0 77.0

At the strategic level, business optimization system and value-added service were carried out
including performance guarantee, cluster optimization, equipment optimization, and so on (Figure 5).
Using CHMS, the managers were able to easily make decisions ahead of time including component
replacement, personnel transfer, manufacturing plan, and so on under the CBM principle which was
that when the HI decreased by 5, the maintenance would be carried out.

5. Results and Discussion

Replacing the variables by values in Tables 2 and 3, we obtained the values of different layers in
CHMS as shown in Table 4.

Table 4. HI of the three layers in CHMS.

Symbol M1~M7 M8~M10

Mm 95.9 60.0
Ox 58.8
OM 60.0
OC 85.2

Mm were the machines’ HI through displaying function, seven of which were 95.9 and three
of which were 60.0. Ox and OM which represented the HI of the worst part and the worst machine
were 58.8 and 60.0 respectively, and OC which represented the HI of the whole ten machines was
85.2. Because the normal HI of M8∼M10 was 65, when it declined to 60.0, the principle of CBM was
triggered and a maintenance warning was sent to the monitor and mobile terminal ahead of time.
The partial interfaces of CHMS are shown in Figure 7, including real-time monitoring interface of port
cranes, real-time monitoring interface of steel structures, real-time monitoring interface of a single port
crane and real-time monitoring interface of lifting mechanisms. The real-time monitoring interface of
port cranes contains Key Performance Indicator (KPIs) of CHMS and overall parameter information
of port cranes. The real-time monitoring interface of steel structures displays the value of steel
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structures in different cranes including stress parameter, displacement parameter and strain parameter.
The real-time monitoring interface of a single port crane contains all parameter information that can
demonstrate the HI of a port crane. The real-time monitoring interface of lifting mechanisms shows
the value of lifting mechanisms in different cranes including vibration parameter, stress parameter,
temperature parameter and strain parameter.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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After application of this framework in CHSM, the three old equipment were dumped and finally
the residual useful life of the equipment was prolonged from 5 years judged by experiences to 6 years.
Figure 8 shows the variation of health degradation with the application of this framework. Point A is
the turning point of health degradation in CHMS. The past curve is based on history data and the
expected curve is the prognostic curve based on the traditional method. In the new current curve,
CHMS slowed down the health degradation and thus caused the extension of the RUL from t1 to t2,
which was about 1 year.
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Apart from the extension of the RUL, there were other improvements for the stakeholders’ value.
Table 5 presents the comparison before and after implementing the framework.

Table 5. Comparison before and after implementing the framework in CHMS.

Stakeholder Item Before After Main Contribution

Company H

Business model
Sell equipment to the
port and time-based

maintenance

Condition based maintenance
and provide health

management service, fault
prognostic and diagnostic

service, breakdowns avoiding
service for charges

Business model transition from
manufacturer to service provider;
Work enthusiasm is incented by

reducing personnel and increasing
salary; Supply better product

based on the history data.
Reducing the waiting time.

Personnel 2 1

Salary Every worker earns RMB
80,000 per year

Every worker gets as much as
RMB 90,000

Added value 0 Nearly RMB 100,000

End user

Personnel 3 2

The labor and downtime costs
decrease a lot and the productivity

rises greatly

Breakdowns More than 10 times per
year 0

Fault rate About 5% every year Less than 1%

Residual useful life
According to experience,
the old equipment’s RUL

is about 5 years

By the framework, the RUL of
the old equipment is

prolonged to about 6 years

With the application of CHMS, more added value is achieved for the manufacturer and the end
user. Although the prognostic ability of the system is weak now, with the accumulation of data in
such a framework, the training ability of CNN will become true and thus the system can be better in
the future.

6. Conclusions

Prognostic and health management is an important method for manufacturers in order to monitor
failure precursor, improve product performance, and create added value. Examining the existing
literature related to PHM, this paper proposed an integrative framework of PHM based on IoTs and
CNN through practical investigation. The framework provided the systematic guidance of PHM for
manufacturers from three levels: Strategic level, tactical level and operational level, which would help
more companies build a win-win relationship and create more added value, such as the transition from
selling products to selling services, continuously improving product performance, and continuously
improving customers’ satisfaction. At the same time, this paper also plays an exemplary role in
showcasing the usage of CNN and IoTs in the fusion of massive sensors. The contributions of this
paper were concluded as follows:
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• This paper provided an integrative framework for PHM to give a new business model for
traditional manufacturers in expanding innovative business model and achieving added value
from three levels.

• At the strategic level, the HI was proposed and used with CBM to provide value-added service
and business chance referring to optimize product performance and reduce the operation and
maintenance cost.

• At the tactical level, the authors developed a two-layer CNN with reasonable weights achieving
more added value by effectively and efficiently managing the heavy equipment and using the
data from massive sensors.

• At the operational level, this paper proposed the self-sensing network based on Zigbee to realize
the monitoring of the real-time data from the equipment group.

• The case study of CHMS was proposed in this paper to check the feasibility of the framework
from the value added and prediction of residual useful life of heavy equipment.

Although the proposed integrative framework demonstrates potentials in PHM, there is still more
research that needs to be done in the future. To cope with real world practices, more data needs to be
collected under this framework to optimize the weights and reveal the relationship between the HI
and the RUL through deep learning. Future research will focus on this area.
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Acronyms

CNN Convolutional Neural Network
CBM Condition-Based Maintenance
GPS Global Positioning System
HI Health Index
HIS Health Index Synthesis
HMM hidden Markov modelling
IoTs Internet of Things
PHM Prognostic and Health Management
RFID Radio Frequency Identification
RUL Residual Useful Life
ReLU Rectified Linear Unit
~ means “to”
HPC High Performance Computing
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