
sensors

Article

Wi-Alarm: Low-Cost Passive Intrusion Detection
Using WiFi

Tao Wang, Dandan Yang, Shunqing Zhang, Yating Wu * and Shugong Xu

Shanghai Institute for Advanced Communication and Data Science, Key laboratory of Specialty Fiber Optics and
Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai University, Shanghai 200444, China; twang@shu.edu.cn (T.W.);
yang03@shu.edu.cn (D.Y.); shunqing@shu.edu.cn (S.Z.); shugong@shu.edu.cn (S.X.)
* Correspondence: ytwu@shu.edu.cn

Received: 25 March 2019; Accepted: 22 April 2019; Published: 21 May 2019
����������
�������

Abstract: In this paper, we present a WiFi-based intrusion detection system called Wi-Alarm.
Motivated by our observations and analysis that raw channel state information (CSI) of WiFi is
sensitive enough to monitor human motion, Wi-Alarm omits data preprocessing. The mean and
variance of the amplitudes of raw CSI data are used for feature extraction. Then, a support vector
machine (SVM) algorithm is applied to determine detection results. We prototype Wi-Alarm on
commercial WiFi devices and evaluate it in a typical indoor scenario. Results show that Wi-Alarm
reduces much computational expense without losing accuracy and robustness. Moreover, different
influence factors are also discussed in this paper.
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1. Introduction

Intrusion detection is a dynamic process of monitoring whether there exists any entity breaking
into a given area, then making alarms if necessary. It gains more and more attention and has great
potential in many applications, such as border protection [1], smart home [2], elderly health care [3].
Several approaches to intrusion detection have been proposed, among them, WiFi-based intrusion
detection has superiority for its extensive coverage which means low deployment cost. In general,
WiFi-based systems can be divided into device-based active approaches and device-free passive
(DFP) [4] approaches. The former requires a target to carry a mobile device and turn on its WiFi,
then the target is identified by that device. Obviously it is not suitable for intentional intruders.
Therefore, the DFP approach is focused in this paper.

Most WiFi-based DFP approaches take advantage of the transmission characteristics of
opportunistic WiFi signal in wireless channels, such as a received signal strength indicator (RSSI) [5]
and channel state information (CSI) [6–9], to capture changes in a region [10]. RSSI suffers from
dramatic performance degradation due to multipath fading [11]. Compared with RSSI, CSI not only
provides more stable and reliable amplitude information than RSSI, but also reveals phase information.

Among existing CSI-based systems of intrusion detection, considerable effort has been devoted
to data preprocessing. Some do preprocessing to gain useful phase information [8,9], others for
de-noising [6,7]. However, through our analysis and experiment observations, we think that although
the raw phase of CSI is meaningless [12], the raw amplitude of CSI is informative and relatively robust.

In this paper, we propose a novel and real-time system to detect intrusion. We call it Wi-Alarm
because WiFi signals work as an alarm to warn people of intrusion here. Firstly, CSI samples are
collected with CSI Tool [13]. Then, we omit data preprocessing and then extract features from amplitude
of raw CSI. Next, an algorithm based on the support vector machine (SVM) is introduced to give
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detection results (moving human presence or absence). Finally, we consider different influence factors
to improve system performance including size of sliding window, multiple-input multiple-output
(MIMO), and line-of-sight (LOS)/not line-of-sight (NLOS), which means LOS can be blocked by human
motion or not.

Our main contributions are summarized as follows:

• We focus on the real-time performance of the whole system, which is neglected in previous
research. In order to save computational expense significantly, we omit data preprocessing and
extract features from raw CSI directly for intrusion detection, based on our analysis of the
data preprocessing part in other systems and experimental verification. Given that real-time
performance is critical, any effort to reduce computational expense is worthwhile if high detection
accuracy can be maintained.

• We propose a simple but robust feature couple for intrusion detection where low latency is
necessary. The feature couple could be promising for commercial use.

• Dynamic walking speeds are considered in our training phase. This improves Wi-Alarm’s
sensitivity to human motion and enhances detection accuracy even when an intruder walks
quite slowly.

• Different influence factors including MIMO, LOS/NLOS, size of sliding window and walking
speed are discussed to guide better implementation of our system to improve the detection
accuracy and robustness.

The rest of this paper is organized as follows. Section 2 introduces related work in DFP detection
using WiFi. In Section 3, the overview of Wi-Alarm is presented. This is followed by the methodology
of our system and the detailed design in Section 4. Then in Section 5, we describe the implement
and experiment results of Wi-Alarm, different influence factors are discussed in this section. Finally,
Section 6 concludes this paper and suggestions are made for future work.

2. Related Work

In this section, we review the most related works on WiFi-based DFP detection.

2.1. RSSI-Based

Kosba et al. proposed a system named RASID [5], in RASID, the sample variance of RSS is used
as the selected feature, then non-parametric statistical anomaly and profile update techniques are
applied to capture changes in the environment. RASID is robust, but the sampling rate of 1 sample/s
is too low, resulting in too long a time period for data collection. Yoshida et al. collected RSSI
values at existing WiFi devices inserted with clock-synchronized Raspberry Pi device [14], with the
outliers removed, pre-processed RSSIs are applied to two regression-based approaches for estimating
the number of people in the scenario. The non-real-time experimental results showed that support
vector regression-based method is better for estimating the presence/absence of people than linear
regression-based method. Depatla et al. proposed a crowd counting system using only one pair of
personal computer (PC) and access point (AP) with 802.11g WiFi cards, the system is based on the
mathematical expression they deduced where the impact of human movement on RSSI values is
divided into two parts: blocking LOS and scattering effects [15]. Kullback-Leibler divergence between
the theoretical and experimental probability mass function (PMF) of RSSI is applied to estimate the
total number of people.

Generally, RSSI-based systems need to deploy more WiFi sensing nodes to reduce the influence of
multipath effect for higher accuracy.

2.2. CSI-Based

CSI-based systems can be divided into two categories: using the amplitude of CSI and using both
amplitude and phase of CSI. In the first class, robust passive motion detection (R-PMD) [6] passes
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the CSI sequence through a data preprocessing module, then extracts the variance distribution of
the CSI sequence and utilizes the earth mover’s distance (EMD) to infer the degree of abnormality.
Speed independent device-free entity detection (SIED) [7] extracts the distribution of the variance of
variances of CSI among all the subcarriers as feature and leverages a probability technique hidden
Markov model (HMM) as the classifier to make it more accurate in human detection, it performs well
when the moving speed is very slow. WiGarde [16] was proposed to detect an intruder through door
or window for home safety, in WiGarde, a naive Bayesian classifier was used to eliminate bad stream
caused by surrounding electromagnetic noise, wavelet was used to get the width of the dynamic
time window for extracting the best feature, one-class SVM was adopted to classify human intrusion.
In [17], Zhou et al. applied support vector classify (SVC) to solve the presence detection and applied
support vector regression (SVR) to solve the localization problem through regression. They applied
density-based spatial clustering of applications with noise (DBSCAN) on CSI data for de-noising and
principal component analysis (PCA) for feature extraction. Experiments show that, compared with
Bayesian algorithm, SVC performed 16.6% better in the meeting room.

In the second class, Kun et al. firstly employed a liner transformation to eliminate the significant
random noise in CSI phase in passive detection of moving humans with dynamic speed (PADS) [8],
it uses the maximum eigenvalues of covariance matrixes from normalized amplitude and phase as
features, then SVM is introduced for different states estimation, PADS is able to accurately detect
human movements of dynamic speed. Ref. [9] uses the same transformation as in [8] to eliminate the
shift of phases of different subcarriers, it introduces the effect size to measure the change of phase as
a feature and it defines two reference points for the short-term case (SES) and the long-term case (LES)
to detect if someone is walking in indoor room and if someone is walking continuously respectively.
However, the walking area is limited in this system, so technically, detection targets are not free.
Ding et al. derived robust phase difference from the processed phase in neighbouring antennas after
raw CSI preprocessing [18], extracted the covariance matrixs of normalized CSI amplitude and phase
difference as features, three machine learning classification algorithms are applied for motion detection
and the best results were achieved with SVM.

The fine-grained information, CSI, not only makes it possible to sense human body, but also
could recognize more subtle activity. WiFall [3] proposed by Han et al. for fall detection compares
one-class support vector machine method with random forest algorithm and it is proved by experiment
results that the latter one works better. Wang et al. proposed CSI-based human activity recognition
and monitoring system (CARM) [19] to recognize multiple human activities based on two theoretical
models, CSI-speed model and CSI-frequency where the relation between path length and CSI power is
quantified and the recognition accuracy is 96%. Zhang et al. [20] introduced the Fresnel zone model in
optical into the transmission of radio waves to realize millimeter-scale detection of human respiration
and discussed the theoretical sensing limit of WiFi signal.

Despite that many works have investigated CSI for device-free detection, the computational
expense of the whole system is lack of study, and usually they just consider few influence factors.
In this paper, we propose a low cost system for intrusion detection without losing accuracy. Moreover,
different factors including MIMO, LOS/NLOS, size of sliding window and dynamic walking speeds
are considered in this paper.

3. Overview

In this section, we briefly introduce the architecture and flowchart of our system.



Sensors 2019, 19, 2335 4 of 15

3.1. System Architecture

As shown in Figure 1, former works generally contain following modules: CSI collection,
data preprocessing, feature extraction, comparing real-time test data with static fingerprint, and finally
getting detection results. As marked, our biggest innovation is omitting the data preprocessing
module which usually includes outlier removal, interpolation, sanitization, and de-noising. Therefore,
our system mainly contains three parts: data collection, feature extraction, and intrusion detection,
which includes SVM classifier generation and anomaly detection.

CSI Collection

Data Preprocessing:

Outlier Removal;
Interpolation;
Sanitization;
De-noising

Feature Extraction

Static Fingerprint
Construction

Real time test 

Compare

Detection result

Figure 1. Common architecture of former works.

3.2. System Flowchart

Our system works as Figure 2 shows, compared with Figure 1, it is obvious that data preprocessing
is omitted in our system, so Wi-Alarm has lower overhead for omitting the operation of outlier removal,
interpolation and so on. Our system works according to the following process. Firstly, during the
CSI collection phase, raw CSI samples are measured and collected by commercial WiFi devices. Then,
our system contains two phases: a training phase and a monitoring phase. During the training phase,
data collection contains four cases: static environment with nobody and one person moving at three
different speeds (0.2 m/s, 0.7 m/s and 1.5 m/s) casually and freely. Since we omit data preprocessing,
features are extracted from raw CSI amplitude directly. Based on these, a SVM classifier is generated
and two patterns are constructed including a static pattern and a dynamic pattern. This enhances our
system’s robustness to intruder’s moving speed. During the monitoring phase, features extracted
from unknown CSI samples are applied to the well-trained SVM classifier to get detection results.
According to the result, Wi-Alarm decides to alarm or not.
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Feature extraction Feature extraction

Generate SVM Classifier

Static Pattern

Dynamic Pattern

Alarm

Intrusion?

Yes

No

Static with nobody

Data Collection Data Collection

Static or Dynamic

SVM

CSI collection

1 person with 3 different speeds

Training Monitoring 

Figure 2. System flowchart.

4. Methodology

In this section, we give the details of Wi-Alarm system. Generally, we aim to propose a low-latency
intrusion detection system with high accuracy. Therefore, the main indicators of the whole system are
the performances of real-time and accuracy. In order to improve the real-time performance, we devote
much effort to reduce the computational cost of each step without reducing detection accuracy.

4.1. Data Collection

CSI is a channel attribution of communication link which describes attenuator factor on each
transmission path including scattering, environmental weakness, distance attenuation, etc. Different
from RSSI, which demonstrates superimposition of signals, CSI could be considered as the channel
response depicting the amplitudes and phases of 30 subcarriers, so CSI is finer-grained and more stable.

As shown in Figure 3, our CSI collection system required a laptop configured with Intel WiFi 5300,
which served as a detection point (DP). The DP sent internet control message protocol (ICMP) echo
requested packages to the WiFi router which works as an AP and receives ICMP echo reply packages
if the connection succeeded [13]. This process was modeled as:

Y = HX + N, (1)

where X and Y are the transmit and receive vector respectively while N is the ambient noise vector,
then H is the CSI required. The estimated H could be expressed as:

Ĥ =
Y
X

. (2)

For each sample, the CSI can be expressed as:
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H =
[
H( f1), . . . , H( fi), . . . , H( fNsub)

]T , i = 1, 2, . . . , 30. (3)

where Nsub means the number of subcarriers (equals to 30) and fi is the frequency of i-th subcarrier.
In 802.11n protocol, it can range from 2.4 GHz to 2.4835 GHz. For each OFDM subcarrier, CSI is
defined as:

H( fi) = |H( fi)|ej 6 H( fi), (4)

where |H( fi)|means the amplitude and 6 H( fi) means the phase of CSI.

WiFi router 

with 802.11n

1. Sending ICMP echo request packages

2. Receiving ICMP echo reply packages

Laptop with Linux,     

NIC 5300 and CSI Tool

AP DP

Figure 3. Channel state information (CSI) acquisition system.

Since the CSI collection system is a MIMO system, suppose there are M transmit antennas and N
receive antennas (NIC 5300 had three antennas), then there were Nch = M× N WiFi channel links.
In each link, 30 of 56 subcarriers were sampled and the number of packages increased over time.
The CSI sequence in n-th link could be expressed as a 30× Npkt complex matrix:

|Hn| =
[
|Hn

1 |, . . . , |Hn
i |, . . . , |Hn

Npkt
|
]
, i = 1, 2, . . . , Npkt, (5)

where Npkt is number of CSI package and |Hn
i | is CSI amplitude of i-th package in n-th link.

Usually, we will not receive CSI packages endlessly, given a specific sliding window with length
W, then Npkt equals W. Moreover, the time of data collection depended on the length of W. In this
part, the length of sliding window was significant. If the size was too small, the CSI samples were too
few to calculate an effective feature, which will reduce the detection accuracy. Otherwise, larger size
means more time to collect more CSI samples, that will undermine the real-time performance of the
system. In our system, through experiment analysis, it was appropriate to set to transmit 100 packages
per second, i.e., CSI sampling frequency is 100 Hz. Therefore, the time needed for single CSI collection
can be denoted as:

t =
W
100

. (6)

4.2. Feasibility of Preprocessing Omission

In Wi-Alarm, we extracted features from raw CSI data without preprocessing in order to save
computational cost for better real-time performance. There was no doubt that omitting preprocessing
will reduce much computational cost, in this part, we discuss the feasibility of preprocessing omission.

In previous works, preprocessing was important to minimize environmental noise and usually
done between raw CSI collection and feature extraction. This motivated us to think: how to
understand the dynamic fluctuation, which is considered as noise before? With human motion,
CSI values fluctuate during transmission. More dynamic fluctuation would make our detection easier.
However, preprocessing in previous systems would suppress signal fluctuation which usually carries
an intruder’s motion information.

In order to validate the feasibility of preprocessing omission, we repeated the data preprocessing in
R-PMD [6], a well-known robust DFP motion detection system. Firstly, Hampel identifier was utilized
to remove outliers. In one sequence, samples falling out of [µ− 3∗ δ, µ+ 3∗ δ] were identified as outliers
where µ is median, δ is median absolute deviation (MAD). When |H| =

[
|H1|, . . . , |Hi|, . . . , |HW |

]
,

the µ and δ are expressed as follows:
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µ = Median(|H|), (7)

δ =
1

W

W

∑
i=1

∣∣|Hi| − µ
∣∣. (8)

Secondly, 1D linear interpolation algorithm is applied to fill the spaced samples. Lastly,
environment noise was reduced by weighted moving average (WMA), CSI of the m-th package
was averaged by previous (m− 1) CSI packages, i.e.,

|H′
m| =

1
m + (m− 1) + . . . + 1

∗
[
m ∗ |Hm|+ (m− 1) ∗ |Hm−1|+ . . . + 1 ∗ |H1|

]
(9)

Then subsequent features were extracted from |H′
m| in R-PMD.

CSI values with or without preprocessing behaved quite differently. Figures 4 and 5 show
that raw CSI values fluctuate significantly with human motion, while preprocessing smooths these
original fluctuations.

In conclusion, preprocessing omission is feasible. We decided to omit this step and extract features
from raw CSI.
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Figure 4. Intrusion in indoor static environment.

Figure 5. One individual walking continuously indoors.

4.3. Feature Extraction

Feature extraction plays an important role in intrusion detection. The features we choose should
meet the following requirements.

1. The features should be sensitive to human presence. The features extracted from the CSI of static
environment should be quite different from the ones extracted from the CSI with human motion.

2. The features should be easy to calculate. For real-time consideration, less computation cost on
feature extraction would be better.

In our system, only CSI amplitude was applied. Compared with raw CSI amplitude, raw CSI
phase behaved with much randomness due to environment noise and an unsynchronized time clock
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between transmitter and receiver. Figure 6 shows that amplitude outperforms phase in stability, so CSI
phase was deprecated here.

Figure 6. The phase and amplitude of 1000 packets in a static environment.

We propose a simple but robust feature couple for Wi-Alarm in consideration of low latency.
Various features have been applied in former research for detection, such as mean, variance,
and distribution distance. However, the computational expense of distribution distance is much higher,
which makes it inappropriate for real-time processing. Motivated by our experiment observations
that, compared with static environment, human motion leads to higher CSI amplitudes with greater
variances, we proposed the mean and variance of CSI amplitude to be a couple of good indicators for
intrusion detection. Denote the feature couple as F[α, β], where α represents the mean and β represents
the variance of CSI amplitude respectively.

In a fixed WiFi link, one feature couple F is derived from one CSI sequence, given a specific sliding
window W. Specifically, we calculated the mean/variance of all packages for one subcarrier firstly,
then got the mean of all 30 subcarriers as the final α and β, i.e.,

α =
1

Nsub
∑ Nsub

i=1

[ 1
W ∑ W

j=1|Hj|
]
, (10)

β =
1

Nsub
∑ Nsub

i=1 [
1

W ∑ W
m=1

(
|Hm| −

1
W ∑ W

n=1|Hn|
)2
]. (11)

Then one feature couple F of one CSI sequence was calculated, it could be exploited in later SVM
classifier generation and real-time intrusion detection.

4.4. Classifier

With features we extracted, we needed to conduct an appropriate classifier on preliminary
measurements collected from several cases. There were mainly two categories of methods that can
be adopted for calibration-free detection: threshold-based and cluster-based. The former distinguish
different states based on the threshold value which is gained from pre-collected data. The latter
classifies different clusters as different states by comparing the centre distance of each cluster. Although
environment calibration and threshold training were avoided in the cluster-based method, it assumed
that in each group of measurements, there were at least two states involved. Otherwise, it would lead
to one cluster or several clusters corresponding to a same state, which means miss or false detection.
Consequently, the threshold based scheme was adopted in Wi-Alarm.

Support vector machine (SVM), as a low cost threshold based classification, is one of the most
popular machine learning techniques. A considerable number of CSI-based detection systems [8,14,16–18]
have applied SVM to classify different states and achieved high accuracy. Experiments show that
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SVM outperforms other machine leaning method like k-nearest neighbor (KNN) [17] and Bayesian
algorithm [18]. Therefore, SVM algorithm was adopted for satisfying the system requirements for
real-time and high detection accuracy.

In this paper, we adopt the radial basis function (RBF) kernel (a.k.a. Gaussian kernel) as the kernel
function so that a non-linear regression model can be constructed. This SVM has two such training
factors: C which controls overfitting of the model, and γ which controls the degree of nonlinearity of
the model. In our system, we set C = 0.8 and γ = 20.

The training phase in our system was different from former works. Previous works only contain
static fingerprint construction. In Wi-Alarm, shown in Figure 2, data of four different cases was applied
to train our SVM classifier which contains a static pattern and a dynamic pattern. This helps reduce
the adverse effect from dynamic walking speed on detection accuracy. Then in the monitoring phase,
the feature couple extracted from real-time data was applied to the trained SVM classifier. Therefore,
a detection result was obtained. If an intrusion was detected, Wi-Alarm would raise an alarm.

5. System Evaluation

In this section, the experiment setup and evaluation of Wi-Alarm are illustrated.

5.1. Experimental Setup

To evaluate the performance of Wi-Alarm, we conducted experiments on commercial devices.
The configuration of our system is shown in Figure 7 and Table 1. It should be noticed that the
antennas of NIC 5300 were isometrically arranged for stable receiving performance. The experiments
are conducted in an office (2.5 m × 4 m) as shown in Figure 8.

As we mentioned that the train phase contained four cases, for each case, we conducted three
measurements and each lasted for 2 min. In dynamic cases, the person can walk freely and easily
without rules or restrictions. The detection results would be divided into two categories: with/without
intrusion as shown in Figure 9.

(a) HP Presario CQ40 (b) Intel WiFi 5300 (c) Antennas (d) TP-Link WR886N

Figure 7. Devices.

(a) Abstract graph (b) Real picture

Figure 8. Abstract graph and real picture of experiment scenario.
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With intrusion

Without intrusion

Figure 9. Detection results.

Table 1. Devices used in Wi-Alarm.

Label Caption Remarks

(a) HP Presario CQ40 Role: DP; OS: Ubuntu 11.04; Software: CSI Tool.
(b) Intel WiFi 5300 Equipped in Figure 7a.
(c) Antennas Antennas of Figure 7b; Isometry arranged.
(d) TP-Link WR886N Role: AP; One fixed antenna is used in data collection.

Since the influence of LOS/NLOS conditions were considered, the AP and DP were placed at two
heights: 0.8 m and 2 m. In the condition of 0.8 m, the movement of a human would block LOS while
not in the condition of 2 m.

5.2. Performance Results

We use following four metrics to evaluate the performance of proposed Wi-Alarm system:

1. True negative (TN) rate: the probability that the human motion is correctly detected.
2. True positive (TP) rate: the probability that the static environment is correctly classified.
3. False negative (FN) rate: the probability that the human motion is incorrectly detected.
4. False positive (FP) rate: the probability that the static environment is incorrectly classified.

We calculated TN/TP/FN/FP rates of all conditions and the discussion of our experiment results
are shown as follows:

Impact of preprocessing omission: among all the experiments with LOS and the size of sliding
window W = 100, the TN and TP rates are both higher than 99% no matter we use one antenna or
combination of different antennas. R-PMD [6] was repeated in our experiments. The detection results
of these two systems are shown in Figure 10. Both of these two systems achieved high accuracy, the TP
and TN rates of Wi-Alarm were higher, which are up to 100% and 99.06% respectively. In addition,
the receiver operating characteristic (ROC) curve of our classifier is shown in Figure 11, the result
proves that the classifier we choose is trained well and achieves excellent performance. The runtimes
of these two systems differ a lot in Table 2 (taking 10,000 CSI samples as an example, running in
Matlab). Because of the omission of data pre-processing, the runtime was greatly shortened. During the
classification, R-PMD needed more computational expense for EMD metric calculation.
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97.78% 98.89%

2.22% 1.11%

1 99.06%

0 0.94%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

TP TN FP FN

Detection rate

R-PMD Wi-Alarm

Figure 10. Detection rates of two systems.

Figure 11. Receiver operating characteristic (ROC) curve of Wi-Alarm.

Table 2. Runtimes of two systems.

Feature Calculation (Including Data Pre-Processing) Classification

R-PMD 198.773 s 0.5 s
Wi-Alarm 0.238 s 0.06 s

Impact of sliding window size: generally, choosing the size of the sliding window is critical. If the
size is too small, the CSI samples are too few to calculate an effective feature. Otherwise, larger size
means more time to collect more CSI samples, undermining the real-time performance of the system.
According to our experiments, in Figure 12, it can be verified that TP rate is proportional to the size of
sliding window while TN rate is not. Also, FP rates were generally higher that FN rates and it was
minimized when the window size was set to 100. In summary, the most appropriate window size of
our system was 100. Therefore, in the following comparative experiments, the window size was fixed
to 100.
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Figure 12. Relationship of detection rate and sliding window size.

Impact of different antennas: we considered four cases here: each individual antenna and the
combination of all three antennas. The way of combination is taking the mean of all three antennas.
Figure 13 shows that the performances of each case are similar, single antenna even achieves lower
FN and FP rates. This means using multiple antennas was unnecessary, because the combination of
MIMO needed more computational expense.

50 75 100 125 150

Window Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP

TN

FP

FN

De
te
ct
io
n
Ra
te

LOS NLOS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TN

TP

FP

FN

De
te
ct
io
n
Ra
te

Antenna A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Antenna B Antenna C MIMO

FP

FN

TP

TN

De
te
ct
io
n 
Ra
te

Figure 13. Relationship between detection rate and different antennas.
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Impact of LOS/NLOS: we changed the height of AP and DP to create two different detection
environments: LOS and NLOS, the former one means that LOS would be blocked by human motion
during the monitoring phase by low placement of AP and DP, while the latter one would not by
relatively high placement. Figure 14 shows that NLOS leads to lower TN rate and much higher FP rate
obviously. Therefore, LOS setting was preferred in our system and we should make sure the height of
AP and DP was not too low or too high. The height of 0.8 m would be a suitable parameter setting
without being affected by furniture or missing intrusion.
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Figure 14. Detection rates of line-of-sight (LOS)/NLOS.

Impact of SVM parameters: the selection of SVM parameters also had a significant impact on the
detection rate of Wi-Alarm. Through our experiment evaluations, on one hand, higher detection rates
were achieved with bigger C, as Figure 15 shown. However, C controls overfitting of the model, so it
should not be too big and 0.8 was a good setting. On the other hand, as Figure 16 shows, the TN rate
decreases with the increase of γ. Meanwhile, γ controls the degree of nonlinearity of the model and
bigger γ was preferred in this respect. Therefore, 20 was a good setting for γ. In conclusion, we set
C = 0.8 and γ = 20 for the best performance of Wi-Alarm.

Figure 15. Relationship between detection rate and C (γ = 20).
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Figure 16. Relationship between detection rate and γ (C = 0.8).

6. Conlusions

In this paper, we present a passive intrusion detection system called Wi-Alarm, which is based
on CSI using WiFi. In our system, attacks are performed when an intruder is entering the monitoring
area unexpectedly wherever he comes from. Wi-Alarm is proposed mainly to distinguish two states
(human presence and absence) and detect whether there exist any people in the area of interest. It could
be applied in the field of safety monitoring.

Motivated by our observation that raw CSI of WiFi is sensitive enough to detect human motion,
we omit data preprocessing and utilize raw CSI amplitude for feature extraction, SVM algorithm
is used as a classifier in our system. We have conducted extensive experiments, evaluate results to
validate the robustness, high detection rate and real-time of Wi-Alarm. Besides, different influence
factors are considered in our experiments which will guide better implemention of Wi-Alarm.

However, there still exists some limitations. Firstly, when installed in a different scenario,
our system needs to be trained again to find a suitable threshold. Moreover, usually there already exists
someone in the given area which means the original environment is not static before any intrusion
occurs. Consequently, we should explore new features to model the motion introduced by the intruder
coming from the outside aiming to distinguish it from the motion inside.

Future work will focus on exploring novel and effective features to enhance the adaptability of
our system and the functions of detecting more types of attacks.
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