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Abstract: Traffic sign detection systems provide important road control information for unmanned
driving systems or auxiliary driving. In this paper, the Faster region with a convolutional neural
network (R-CNN) for traffic sign detection in real traffic situations has been systematically improved.
First, a first step region proposal algorithm based on simplified Gabor wavelets (SGWs) and maximally
stable extremal regions (MSERs) is proposed. In this way, the region proposal a priori information is
obtained and will be used for improving the Faster R-CNN. This part of our method is named as
the highly possible regions proposal network (HP-RPN). Second, in order to solve the problem that
the Faster R-CNN cannot effectively detect small targets, a method that combines the features of the
third, fourth, and fifth layers of VGG16 to enrich the features of small targets is proposed. Third,
the secondary region of interest method to enhance the feature of detection objects and improve the
classification capability of the Faster R-CNN is proposed. Finally, a method of merging the German
traffic sign detection benchmark (GTSDB) and Chinese traffic sign dataset (CTSD) databases into one
larger database to increase the number of database samples is proposed. Experimental results show
that our method improves the detection performance, especially for small targets.

Keywords: simplified Gabor filters; Faster R-CNN; secondary regions of interest; highly possible
regions proposal

1. Introduction

Traffic sign detection and recognition has attracted increasing attention in recent years. This has
not only included in-depth academic research, but also has wide application in commercial aspects.
Well-known car companies, such as BMW and Mercedes-Benz, are actively investing in road
environmental perception system (REPS) research. The REPS systems not only include front vehicle
detection and pedestrian detection, but also traffic sign detection systems for warning drivers to pay
attention to traffic signs around the road. Many traffic accidents occur because pedestrians or drivers
do not notice traffic signs. With the increasing number of vehicles, the increasing pressure of traffic
safety and the demand for intelligent vehicle development, it is necessary to use computer technology
to automatically detect and recognize traffic signs. Research in this area has been underway since
the 1980s.

In general, the design of artificially constructed objects—for example, car design may focus on
speed, beauty, and safety; chair design may focus on comfort, etc.—does not consider easy recognition.
In contrast to tanks and military vehicles, for which camouflage is often applied to make them difficult
to detect, traffic sign design pays great attention to recognition attributes. In order to attract attention,
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traffic signs are often designed with strict color and shape and contain special symbols that make
them easy to detect from traffic scenes. The features mentioned above are also the key information for
traffic sign detection research. However, the shape, color, and symbolic information of traffic signs will
not always be stable in an actual road environment because there are many adverse factors, such as
viewpoint variations, physical damages, bad weather, etc. This makes the detection and recognition of
traffic signs challenging for both humans and computer systems. The difficulties faced include the
following:

• Traffic scene images are often subject to motion blur because the images are captured from the
camera of a vehicle traveling at a high speed.

• Since vehicle-mounted cameras are not always perpendicular to traffic signs, the shapes of traffic
signs are usually distorted in captured images, and the shape of traffic signs in traffic scenes are
not always be reliable.

• Some traffic signs are often obscured by other objects in the road, such as trees, pedestrians, other
vehicles and so on. Therefore, it is necessary to detect traffic signs with only part of the traffic sign
image information.

• The problems of traffic sign discoloration, traffic sign damage, rain, snow, fog, and other factors
also produced enormous difficulties in traffic sign detection.

Some challenging examples are shown in Figure 1.
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In this paper, a real-time traffic sign detection system and a super class classification method are
presented. This method results in comparable detection and classification accuracy with state-of-the-art
methods. The main contributions of the paper are outlined as the following:

• A highly possible regions proposal network (HP-RPN) for regions filtering is presented, which
provides important regional proposal reference information to a modified Faster R-CNN, and
filters out most non-traffic sign areas.

• In order to solve the problem of less feature information from small targets in the fifth layer of the
VGG16 network, the features of its third, fourth, and fifth layers are fused; which greatly improves
the feature expression ability for small target detection.

• The secondary region of interest (SROI) is proposed to introduce structural information other than
traffic signs into the detection network, which further improves the detection efficiency.

The rest of this paper is organized as follows: Section 2 introduces the related work. Section 3
gives an overview of our methods. The details of the traffic sign detection method are presented in
Section 4. Section 5 discusses the experimental evaluation. Finally, some conclusions and identified
future work are presented.

2. Related Work

Traffic sign detection has been increasingly studied as an important branch of object detection.
Traffic sign detection has certain similarities with general object detection, such as face detection [1–3],
iris detection [4], and small object detection on remote sensing images [5]. However, traffic sign
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detection has its own particularities. Compared with iris and medical image detection, the artificial
design features of traffic signs are more obvious. The scale and proportion of traffic signs in the
detected image are also very different. Furthermore, the number of classes of traffic signs and the
size of the required training database makes it impossible for us to directly apply the other object
detection methods mentioned above to traffic sign detection. Researchers need to make appropriate
amendments and improvements according to this specific situation.

2.1. Detection Framework

Traffic sign detection belongs to the domain of target detection. The object detection framework
determines the detection process. The main objective of this framework optimization is to avoid
missing detection and redundant detection. Therefore, the framework structure of object detection
often determines the detection speed. For real-time object detection, the detection framework is very
important. The current popular target detection frameworks generally include region-based target
detection and proposal-free methods. Region-based target detection first generates thousands or
hundreds of proposal regions in the input image. These two-dimensional regions are then transformed
into fixed-length one-dimensional vectors, which are then classified by classifiers and adjusted by their
position. The pioneering work of region-based target detection began with R-CNN [6], which includes
three modules: region proposal, vector transformation and classification. SSP-net [7] optimizes R-CNN
in many aspects and improves the detection performance. Fast R-CNN [8] integrates the essence of
R-CNN and SPP-net and introduces a multitask loss function, which makes the training and testing of
the whole network very convenient. Faster R-CNN [9] uses the RPN to replace the selective search
module in Fast R-CNN and RPN shares features with the Fast R-CNN, this improvement greatly
improves both the time and accuracy of target detection.

Another type of target detection framework that does not require a region proposal process which
is called proposal-free approach. The OverFeat method [10] classifies detection regions by sliding
windows with different scales at each feature point on the topmost feature layer. YOLO [11] classifies
and locates the objects in one step. YOLO directly regresses the location of the bounding box and the
category of the bounding box in the output layer, thus realizing one-stage. SSD [12] uses convolution
kernels on feature maps to predict the class and coordinate offsets of a series of default bounding
boxes. Compared with the region based methods, the proposal-free methods also have better detection
accuracy and speed.

2.2. Feature Expression

The accuracy of detection and classification often depends on the feature expression of the
detection object. The feature expression of the detection object includes two aspects: one is the feature
expression of the region to which the detection object belongs; the other is the feature expression outside
the detection region, which involves the fusion of the context information. Small target detection has
some problems such as blurred images, low information and being easy to misjudge. So the feature
expression of small target detection is particularly important.

Because the RGB color space is unstable and unreliable, the method of improving the detection
efficiency by transforming the original image features has been widely used in the initial stage of
object detection, which is called a hand-crafted feature [13–15]. However, the hand-crafted feature
belongs to the low-level features, and the data dimension is large, so it does not have the high-level
semantic expression ability, the improvement effect is not obvious and the improvement space is small.
Compared to traditional hand-crafted features, the application of deep features in the field of target
detection has achieved better and better detection results. The R-CNN method [6] used the trained
CNNs to classify the target area and then judge whether it belongs to the target or the background.
The Faster R-CNN [9] used the fifth layer of VGG16 as the detection and classification feature which
gets state-of-the-art results.
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Compared with using only one layer of deep convolution features, more and more methods
use feature fusion methods such as multi-layer, multi-scales, etc. The deep convolution feature was
used to achieve richer feature expression [16–19]. Ren et al. [5] use three layers of deep features in
ResNet-50 to detect small objects in optical remote sensing images. In Li and Yu [16], in order to
detect objects, multi-scales features from deep CNNs were used to detect the saliency map for different
levers of image segmentation. Hou et al. [17] used the information of multi-scale and multi-level deep
features of fully convolutional neural networks which provide more semantic information. Therefore,
the application of deep feature information or deep feature fusion in target detection is indeed a
noteworthy research direction.

As many methods have focused solely on the detection target itself [9,11,12,20,21], the relationship
between the detection target and the environment in which the target is located has often been
neglected. This information is usually conducive to the correct judgment of the detection algorithm. In
Divvala et al. [22], the context-based target detection is summarized, experimented and analyzed; they
concluded that context information not only improves the detection performance, but also makes the
residual error made by the detector more reasonable. In Zhang and Mu [23], context information was
combined with target detection. An Inside-Outside Network (ION) is proposed to incorporate context
information with regions of interest in Bell et al. [24]. They used context information with spatial
recurrent neural networks. In the network, multiple levels and scales information are extracted by skip
pooling. In Zagoruyko et al. [25], the multi-scale spatial context is attached to the region-based CNN
model to extract the relationship between the target and the background. Wang et al. [26] used the
multi-scale context attached to the detection feature and improved the detection performance. These
methods achieved good results in some aspects of object detection, such as detection accuracy and
speed. Although they provided an important reference for later researchers, they still left significant
room for improvement in some respects.

2.3. Databases

Detection database is an important basis for object detection and an open database is an important
platform for algorithm performance comparison. In the field of traffic sign detection, Felsberg and
Larsson [27] and Stallkamp et al. [28] introduced detection databases. In these databases, besides
providing traffic scene images, traffic sign annotating information was also included. The famous traffic
sign detection database includes the German traffic sign detection benchmark (GTSDB) and the Belgian
traffic sign classification (BTSC) databases. In particular, the GTSDB attracted an increasing number of
researchers to find new algorithms to verify and compete, leading to some good results. Researchers
of China have paid increasing attention to the problem of traffic sign detection [29–33], which has
necessitated the construction of a traffic sign database in China. In 2016, Yang [34] constructed the
Chinese traffic sign dataset (CTSD), which attracted increasing attention from Chinese researchers. As
an important basis of object detection, the size of the database has a significant impact on the detection
performance, however, building a large database is time and labor consuming. Therefore, using the
existing databases to expand the dataset size has become very important.

3. Overview of Our Method

Our traffic sign detection and super class classification process are illustrated in Figure 2. The
first part of our method is shown in the green dotted box. This part is defined as the highly possible
regions proposal network. The function of this part was to propose highly possible areas of traffic
signs and eliminate most non-traffic sign areas. In detail, the traffic scene image was filtered by eight
simplified Gabor wavelets (SGWs), which enhanced the edge of the image and smoothed the non-edge
areas. The output of the eight SGW-filtered traffic scene map was synthesized to one feature map
and processed by the maximally stable extremal regions (MSERs) algorithm to get the highly possible
regions. The second part of our method is shown in the remainder of Figure 2 and is similar to the
Faster R-CNN algorithm [9], to which some improvements have been made. The pre-trained VGG16 is



Sensors 2019, 19, 2288 5 of 28

used as the feature extraction algorithm. Unlike the Faster R-CNN, which uses the fifth layer features,
a combination of features from the third, fourth, and fifth layers of the VGG16 is used, inspired by Bai
and Ghanem [35]. These combined features are useful for small object detection as shown in the red
dotted box in Figure 2. In the regions proposal stage, regions of interest based on the information of
the HP-RPN is proposed, which significantly reduced the number of candidate areas. At the stage of
classifying traffic signs to super classes, secondary regions of interest information are fused, which
would be helpful for the correct judgment of the algorithm.
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4. Improved Faster R-CNN

Faster R-CNN anchor-based detection avoids the time consumption caused by sliding window
detection and the detection efficiency is greatly improved without reducing the detection accuracy at
the same time. Although the Faster R-CNN has achieved state-of-the-art results in common target
detection areas, it has a poor recognition ability for small targets; the realization mechanism of the
Faster R-CNN make it unable to recognize small targets well. Faster R-CNN faces three problems in
small target detection. Firstly, after down-sampling and pooling in the convolutional layers which has
a stride that is larger than 1, the small target information left in the feature layer is too coarse. For
example, the VGG16 model uses the ROI-polling region from the fifth layer of convolutions (“conv5”),
which has an overall stride of 16. If the traffic sign in a traffic scene image is less than 16 × 16, in
the fifth convolution layer, the ROI-pooling region is less than one pixel. The advantage of original
Faster R-CNN with rich feature information is no longer rich for small target detection. Secondly, in
target detection, in order to avoid the introduction of redundant information and the loss of valuable
information, the scale of the anchor and target often need to be matched. Faster R-CNN anchor scale
for general target detection cannot be directly applied to small target detection. Finally, as the sliding
window detection algorithm treats every pixel equally, in Faster R-CNN, every anchor is equal, which
results in the redundancy of processing. However, it is necessary to introduce some prior information,
to give some confidence to each anchor or to filter out some anchors.

In Section 4.1, the Highly Possible Regions Proposal Network is proposed to filter part of the
anchors of the original Faster R-CNN which aim to improve the speed of the process. In Section 4.2, in
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order to improve the accuracy, on the basis of the original Faster R-CNN which uses the fifth layer
feature information of VGG16, the shallower layers feature information of VGG16 is fused. For further
enriching the feature of the detection region, SROIs information is added on the ROI.

4.1. Highly Possible Regions Proposal Network

As one of the categories of object detection, traffic sign detection has attracted the increasing
attention of researchers. Compared with general objects detection, traffic signs are designed with strict
colors and shapes so that they can be distinguished more easily from their background by human
beings or computer systems. Therefore, traffic signs detection methods generally use color information,
shape information, or both. However, due to natural factors such as illumination, weather and the
reasons for the image acquisition sensor itself, the color and shape information in traffic sign images
cannot always be stable. Therefore, it is necessary to weaken the noise and enhance the useful image
features such as the color or shape by image pre-processing. For example, Sheikh et al. [36] used color
restoration technology and Bahlmann et al. [37] used shape intensify technology. From a microscopic
point of view, the shape of an object in an image is composed of its edges. While the low-level semantics
are strengthened, the high-level semantics are usually strengthened. Compared with face detection,
medical image detection and satellite image detection, the edge features of traffic signs are more
obvious. In order to effectively propose regions of traffic signs, SGW is used to enhance the edges of
the traffic scene image and smoothen the areas without edges in the images. In this way, the features of
traffic signs can be strengthened and a foundation for post-processing can be laid.

4.1.1. Simplified Gabor Filter Model

The Gabor function can extract relevant features in different scales and directions in the frequency
domain. In addition, the Gabor function is similar to the biological function of human eyes, so it is
often used in texture recognition and has achieved good results [38,39]. The texture representation
ability of Gabor filters makes it widely used in the fields of image segmentation [40], facial expression
recognition [41] and object detection [42].

Pellegrino et al. [43] found that the imaginary part of Gabor wavelet (GW) has a good edge feature
extraction ability under special parameters. The imaginary part of this function is

G(x, y) = exp

−
(
x2 + y2

)
2σ2

 · sin[ω(x cosθ+ y sinθ)], (1)

where ω is the spatial frequency and σ is the standard deviation of the Gaussian function in both
directions of the X-axis and Y-axis. If the spatial frequency and standard deviation satisfy σ ·ω ≤ 1, the
edge extraction ability of this function will be enhanced.

Because Gabor filters can only enhance the information of edges matching the scale and direction
of Gabor kernels, multi-scale and multi-direction Gabor kernels are often used to weaken the loss of
information and take into account the edges of different scales and directions. The method typically
used is to divide the two-dimensional plane in order to set the value of θ, i.e., θ = 2kπ/8, k = 0, . . . , 7.
The size of the scale depends on the size of the edges in the specific application requirements.

The traditional Gabor wavelet (TGW) with specific parameters has been widely used to extract
image edge information in the field of target detection [44,45]. However, the orientation and scale of the
object’s edge are often uncertain and it is impossible to extract all edge information of the targets with
a certain orientation and scale of TGW. In order to take into account the edges of different directions
and scales, Gabor filters with corresponding directions and scales are needed, and the increase in
the number of filters means the increase of the processing time, which is unbearable in real-time
applications. Therefore, although TGW has a better edge information extraction ability, traffic sign
detection applications usually need real-time processing, hence, it is meaningless if it cannot solve the
problem of time consumption.
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In order to maintain the edge information extraction ability of TGW and reduce the processing
time of the computer, simplified Gabor filters were used proposed in Choi et al. [46] to enhance the
edge information of the traffic scene images. The SGW can be regarded as approximate values of
traditional Gabor wavelets. SGW is a discrete value obtained by quantifying the continuous value of
TGW. As described in Choi et al. [46], the SGW feature is extracted by the computer at each pixel and
compared with TGW, there is no Fourier transform process, which saves a lot of time.

The results of the quantified continuous values from the TGW is defined to be quantization levels.
The quantization levels selected in our method are the same as Shao et al. [47]. Because the imaginary
part of the TGW is anti-symmetry, one quantization level is set to be zero, the positive quantization
levels and the negative quantization levels are set to be the same. Hence, we suppose the number of
positive and negative quantization levels are equal to be n. Considering the zero quantization level,
there are 2n + 1 values in our approach. Suppose the largest magnitude of the TGW is M, in order to
discrete the amplitude of TGW, let i = 1, . . . , n, so the positive quantization levels qp(i) and negative
quantization levels qn(i) are defined as

qp(i) =
M

2n + 1
· 2i (2)

qn(i) = −
M

2n + 1
· 2i. (3)

In order to balance the processing time and efficiency, two scales and four directions of TGW
are used. The φ′θi,ω j

(x, y) denotes the output of the traffic scene image filtered by an SGW. The eight

feature maps are synthesized into one map, denoted by φ′′
θ,ω(x, y), by finding the maximum value of

the eight feature maps at each pixel using

φ
′′

θ,ω(x, y) = max
{
φ′θi,ω j

(x, y), i = 0, 1, 2, 3 and j = 0, 1
}
, (4)

The orientation selection adopts an equal half plane angle selection method so that θ j belongs
to (0,π) instead of (0, 2π) since the SGWs with the opposite direction have the same edge extraction
capacity, thereby reducing the filtering time to half of the original. As the direction of the simplified
Gabor kernel divides the two-dimensional plane during the same step, it balances every direction.
Edges are the expression of local information of the image and the purpose of feature transformation
to extract the local information, thus, the size of the SGW should not be too large. In our method, the
best size of the window, found by experiments, is 5× 5 pixels.

The eight SGW filter kernels are shown in Figure 3. The first and the second rows of Figure 4
show the example of the result of a speed limit sign convoluted with the eight SGW filter kernels
corresponding to Figure 3. The third row shows the result of the synthesis of the eight filtering maps
into one map by Formula (4). From frames a–h of Figure 4, the direction of the edge of the traffic
sign that coincided with the SGW filter was enhanced. Furthermore, all the edges of the traffic sign
synthesized by the filtering maps were strengthened in the last image. From the above, a conclusion can
be drawn that the SGW could, in fact, enhance the edges of images while reducing the processing time.
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4.1.2. Maximally Stable Extremal Regions

The maximally stable extremal regions (MSERs) algorithm is a commonly used image blob
detection method and was first proposed to solve such problems in Aghdam et al. [48]. This method is
widely used in text detection, trademark detection and traffic sign detection. The MSERs algorithm
has been used to extract the region proposal from the color probability map [49] and to detect the
traffic signs on a gray-scale map [50]. These methods have good results in the regional proposal, but
based on different feature maps, the proposal results of the MSERs algorithm are often quite different.
Therefore, it is necessary to optimize the image features before MSERs processing.

Inspired by the watershed algorithm, MSERs obtain a set of binary images segmented by a series
of thresholds. Then the connected regions between adjacent threshold images are analyzed and MSERs
are finally obtained. When the SGW feature map is separated by a threshold, the value of the pixel
larger than the threshold is set to 1 and the pixel smaller than the threshold is set to 0. MSER is the
areas where the shape stability is maintained over a wide threshold range. Our previous research [47]
showed that SGW-processed synthetic feature maps could help to enhance the edge information of
traffic signs and smooth the interior non-edge areas of traffic signs. According to the mechanism of
MSERs, this will facilitate the appearance of traffic signs in the proposal regions. Therefore, in this
paper, MSERs based on the SGW feature map is also applied for the region proposal in order to form a
high possible region proposal network.

In Figure 5, examples of a traffic scene image processed by HP-RPN is shown. Image A in this
figure is the gray-scale image of the traffic scene, image B is the output of a synthetic map using the
eight-SGW filtered map, image C is the result processed by MSERs on the gray-scale image, and image
D is the result of processing by MSERs on image B. As shown in this figure, the highlighted regions are
less numerous than those in image C and the areas where the traffic signs are located remain. This is a
preliminary demonstration of the HP-RPN’s capabilities. Compared with our previous research [47],
which used the SGW features in the areas of MSERs to classify traffic signs, in the current paper, the
SGW + MSERs are simply used for regions proposal and the features useful for classification are the
pre-trained features of the VGG16.

4.2. Detection Features Enrich

4.2.1. Shallower Layers Feature Fusion

In order to use the excellent detection performance of the Faster R-CNN and give it the ability
to detect small targets, some improvements are made to the Faster R-CNN. Rather than relying on
the fifth layer, the features from some of the shallower layers are used. In order to make full use of
the information of the VGG16 feature layers, inspired by Ren [9], the features combined from layers
res3d, res4f, and res5c of ResNet-50, the features of the third, fourth, and fifth layers of VGG16 are
used as the input to the RPN of the original Faster R-CNN. Similar to Bai et al. [35], the third layer is
down-sampled and the fifth layer is up-sampled with a stride of 2. For an input image size of 224 × 224,
the size of the feature map of the fourth layer would be 14 × 14. After down-sampling the third layer
and up-sampling the fifth layer, respectively, the output feature maps of the two layers were all of
size 14 × 14. These three feature maps are synthesized to make them into a deeper matrix of 14 × 14.
The synthesized feature map is used as the input of the RPN, which is shown in the red dotted box of
Figure 2. Such processing not only retained better feature expression of the large traffic signs on the
fifth layer, but also extracted a greater quantity of small traffic sign feature information from the third
and fourth levels and provided the information basis needed for later detection and recognition.
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4.2.2. Secondary Region of Interest

The human brain has an excellent detection and recognition ability and can detect and recognize
targets quickly even when the targets and backgrounds are complex. It can effectively detect targets
under difficult situations such as unideal lighting, deformation of objects and partial occlusion.
Importantly, the human brain also has the powerful ability to learn and inference. It can detect and
recognize targets not only based on the information of the target but also based on the information
of the environmental context. Inspired by the ability of the human cognitive system to detect and
recognize objects, many scholars have attempted to imitate the human visual system to improve the
ability of computer image detection and recognition.

Similar to humans, computer object detection aims to detect the size and position of objects from
the background which contains the objects. Most traditional detection feature extraction methods
have been based on the target itself and the detected information have been fully based on the target
region. There is a strong connection between the target and its environment, which is called context
information. Compared with recognizing the target through the information of the target itself, other
objects around the target can be paid attention to because the specific environment will provide a rich
context for the detection system. In the process of target detection and recognition, the full use of
context information has been adopted by some new methods. These have introduced scene information
and the mutual constraints of targets into target detection and classification, which can improve the
performance of detection and classification, and help reduce uncertainty.
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In practice, a scene that includes targets is often very structured, especially for manually designed
objects such as traffic sign, whose structure is often more obvious. Structural information often has a
great impact on the detection result. In Figure 6, the components that fix traffic signs to structures
and objects near the traffic signs often help us to judge whether or not they are traffic signs. Such
examples include metal or cement pillars for fixing traffic signs, other traffic signs beside the target
one, buildings next to traffic signs, and the road environment of traffic signs. All of this information
can help one determine that the detected object is indeed a traffic sign.
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Figure 6. Examples of traffic signs with contextual information including other traffic signs, poles, etc.

As shown in Figure 7, in addition to the information on the traffic signs, a cross-shaped pattern
also contains the structural information of the traffic signs. From human visual habits, this structural
information is conducive to the detection of traffic signs. In most cases, the structural information is
usually above, below, to the left and to the right of the traffic signs. In order to reduce the influence of
redundant image information on the complexity of network structure and maximize the proportion of
valuable information in the training samples, the four corners of image information were removed.
Intuitively, such a method can be looked on as directly using the cross-shaped images to train the
detection network. Compared with the traditional ROI, the regions outside the center area of the
cross-shaped image are defined as the secondary region of interest (SROI). At the same time, the
markers of the training sample database and the test sample database are expanded and the markers
of the four SROIs to every traffic sign in the database are added.
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Figure 7. Traffic signs with cross-shaped secondary regions of interest.

In order to effectively utilize the information of the SROIs defined, an SROI extraction algorithm
is added to the original Faster R-CNN. The structure is shown in Figure 8. The ROI proposal is the
same as with the original Faster R-CNN when a traffic scene image I(x, y) was input into the network,
the Faster R-CNN extracts a number of proposal regions as ROIs by the combination features of the
third, fourth, and fifth layers of the VGG16. The ROI is expressed as R = (xl, yt, xr, yb), where (xl, yt)

represents the pixel in the top left corner and (xr, yb) represents the bottom right corner of the ROI.
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Figure 8. The feature combination of the region of interest (ROI) and secondary ROIs (SROIs). The L, T,
R, B refers to the SRL, SRT, SRR, SRB, respectively.

After the ROI was extracted, the novel SROIs is added based on the previous feature map. In
the SROI extraction process, four SROIs are added to each ROI. The four SROIs were defined as the
left, top, right, and bottom SROIs, denoted as SRL, SRT, SRR, SRB, respectively. The four SROIs are
defined as

SRL = (xl −w, yt, xl, yt − h) (5)

SRT = (xl, yt − h, xr, yt) (6)

SRR = (xr, yt, xr + w, yb) (7)

SRB = (xl, yb, xr, yb + h), (8)

where w and h represent the width and height corresponding to the ROI. With these four equations,
the features of each SROI can be obtained.

Figure 8 shows the process of how the SROIs information is combined with the ROI for detection.
In this figure, the area covered by the orange rectangle was the ROI that was consistent with the Faster
R-CNN. The four areas of SRL, SRT, SRR, SRB were the defined SROIs. What should be emphasized is
that in our approach, the SROI is used only as decision information for classification by the softmax
function together with the ROI. The bounding box regressor was based on the information of the ROI,
which was the same method used in the Faster R-CNN. If these five boxes were regressed independently,
they would overlap or disperse; however, the area of concern was the ROI that corresponded to the
traffic signs marked by the database, and the SROIs only provide auxiliary decision information for
super class classification.

4.3. Loss Function

In our method, the Loss function is similar to the original Faster R-CNN [9], but because our
method has an anchor screening process, it is different from the original Faster R-CNN. The loss
function is defined in Formula (9), the loss function realizes two functions, one is to adjust the category
of the detected object and the other is to adjust the position of the bounding box.

L({piHPR }, {tiHPR }) =
1

Ncls

∑
i

Lcls(piHPR , p∗iHPR
) + λ

1
NregHPR

∑
i

p∗iHPR
Lreg(tiHPR , t∗iHPR

) (9)

here, iHPR is the index of an anchor in the highly possible regions of a mini-batch and piHPR is the
predicted probability of the anchor iHPR being an object. The ground-truth label p∗iHPR

is 1 if the anchor is
positive and is 0 if the anchor is negative. tiHPR is a vector representing the 4 parameterized coordinates
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of the predicted bounding box in the highly possible region and t∗iHPR
is that of the ground-truth box

associated with a positive anchor. Lcls is the classification loss over two classes (object and not object).
Lreg(tiHPR , t∗iHPR

) = R
(
ti − t∗i

)
is the regression loss and R is the robust loss function. In our case, Ncls is

the size of a mini-batch and NregHPR is the number of anchor locations in the highly possible region. λ
is a balancing parameter.

The improvement of the loss function of the original Faster R-CNN is mainly reflected in the
different number of anchors that the loss function needs to traverse. The influence of the prior
information of HP-RPN on the network is realized by the loss function. In the original Faster R-CNN,
the number of anchors is 14× 14, which corresponding to the NregHPR of our loss function, the number is
fixed. The number of anchors in the NregHPR of our method is the number of anchors covered by MSERs
and the anchors contained the MSERs. Through this mechanism, the number of anchors that the loss
function needs to traverse will be greatly reduced. Then it improves the speed of object detection.
Importantly, NregHPR can be used as an a priori information entry, providing possibilities for future a
priori information based detection algorithm optimization.

5. Experiments and Analysis

In this section, a brief introduction is first given to the databases of German and Chinese traffic
scenes and the method that is used to merge the two databases. Then, the metrics method used in our
paper is defined. Based on these metric methods, the process speed improvement by our HP-RPN
and the detection accuracy optimization after the detection features are enriched in our method are
evaluated. Finally, some examples of the results of our detection algorithm are shown.

5.1. Experimental Dataset and Computer Environment

In our detection methods, the publicly available Chinese traffic sign dataset (CTSD) dataset and
the German traffic sign detection benchmark (GTSDB) dataset were adopted for the performance
evaluation. In both the CTSD and GTSDB, there are three classes of traffic signs, namely, danger,
mandatory, and prohibitory. In this paper, those three classes are defined as super classes and each
traffic sign is defined as a sub-class. All the data in the two databases are in the form of images which
were captured in real traffic scenes by on-vehicle cameras. Figure 9 shows examples of the subclasses
of the CTSD and GTSDB.

The GTSDB dataset includes 900 high-resolution natural traffic scene images in Germany. There
are 1213 traffic signs in the whole database and in each image, there are 0 to 6 traffic signs. The size
of every traffic sign in this database varies from 16 × 16 pixels to 128 × 128 pixels. For each image,
the size is 1360 × 800 pixels. These images are divided into two parts, the first part is the 300 testing
images, and the second part is the 600 training images. In the test dataset, there are 63 danger signs,
49 mandatory signs and 161 prohibitory traffic signs, respectively.

The detection performance of traffic signs in China is validated on the Chinese traffic sign dataset
(CTSD) in Yang et al. [34]. The sizes of the images in this database are either 1280 × 720 or 1024 × 768.
There are in total 1100 images in the CTSD, 700 images for training and 400 images for testing. The
traffic signs include danger traffic signs, mandatory traffic signs and prohibitory traffic signs. The test
database included 129 danger signs, 139 mandatory signs and 264 prohibitory traffic signs, respectively.

Compared with the demands of training the Faster R-CNN, the number of samples is insufficient
for both the GTSDB and CTSD. Too few training samples would easily lead to the overfitting of the
network. To solve the problem of sample shortage, the two databases are merged into one because the
detection results of our detection network are the super classes of traffic signs. In other words, the
traffic signs are detected and classified as prohibitory, danger, or mandatory signs in super classes.
Because the shape of the same super classes of the two traffic sign databases is the same, the same
super class of the two databases is merged into one class to form a larger traffic sign detection database.
The database merging method is shown in Figure 9.
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Figure 9. Examples of subclasses in the German traffic sign detection benchmark (GTSDB) dataset and
the Chinese traffic sign dataset (CTSD). Merging the Prohibitory, Danger and Mandatory traffic signs
from the two databases into super classes, respectively.

Since our training data includes the information of the SROI region and there is no SROI mark
information in the two databases, four SROI region markers are added to each image of the two
databases based on the original data markers. These four regions are rectangles of the same size as the
original data markers areas and they extend in four directions (left, right, above, and below) away
from the original region, and the adjacent edges are coincidents. The four regions belong to the same
category as the central rectangular region. The calculation methods of the four SROIs is defined in
Equations (5)–(8).

Our traffic sign detection methods were experimented in the MATLAB software. The running
platform was Windows 10 64-bit operating system, Intel® HD Graphics 520 Graphics, 8 GB DDR3
memory, Intel(R) Core(TM) i5-6300U, CPU@2.40 GHz. Our algorithm runs on a CPU. In order
to save processing time, the HP-RPN and VGG16 feature extraction are executed in parallel by
two-thread programming.

5.2. Evaluation Metrics

In the field of image classification, the accuracy and recall rate are often used to measure the
classification performance. However, in the field of target detection, if the detector detects an object
without the information about its location in the image, it has little use. Since the position of the object
in the image must be predicted and it is difficult to predict the position consistent with the position of
the ground truth, measurement methods must be used to accurately measure the prediction results.
Our evaluation indicators, therefore, include the intersection over union (IoU), average precision (AP),
mean average precision (mAP), and precision indexes.
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For current detection algorithms, it is impossible to make the detected area exactly the same as
the ground truth, partly because of the accuracy of the detection algorithm, and partly because the
subjectivity of the database markers means that the ground truth may not be exactly the “truth”. In the
field of target detection, the IoU is often used to measure the accuracy of detection, which refers to the
degree of coincidence between the detected area and the ground truth. The IoU is defined as follows:

IoU =
area(Bdet ∩ Bgt)

area(Bdet ∪ Bgt)
× 100% (10)

In the equation above, Bdet refers to the detection bounding box, Bgt refers to the ground true bounding
box, area(Bdet ∪ Bgt) indicates the union area of the detection area and the ground truth. In our paper,
if the IoU is larger than 50%, this will be identified as a correct detection.

In order to comprehensively measure the accuracy of the test, the precision and recall rates are
used. The precision and recall rates are based on three indicators: the false positive (FP), the true
positive (TP) and the false negative (FN). TP and FP refer to the ratio of correctly and falsely detected
objects in all region proposals. FN refers to the number of regions which include objects that should be
detected but are not proposed. The definitions of precision and recall rate are

Precision =
TP

FP + TP
(11)

Recall =
TP

FN + TP
. (12)

5.3. Performance of Highly Possible Regions Proposal

In Figure 10, the process of filtering the ROIs of Faster R-CNN with MSERs is shown. Image A in
this figure is the map processed by MSERs on the synthetized eight SGW filtered map. Image B is the
feature matrix of the combined features of the third, fourth, and fifth layers of VGG16. To reduce the
number of detection windows in the original Faster R-CNN, most of the almost impossible areas are
filtered out. The filtering method is used to find the ROIs which include the MSERs from the HP-RPN
of our method. In this way, it is able to filter out more than half of the ROIs compared to the original
Faster R-CNN. The number of regions of interest remaining will be less than the number of ROIs from
the Faster R-CNN because more than half of the ROIs were not included in the MSERs. Compared
with Reference [9], based on the prior information of MSERs, the credibility of the proposed regions
can be improved, the number of proposal regions can be greatly reduced, and the processing time can
be further saved.

As shown in image D of Figure 10, the light-yellow area mainly covers the traffic signs. However,
because they were not fully covered, the bounding box needed to be constantly adjusted. This problem
originates with the anchor-based regression method, which aims to avoid the high time requirement of
the sliding window target detection method, but in which the choice of anchor points is fixed without
any prior knowledge. In order to correct the coverage area, the bounding box must be constantly
regressed and rectified, which is a highly time-consuming process. Clearly, with the information
of SROIs (shown as the light blue area in image D), the traffic sign information is fully expressed.
Therefore, our SROI-based feature representation would have obvious advantages for such samples.
The number of samples is not small because the location of traffic signs falling into the anchor point is
random and the probability of the area corresponding to the anchor point is low.
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Table 1, the average numbers of proposals for the grayscale inputs from the GTSDB and CTSD are 
388 and 321, respectively, equivalent to recall rates of 97.1% and 98.12%. The average numbers of 
proposals of the SGW Map + MSERs on the two databases are 276 and 178, respectively, with recall 
rates of 99.63% and 99.62%. The number of proposal regions from our method is less than from the 
grayscale + MSERs approach, and the recall of our method is higher, which shows that our method 
can improve the recall rate while restraining the number of region proposals. 
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  CTSD GTSDB GTSDB + CTSD 

Grayscale + MSERs 

Average number of proposals 321 388 343 
ROI with MSERs 99 118 105 

FNs, Recall 10, 98.12% 8, 97.1% 18, 97.76% 
Time (ms/image) 38 40 38.8 

SGW Map + MSERs 

Average number of proposals 178 276 211 
ROI with MSERs 56 83 65 

FNs, Recall 2, 99.62% 1, 99.63% 3, 99.63% 
Time (ms/image) 41 46 43 

Compared with grayscale + MSERs, which took 40 and 38 milliseconds per image on the GTSDB 
and CTSD, respectively, our method takes several more milliseconds because our method includes 
the SGW filtering process rather than using the grayscale image directly. However, compared with 
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In order to demonstrate the regional proposal capabilities of our HP-RPN, that is, showing the
SGW filtering is conducive to the discovery of effective MSERs and that our method suppresses the
number of negative samples, our method is compared with MSERs on a grayscale map. As shown in
Table 1, the average numbers of proposals for the grayscale inputs from the GTSDB and CTSD are
388 and 321, respectively, equivalent to recall rates of 97.1% and 98.12%. The average numbers of
proposals of the SGW Map + MSERs on the two databases are 276 and 178, respectively, with recall
rates of 99.63% and 99.62%. The number of proposal regions from our method is less than from the
grayscale + MSERs approach, and the recall of our method is higher, which shows that our method
can improve the recall rate while restraining the number of region proposals.

Table 1. The comparison of different detection metrics for the grayscale + maximally stable extremal
regions (MSERs), and simplified Gabor wavelets (SGW) Map + MSERs approaches.

CTSD GTSDB GTSDB + CTSD

Grayscale + MSERs

Average number of
proposals 321 388 343

ROI with MSERs 99 118 105
FNs, Recall 10, 98.12% 8, 97.1% 18, 97.76%

Time (ms/image) 38 40 38.8

SGW Map +
MSERs

Average number of
proposals 178 276 211

ROI with MSERs 56 83 65
FNs, Recall 2, 99.62% 1, 99.63% 3, 99.63%

Time (ms/image) 41 46 43
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Compared with grayscale + MSERs, which took 40 and 38 milliseconds per image on the GTSDB
and CTSD, respectively, our method takes several more milliseconds because our method includes the
SGW filtering process rather than using the grayscale image directly. However, compared with the
main part of the Faster R-CNN, the time consumption of the HP-RPN network is lower and these two
parts are logically executed in parallel. With parallel programming, the increase in time for the SGW
map will not affect the final system processing time.

The average number of proposals, recall rate, FNs, and time cost on GTSDB + CTSD was calculated
from the experimental results of GTSDB and CTSD. Since our HP-RPN does not have the ability to learn
and remember, its performance will not change with an increase in the sample size. The performance
advantages of our method can also be seen from the results.

Figure 11 shows the examples of the regions proposed by MSERs on the grayscale image and SGW
feature map. The first column of this figure is the original traffic scene images, the middle column is
the result of HP-RPN based on the grayscale image and the last column is the HP-RPN based on the
SGW feature map. In these images of this figure, the region covered by the color square is the region
where the traffic sign belongs. In the same line, the square of the same color represents the same traffic
sign in the traffic scene.
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Figure 11. Examples of regions proposal by the highly possible regions proposal network (HP-RPN) on
a grayscale image and the HP-RPN on an SGW feature map under different situations of traffic scenes.
(A): clear and simple traffic scene, (B): complex traffic scene, (C): motion blurred complex traffic scene.

Line A shows the regions proposal with clear traffic signs and relatively simple traffic scenes.
From the results, it can be seen that both methods have good regions proposal results. What is good
here is that the regions where the traffic signs belong to is proposed and the total number of proposal
regions is small. In line B, although the four traffic signs are proposed in both methods, it is obvious
that the number of regions proposed by HP-RPN based on SGW is significantly less than that by
HP-RPN based on grayscale images. The reduction of the number of proposed regions will help to
filter anchors and then improve the processing speed of the system. The last line is motion blurring,
small targets and complex traffic scenes. Because the traffic sign is small and blurred, in the process of
HP-RPN based on a gray image, the region of the traffic sign is not successfully proposed, but in the
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process of HP-RPN based on SGW, this difficulty is overcome. The experimental results show that the
SGW filter has the ability to stabilize the unstable region and better the regions proposal ability.

5.4. Performance of Detection Features Enrich

In addition to the number of anchors affecting the detection speed, there are two factors that have
a greater impact on the detection accuracy. The first one is the matching degree between the scale of the
bounding box and the detected target. The closer the two scales are, the easier it is to detect the target.
The second is the feature expression of the detected region. The better the feature expression, the easier
the classification algorithm can judge whether the detected region contains the target object. In this
section, our method about the selection of the bounding box scales and detection features enrichment
will be validated and analyzed through experiments.

5.4.1. The Selection of Bounding Box Scales

The distributions of traffic sign size in the GTSDB and CTSD are shown in Figures 12 and 13,
and the distribution of the traffic sign size in the joint GTSDB + CTSD dataset is shown in Figure 14.
Since the lengths and widths of most traffic signs in the database are not equal, the maximum lengths
and widths of traffic signs as the scale of the traffic signs are taken for statistics. In the joint database,
GTSDB + CTSD, there are 902 traffic signs with scales smaller than 36 pixels, which are defined as
small-sized; 692 traffic signs have scales between 36 and 66 pixels, which are defined as medium-sized;
and 662 traffic signs have scales bigger than 66, which are defined as large-sized. Compared with the
GTSDB and, especially, the CTSD, by merging the two traffic databases, the unbalanced distribution of
traffic signs was alleviated to a certain extent, which will be conducive to the training of the network.
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In the selection of the bounding box, according to the statistics of traffic sign scale in GTSDB +

CTSD, three sets of scales are used in our experiments to find suitable scales for traffic sign detection.
These three sets of scales are {162 642 1282} pixels, {642 1282 2562} pixels, and {1282 2562 5122} pixels.
Although traffic signs have some of the common problems found in the field of image detection, such
as tilt, distortion, and rotation, for the vast majority of normally installed traffic signs, the degree of
deformation in images is generally not too large. As shown in Figure 15, most of the aspect ratios of
the traffic signs are distributed between 0.6 to 1.3, with an average aspect ratio of 1.01, shown as the
horizontal orange line in Figure 15. Therefore, in our method, the aspect ratios are set to 1:1, 1:2 and
2:1, there are, in total, 9 scales for each anchor which is the same as in Reference [9].

Table 2 shows a comparison of the detection results for different methods. mAP refers to the mean
average precision when the IoU was constrained to 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. The
evaluated method is the same as that in Reference [9]. These detection methods can be divided into
two categories. The first is the original Faster R-CNN, based on the fifth layer features of VGG16. It
mainly relates to the detection performance of the original Faster R-CNN with different bounding box
scales for small target detection. As the scale decreases, the detection performance of the large traffic
signs decreases because, in the process of scale reduction, the bounding box cannot surround the key
information of the large traffic signs. The detection performance of small-scale traffic signs has not
been greatly improved by the reduction of the bounding box scale. Although the size of the bounding
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box changed, the traffic sign size does not change in the traffic scene. As mentioned above, the features
of small traffic signs mapped in the fifth layer of the VGG16 are too coarse for detection.
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Table 2. The comparison of detection results with different methods.

Method
Anchor Scale

(Pixels)

mAP%
ROI

Feature
Layers HP-RPN

Small Medium Large

Faster
R-CNN

{1282 2562 5122} 12.11% 15.19% 34.12% ROI Conv_5 No
{642 1282 2562} 15.80% 16.25% 37.57% ROI Conv_5 No
{162 642 1282} 16.53% 28.31% 38.63% ROI Conv_5 No

Our
Approach

{1282 2562 5122} 37.53% 48.22% 59.35% ROI Conv_3_4_5 Yes
{642 1282 2562} 43.15% 51.47% 60.56% ROI Conv_3_4_5 Yes
{162 642 1282} 60.55% 62.17% 62.56% ROI Conv_3_4_5 Yes
{162 642 1282} 66.55% 67.17% 69.56% SROI + ROI Conv_3_4_5 Yes

The second method of comparison is the modified Faster R-CNN that uses features combined from
layers three, four, and five of VGG16 with or without the SROI information. For the methods without
SROI information, as the scale of the bounding box decreased, the detection performance of the large
traffic signs was slightly reduced. After analysis, this is because the largest of the three bounding boxes
on the smaller scales cannot completely cover the large traffic signs, clearly reducing the detection
effect. As shown in Table 2, with the decrease of the bounding box size, especially when using the
{162 642 1282} pixels scale, the detection performance of small traffic signs was significantly improved.
This shows that by fusing the third, fourth, and fifth layer features of VGG16, the detection of small
traffic signs is indeed improved when using the bounding box with scales of {162 642 1282} pixels.

More interestingly, when the SROI information is fused in the detection network, the detection
performance of small, medium, and large traffic signs was significantly improved. Moreover, the
performance of large traffic sign detection was clearly improved. Two conclusions can be drawn. First,
for small traffic signs, adding the SROI context information is conducive to improving the detection
performance. Second, for databases with a large range of target scale changes, when the size of the
detection bounding box cannot be fully taken into account, the problem caused by the bounding box
being slightly smaller than the detection object can be remedied by adding the SROI information.
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5.4.2. Performance of Features Fusion

In order to further verify the effectiveness of our method in the convolution feature layers selection
and SROI information fusion for target detection, the performance of the three detection methods is
compared on small, medium and large traffic signs from the GTSDB and CSTD databases. The first
method is the original Faster R-CNN which used the features of the fifth layer of VGG16; the second
one is our method without SROIs information support and the third one is our method with SROIs.
The last two methods use the features of the third, fourth and fifth feature layers of VGG16.

Figure 16 shows the PRCs (Precision Recall Curve) of the three methods on the small, medium and
large traffic signs. As shown in Figure 16A–C, the blue lines which represent the original Faster R-CNN
method does not perform well in the detection of these three types of traffic signs, although it is slightly
better in the detection of large traffic signs. This result further confirms that the original Faster R-CNN
is not suitable for small target detection. The orange lines which represent our method without SROIs
have better performance because the selection of multi-layer features offsets the roughness of the deep
features. Through the fusion of SROIs information, our method gets the best detection performance as
shown by the gray lines. The experimental results show that the detection performance of the small,
medium and large traffic signs can be improved by fusing shallower layers convolution features and
adding SROI information. Experiments also show that the effective detection region feature expression
plays an important role in improving the object detection performance.
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5.5. Overall Processing Speed and Accuracy

5.5.1. Anchor Filtering

The main time consumption of object detection algorithms based on the bounding box mode is the
traversal pattern of the bounding box. Unlike the sliding window based target detection methods which
need different scales of windows to traverse the whole picture at each pixel, and the computational cost
being unacceptable, Faster R-CNN uses an anchor-based detection method which greatly improves
the detection efficiency. The dimension of this feature layer used in our method is 14 x 14. If the
original Faster R-CNN structure is used, there are 196 anchors. The number of anchors is fixed and
has nothing to do with the state of the image or the network. In our method, the HP-RPN regional
proposal information is used to filter part of the anchors and only anchors covered by MSERs are
retained, or anchors containing MSERs; all the anchors that do not intersect with MSERs are removed.

Figure 17 shows the comparison of the number of anchors of Faster R-CNN without and with
HP-RPN. In the Gray-Scale image based HP-RPN, the average numbers of anchors after filtering the
test datasets of GTSDB, CSTD and GTSDB+CSTD are 110, 130 and 127, respectively. The average
numbers of anchors proposed by the SGW based HP-RPN are 62, 91 and 72 respectively. The numbers
of the anchors of the above two results are obviously superior to the original Faster R-CNN structure,
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which has 196 anchors. From those results, two conclusions can be drawn: firstly, Faster R-CNN
using the output of HP-RPN as prior information can indeed reduce the number of anchors; secondly,
HP-RPN based on SGW is better than HP-RPN based on gray images. Importantly, the reduction in
the anchor number is the key to improving the processing speed of our method.Sensors 2019, 19, x FOR PEER REVIEW  22 of 28 
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Figure 17. The comparison of the number of anchors of the Faster R-CNN without and with HP-RPN
on different databases.

Figure 18 shows an example of the actual anchor points without and with HP-RPN information
support. Image A of this figure shows the anchor points of an input image of the original Faster
R-CNN structure which has no HP-RPN support. Image B shows the anchor points of our method.
The prior information is the MSERs proposal by HP-RPN as shown in Figure 10A. From Figure 18, it
can be clearly seen that the number of anchors that our method needs to traverse is far less than that of
the original Faster R-CNN structure. However, the traffic signs in this input image are still covered
by anchors.
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For the object detection algorithms based on the sliding window, the relationship between each
pixel is equal, so it is necessary to traverse every pixel. For the original Faster R-CNN which is based
on anchor detection, the relationship between each anchor is equal and it is also necessary to traverse
every anchor. However, in fact, the relationship between these pixels and anchors is not equal because
some areas are “obviously not a traffic sign”. HP-RPN is used to express the information on “obviously
not a traffic sign” and use this information as a priori information to provide decision support for the
detection network. According to the mechanism of the algorithm, the large reduction of the number of
anchors will greatly help to improve the processing speed of the algorithm.
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5.5.2. Analysis of Processing Time Consumption

The purpose of using the SGW filter in our method is to strengthen the edge feature of traffic
signs because the edge feature is one of the important features of traffic signs. However, there are
many edge enhancement algorithms such as Canny operator [51] which has a better edge enhancement
ability for image edge information, and TGW [44] with specific parameters which also has a better
edge enhancement ability. However, from the perspective of the application of traffic sign detection,
real-time detection performance is one of the key requirements, so the time consumption of edge
enhancement is one of the important factors to be considered. Compared with the TGW filter which
needs FFT (Fast Fourier Transformation), SGW can be calculated independently for each pixel, which
greatly reduces the filtering time. Table 3 shows the comparison of the computation times between the
TGW, Canny and SGW. In this table, the numbers of additions and multiplications required by these
three edge enhancement algorithms are analyzed in the filtering process. Those characteristics will
directly determine the number of computations of the processor. From Table 3, it can be clearly seen
that the SGW consumes the least computing times in the filtering process, which will be beneficial to
its application in real-time image processing.

Table 3. The computational times comparison of traditional Gabor wavelet (TGW), Canny and
SGW [45].

Method Number of Multiplications Number of Addition

TGW 32N2 log2 N2 + 32N2 48N2 log2 N2 + 16N2

Canny 17N2 40N2

SGW 16N2 18N2

When our algorithms are converted into programs, the HP-RPN and VGG16 feature transformation
are executed in parallel by two thread programming. Unlike general image preprocessing, our method
uses the VGG16 network to transform the image features while preprocessing the image. These two
parts are processed independently through two cores of the CPU. This can offset the time required to
preprocess the image. As shown in Figure 19, the average processing time of the SGW and MSERs is
15 ms and 38 ms, respectively, but the average processing time of the VGG16 feature transformation is
85 ms. Therefore, our HP-RPN network almost does not increase the whole system execution time.
Our processing speed is close to 9.3 frames per second; the traffic signs can be detected when the
vehicle runs for 4 m with a speed of 120 km/h. This means that if the vehicle captures the traffic sign
image 200 m away from the traffic sign, when the vehicle is 196 m away from the traffic sign, the system
will give the detection results. The processing speed meets the real-time processing requirements.
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5.5.3. Performance Comparison Analysis

Table 4 shows the effect of SROIs and multi-layer deep convolution feature information on the
detection accuracy on the datasets of GTSDB and CTSD. As can be seen from this table, the larger the
traffic signs, the higher the detection accuracy; this shows that the scale of the detection object directly
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affects the detection accuracy and the space for improving the detection accuracy mainly lies in the
small targets. When the SROIs information is added to the original Faster R-CNN solitary, although
small target detection has a little improvement, the performance improvement of the algorithm for
large target detection is still more obvious, this may be because the feature information of the small
target on the fifth layer of VGG16 is too rough. It is obvious that the detection accuracy of small targets
has been greatly improved after multi-layer deep feature information fusion. From the perspective
of overall detection accuracy, the fusion of multi-layer deep convolution features is better than the
context information for improving the detection accuracy, this shows that the detection accuracy
mainly depends on the information expression of the detection object itself. From the last two rows of
this table, it can be seen that the detection achieves optimal performance by fusing the multi-layer
convolution feature information and context information simultaneously. Generally speaking, the
introduction of SROIs and multi-layer deep convolution feature information has greatly improved the
detection performance.

Table 4. The comparison of the detection accuracy with or without the information of secondary
regions of interest (SROIs) and multi-layer deep convolution features.

Database Small Medium Large Total Region Feature Layer

GTSDB 58.26% 70.37% 84.21% 66.67% ROI Conv_5
CTSD 54.74% 71.66% 83.16% 72.74% ROI Conv_5

GTSDB 61.05% 80.16% 93.68% 81.58% ROI+SROI Conv_5
CTSD 64.57% 78.70% 94.73% 74.36% ROI+SROI Conv_5

GTSDB 89.76% 89.81% 86.84% 86.81% ROI Conv_3_4_5
CTSD 86.32% 86.64% 88.42% 86.27% ROI Conv_3_4_5

GTSDB 96.85% 100% 100% 98.53% SROI + ROI Conv_3_4_5
CTSD 93.68% 99.60% 100% 98.68% SROI + ROI Conv_3_4_5

Table 5 shows the comparison of the detection results of our method and other methods from
References [34,52–54]. According to the final detection results of merging the GTSDB and CTSD
databases, the detection results of our method on the three super classes are 99.53%, 98.40%, 98.44%,
respectively. The total accuracy of our method on the three super classes is 99.01%. Although the
detection rate of a certain super class is not the best, our detection network has a better overall detection
performance than other methods. In Reference [52], the detection accuracy of both the Mandatory
traffic sign and the Danger sign are 100%, but the overall accuracy is 97.44% which is lower than our
method. The process speeds of our method on GTSDB, CTSD and GTSDB+CTSD are 0.111 s, 0.106 s
and 0.108 s per image based on a single CPU, respectively. Compared with Reference [52] which has a
processing speed of 0.130 s per image based on a GPU which is professional for image processing, our
method has an obvious efficiency advantage.

Table 5. The comparison of the precision of the proposed approach with other representative approaches
using the German traffic sign detection benchmark (GTSDB) and Chinese traffic sign dataset (CTSD).

Method Database Prohibitory Mandatory Danger Total Time(s)

Reference [53] GTSDB 99.63% 91.33% 96.08% 97.32% -
Reference [34] CTSD 97.38% 95.57% 98.16% 97.10% 0.162
Reference [54] GTSDB 98.88% 74.6% 67.3% 87.23% -
Reference [52] GTSDB 96% 100% 100% 97.44% 0.130
Our Method GTSDB 98.76% 97.96% 98.41% 98.53% 0.111
Our Method CTSD 99.24% 97.84% 98.45% 98.68% 0.106
Our Method GTSDB + CTSD 99.53% 98.40% 98.44% 99.01% 0.108

After database combination, the detection rate improves for the prohibitory and mandatory
traffic signs. However, as the data show, the accuracy of the danger traffic signs has no significant
improvement after the databases are combined. The reason for this phenomenon is that although the
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danger traffic signs in these two databases have the same triangular shape, the danger traffic signs of
the GTSDB have a red border with a white interior, while those of the CTSD has a black border and
yellow interior. This color difference makes it difficult for the detection network to classify the two
kinds of traffic signs into the same class.

The experimental results show that the combination of the two databases is helpful for the
detection of traffic signs with the same color and shape. However, for traffic signs with obvious color
differences, such as the danger traffic signs, the effect is not obvious. This shows that although a
small sample size database for deep learning is useful for in-depth research, from the perspective
of performance improvement, increasing the number of samples and building a larger database are
obvious ways to improve the detection efficiency. The way that expanded the size of the database by
merging the two databases into one is highly economical.

Some detection result examples from the two databases are shown in Figure 20. Since traffic signs
are too small in the image, just part of the picture is displayed. The red box is the traffic signs mark the
area of the database and the green box represents the detected area. From the results, it can be seen
that our method can accurately detect single traffic signs, multiple traffic signs, and traffic signs of
different shapes. Such detection results make our methods very close to the real-time application.
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6. Conclusions and Future Work

In this paper, to solve the problem of traffic sign detection in the natural environment, a new traffic
sign detection method was proposed. A highly possible regions proposal network is proposed as a
prior information provider to reduce the number of anchors produced by the original Faster R-CNN,
which further reduces the processing time. Moreover, the processing time was further reduced by
parallel computing. A method of combining the features of the third, fourth, and fifth layers of VGG16
to enrich the features of the small targets is proposed and solves the problem of the inability of the
Faster R-CNN to detect small targets. In order to improve the classification ability of the Faster R-CNN,
secondary regions of interest are integrated into the classification information. The experimental results
show that the detection accuracy of prohibitory, mandatory, and danger traffic signs were 99.53%,
98.40%, and 98.44%, respectively. The overall detection accuracy of the three types of traffic signs is
99.01%. Compared with similar methods, the detection precision has eclipsed previous state-of-the-art
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methods. The processing speed of the whole algorithm is close to 9.3 frames per second on a regular
laptop, which meets the needs of real-time applications.

A faster R-CNN anchor-based strategy greatly reduces the number of detections compared with
the sliding window and selective search methods, but the anchor fixed selection means the target
deviates too much from the anchor point and is vulnerable to missed detection due to the influence
of the bounding box regression ability. Therefore, investigating a way to add more effective a prior
information to the anchor selection will be a meaningful future research direction. In addition, the
fixed scales and aspect ratios of the anchor points mean that most targets lose the possibility of being
overlapped with anchor areas and the original detected targets will not be detected because of the
filtering of the IoU threshold. Therefore, further research should also be conducted to optimize the
detection metric methods.
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