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Abstract: Owing to the nonlinearity in visual-inertial state estimation, sufficiently accurate initial
states, especially the spatial and temporal parameters between IMU (Inertial Measurement Unit)
and camera, should be provided to avoid divergence. Moreover, these parameters are required to
be calibrated online since they are likely to vary once the mechanical configuration slightly changes.
Recently, direct approaches have gained popularity for their better performance than feature-based
approaches in little-texture or low-illumination environments, taking advantage of tracking pixels
directly. Based on these considerations, we perform a direct version of monocular VIO (Visual-inertial
Odometry), and propose a novel approach to initialize the spatial-temporal parameters and estimate
them with all other variables of interest (IMU pose, point inverse depth, etc.). We highlight that our
approach is able to perform robust and accurate initialization and online calibration for the spatial
and temporal parameters without utilizing any prior information, and also achieves high-precision
estimates even when large temporal offset occurs. The performance of the proposed approach was
verified through the public UAV (Unmanned Aerial Vehicle) dataset.

Keywords: visual-inertial odometry; direct approach; online calibration; spatial-temporal parameters

1. Introduction

The monocular visual-inertial system, which is usually composed of a low-cost MEMS (Micro-electro-
mechanical Systems) IMU and a camera, has turned out to be a highly attractive solution for motion
tracking and 3D reconstruction due to its lightweight characteristics of size, weight and power. As a
result, monocular visual-inertial state estimation has become a highly active research topic in robotics and
computer vision communities.

In the last few decades, there have been a great deal of scholarly work on monocular visual-inertial
state estimation. Researchers make use of IMU measurements and monocular camera observations to
recover carrier motion and 3D structure. The solutions can be divided into filtering-based approaches [1–5]
and graph optimization-based approaches [6–11]. With the maturity of feature tracking/matching
techniques, feature-based approach has become a convention in visual-inertial algorithms. Most of
these algorithms process image by tracking/matching sparse features, and minimize the reprojection
error in the estimator [1–10]. Recently, direct approach draw researchers’ attention with its capability
to exploit information from all intensity gradients in the image [12]. DSO (Direct Sparse Odometry),
which came from Engel [13], showed remarkable performance in weak intensity variation environments.
A tightly-coupled direct approach to visual-inertial odometry was proposed in [11] very recently, which
can perform accurate and robust odometry estimation in little-texture or low-illumination environments.

However, most methods assumed sensors are synchronized well under a common clock [1,2,4–9],
and some of them also required the spatial parameters are determined exactly [1,5–9]. These requirements
are not easy to be satisfied in practice. As a matter of fact, for most low-cost and self-assembled sensor
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suites, accurate factory calibration and hardware synchronization are not available. Consequently, these
methods only work properly with a few well-calibrated and strictly-synchronized sensors.

In fact, sensor calibration for the spatial or temporal parameters has gathered tremendous research
efforts. The observability of the spatial parameters is analyzed in [14,15], and the results show that the
spatial parameters are observable given sufficiently excited motions. Four kinds of non-trivial degenerate
motions for spatial-temporal calibration are studied in [16]. Furgale proposed a continuous-time batch
optimization framework for spatial-temporal calibration [17], and provided a widely-used calibration
toolbox, Kalibr. However, it requires artificial calibration objects and can only perform offline calibration.
For online spatial calibration, Weiss considered optimizing the spatial parameters online in a nonlinear
estimator [2]. Yang emphasized the importance of initial values for online calibration, and proposed
initializing the spatial parameters together with the motion of system [18]. A similar initialization is
performed in [19], where an iterative strategy is conducted to calibrate the extrinsic orientation and
gyroscope bias. Nevertheless, these approaches did not consider the temporal offset. Moreover, Li
proposed an approach to estimate motion with online temporal calibration in a multi-state constrained
EKF framework. In our previous work, we studied the effect of the temporal offset on point
reconstruction and proposed calibrating the temporal offset by shifting feature points to match IMU
constraints [20]. A similar approach is performed in [21], where a coarse-to-fine strategy is applied to
calibrate the temporal offset.

Among these calibration approaches, nearly all are built on feature-based visual-inertial odometry.
For those approaches able to calibrate the temporal offset, the initialization for the temporal offset is
not considered. Therefore, the online calibration may fail when a large temporal offset occurs.

To this end, we implement a direct version of monocular VIO, and propose reliable initialization
and online calibration for the spatial-temporal parameters. We assume the spatial-temporal parameters
are constant but unknown variables. First, we perform VO (Visual Odometry) only. The spatial
orientation and temporal offset are continuously estimated until they converge. After the initialization
succeeds, the visual-inertial alignment is carried out to recover initial states for visual-inertial
state estimation once excited motion is detected. Then, the visual-inertial odometry with online
spatial-temporal calibration is launched. An illustration of performing our VIO algorithm is depicted
in Figure 1. We highlight our contribution as follows:
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Figure 1. An illustration of performing our VIO algorithm on V2_01 easy (the camera delay set to 150 ms).
(a) 3D reconstruction, camera trajectory (green line for VO, blue line for VIO), estimated pose (orange
camera) at the end. (b) The spatial and temporal parameters estimated during the entire calibration
process. The process can be divided into two stages: initialization and optimization, which are separated
by dashed lines.
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• We design a feature-based initialization algorithm to initialize monocular direct visual odometry,
which can detect motion effectively and initialize the map with higher robustness and efficiency
compared to the initialization of DSO.

• We derive a robust and accurate optimization-based initialization to estimate the spatial
orientation and temporal offset together. The initialization is able to recover sufficiently accurate
results without any prior system knowledge or artificial calibration objects.

• We derive a monocular direct visual-inertial estimator with online spatial-temporal calibration.
The estimator can also estimate other states such as IMU pose and 3D geometry.

2. Preliminaries

In this section, we describe the necessary notations for this paper, and give a definition for the
spatial parameters and temporal offset. Besides, the error functions used in the nonlinear optimization
are briefly reviewed.

2.1. Notation

In this paper, we use bold upper case letters A to represent matrices, bold lower case x to denote
vectors. Scalars are represented by light lower case λ. We use quaternion q or rotation matrix R to
denote rotation. If a vector/quaternion/rotation matrix describes the relative transformation from
one original frame to another frame, a right subscript is appended to indicate the original frame,
and the right superscript denotes the transformed frame, e.g., pb

a denotes the translation from frame a
to frame b, qb

a or Rb
a denotes the rotation from frame a to frame b. Moreover, we consider v as vision

frame, which is defined by the first camera frame in visual odometry. We consider w as world frame,
where gravity is along with z axis. We consider b as body frame aligned with IMU frame, and c as
camera frame.

2.2. Spatial Parameters Definition

To fuse IMU and camera measurements, the coordinate transformation between IMU and camera
is required. In this paper, the spatial (extrinsic) parameters {Rb

c , pb
c} between IMU and camera is the

relative transformation from c to b, as illustrated in Figure 2.
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Figure 2. An illustration of the spatial parameters between IMU and camera.

2.3. Temporal Offset Definition

Timestamp of sensor measurements always suffers a delay, since the timestamp is generated
after measurement creation. The delay has various causes: triggering delay, communication delay,
unsynchronized clocks, etc. Here, we use t to denote measuring time, ts to denote timestamp, and tdelay
to denote the delay. The relationship of measuring time and timestamp is:

ts = t + tdelay (1)

Therefore, if we directly align different sensors measurements with their timestamps, a temporal
misalignment occurs, as illustrated in Figure 3. In this paper, we assume sensor delays are constant.
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Considering the IMU and camera measurements measured at the same time t, the timestamps of these
measurements are:

timu
s = t + timu

delay, tcam
s = t + tcam

delay (2)

The temporal offset can be defined as the difference of these two timestamps:

td , tcam
s − timu

s (3)

With this definition, we can align measurements with their timestamps easily. For example, given
a camera image with a timestamp tcam

s , the matching IMU measurement should have a timestamp
tcam
s − td. Conversely, given an IMU measurement with a timestamp timu

s , the image captured at the
same time is attached with a timestamp timu

s + td.
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Figure 3. Misalignment of measurements: The IMU measurement and camera measurement with the
same timestamp are not measured at the same time. In practice, we can only align sensor measurements
according to their timestamps. However, it will result in a misalignment if these sensors suffer a
different delay. To avoid this, we only need to shift the timestamp of one sensor from them (the camera
or the IMU) with the temporal offset.

2.4. Photometric Error

We use the same photometric error model as [13]; the photometric error of a point p ∈ Ωi in host
frame i reprojected in a target frame j is defined as:

Epj , ∑
p∈Np

wp

∣∣∣∣∣
∣∣∣∣∣(Ij[p′]− bj)−

tje
aj

tieai
(Ii[p]− bi)

∣∣∣∣∣
∣∣∣∣∣
γ

(4)

where pj is the point reprojected in frame j, p is a pixel from the pixels set Np of the point p, wp is
the gradient-dependent weight of p, p′ is the pixel reprojected into frame j, Ii and Ij are the image
intensity of frame i and frame j, ti, tj are the exposure times, ai, bi, aj, bj are the illumination parameters
and || · ||γ is the Huber norm.

Then, we can formulate the total photometric error of all keyframes in the optimizing window
as follows:

Ephoto = ∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj (5)

where F is a set of keyframes in the window, Pi is a set of sparse points in keyframe i, and obs(p) is a
set of observations of the same point in other keyframes.

2.5. IMU Error

We follow the preintegration approach first proposed in [22] and extended by Forster [7], and we
choose the quaternion-based derivation for our implementation [10]. This allows us to add IMU
constraints between consecutive IMU states.

For two consecutive IMU states si and si+1, after preintegration, we obtain an IMU preintegration
measurement associated with a covariance matrix Σi,i+1. The IMU error function is
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Eimu(si, si+1) , r(si, si+1)Σ
−1
i,i+1r(si, si+1) (6)

where si , [pw
bi

T , qw
bi

T , vw
bi

T , bT
ai

, bT
gi
]T , pw

b is IMU position, qw
b is IMU orientation, vw

b is IMU velocity,
ba is accelerometer bias, bg is gyroscope bias, and r(si, si+1) is the IMU preintegration residual defined
in [10] (Equation (16)).

3. Methodology

This section details the proposed initialization and optimization for the spatial-temporal
parameters. The system starts with direct visual odometry. During visual odometry, the system stores
keyframe camera poses and corresponding IMU preintegrations, and then keeps initializing the spatial
orientation and temporal offset by minimizing the rotation error between camera relative rotation
and IMU pre-integrated rotation until a convergence threshold is exceeded. After the sensors are
aligned spatially and temporally, the visual-inertial alignment is carried out to recover the scale, gravity
and velocity for visual-inertial state estimation once excited motion is detected. Then, visual-inertial
odometry is performed to optimize the spatial-temporal parameters together with IMU states and
point inverse depths.

3.1. Initialize Monocular Direct VO

The monocular direct visual odometry proposed in [13] has shown high robustness and accuracy
in motion tracking and 3D reconstruction, which inidicated the feasibility of using the poses from
direct visual odometry to align with IMU preintegrations.

However, the initialization in [13] is slow and quite fragile, where map points are initialized
by minimizing the photometric error directly. In fact, without any motion prior or structure prior,
a corrupted map is likely to be created, which will reduce the accuracy and reliability of the following
camera poses. Therefore, inspired by Mur-Artal et al. [23], we initialize visual odometry with a
feature-based approach. We extract and track sparse features from the images. The camera poses
and 3D points are recovered with two-view geometry constraints. Some direct approaches such as
DTAM [24] also initialize with a feature-based approach. We highlight the difference between our
initialization and the others: our initialization is more robust since we verify the translation of camera
before the initialization is completed. Most feature-based initialization algorithms usually end up with
a verification of the reprojection error, which is not reliable enough in our view because, in monocular
visual odometry, the 3D structure is only able to be recovered properly with sufficiently translation.
The steps of our algorithm are as follows:

1. Feature extracting:
Extract sparse features [25] in the first frame, and record the amount N of features.

2. Feature tracking:
Track features using KLT optical flow algorithm [26]. If the features amount Nc < N · TN , reset
the first frame and go to Step 1.

3. Optical flow check:

Measure camera motion by the root mean square optical flow f =
√

1
n ∑n

i=1 ||p− p′||2. If f < Tf ,
go to Step 2.

4. Motion recovery:
Find the fundamental matrix F with feature correspondences and recover camera motion by
decomposing F [27]. Then, triangulate points and check the reprojection error of the features to
decide whether the recovery has succeeded or not. If the recovery fails, try to recover camera
motion from the homography matrix H [27]. If both fail, go to Step 2. Otherwise, we can obtain
the relative pose R, t from the first frame to the current frame, and the depth d of the features.

5. Translation verification:
Warp the bearing vector of features with translation only d′tp

′
n,t = d · I3×3pn + t, where pn is the
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bearing vector of p. Then, verify sufficient translation by checking the root mean square position

offset ft =
√

1
n ∑n

i=1 ||pn − p′n,t||2. If ft < Tft , go to Step 2.
6. Direct bundle adjustment and point activation:

Perform direct bundle adjustment given the initial value of R, t and d, to refine the initial
reconstruction and estimate the relative illumination parameters from the first frame to the
current frame. Then, extract more points on the first frame, and do a discrete search on epipolar
line to activate these candidates for the following visual odometry.

An example of VO initialization on Room 1 [28] is shown in Figure 4. It is obvious that DSO
generated a corrupted map after initialization, while the structure was recovered correctly with our
feature-based initialization algorithm.

(a) (b)

Figure 4. Visual odometry on Room 1. (a) DSO, which initializes VO with a direct approach. Notice the
top left part of the recovered 3D geometry is incorrect. (b) Our method that initializes visual odometry
with a feature-based approach. The 3D reconstruction is more proper.

3.2. Initialization for Spatial-Temporal Parameters

Considering two consecutive frames i and i + 1, we get the camera rotation qv
ci

and qv
ci+1

from

visual odometry, as well as the preintegrated rotation γ̃
bi
bi+1

from IMU preintegration. We can establish
an equation of rotation residual as follows:

ri,i+1 = 2 ·Vec[qb
c
−1 ⊗ γ̂

bi
bi+1
⊗ qb

c ⊗ qci
ci+1

−1
] (7)

where qci
ci+1 = qv

i
−1 ⊗ qv

i+1, γ̂
bi
bi+1
≈ γ̃

bi
bi+1
⊗
[

1
Jγ

bg
δbg

]
, and Vec[q] is the vector part of the quaternion

q. Actually, we can estimate the gyroscope bias bg and the extrinsic rotation qb
c together by solving

a nonlinear least square problem with the rotation residuals constructed from all stored keyframes,
if there is no temporal offset.

However, there may be a temporal misalignment between the IMU preintegrated rotation and the
camera relative rotation. Assume γ̃

bi
bi+1

is calculated from the IMU measurements with timestamps

between timu
si

and timu
si+1

. q
c′i
c′i+1

is the relative rotation of two camera poses with the same timestamps

timu
si

and timu
si+1

. According to the definition of the temporal offset (Equation (3)), to align the camera
poses to the IMU preintegrated rotation, the timestamps of the matched images are tcam

si
= timu

si
+ td

and tcam
si+1

= timu
si+1

+ td. Therefore, the aligned relative camera rotation is

qci
ci+1 = qci

c′i
q

c′i
c′i+1

q
c′i+1
ci+1 (8)
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Assuming the camera rotates in a constant angular velocity between two keyframes, we can get

qci
c′i
≈

 1

− 1
2 ω

c′i−1
c′i
· td

 , q
c′i+1
ci+1 ≈

 1
1
2 ω

c′i+1
c′i+2
· td

, where ω
c′i−1
c′i

, ω
c′i+1
c′i+2

are camera angular velocities that can

be calculated from the stored keyframe poses as follows:

ω
c′i−1
c′i

=
2 ·Vec[q

c′i−1
c′i

]

timu
si
− timu

si−1

, ω
c′i+1
c′i+2

=
2 ·Vec[q

c′i+1
c′i+2

]

timu
si+2
− timu

si+1

(9)

By substituting qci
ci+1 of Equation (8) into Equation (7), we can estimate the extrinsic rotation,

temporal offset and gyroscope bias jointly by minimizing the following error function:

Erot = ∑
i∈Fa

||ri,i+1||γ (10)

where Fa is a set of all stored keyframes. We do not consider initializing the extrinsic translation since
it is usually small and can be simply initialized to 03×1 in practice.

3.3. Visual-Inertial Nonlinear Optimization

After initializing the spatial and temporal parameters, we perform a loosely coupled approach
proposed in [29] to recover the velocity, gravity and metric scale. Then, we can launch a tightly coupled
estimator to optimize all states jointly. For each active keyframe, we define a state vector (the transpose
is ignored for states definition in Equations (11) and (12))

xi = [si, ai, bi, λ1
i , λ2

i , ..., λm
i ] (11)

where si is the IMU state defined in Section 2.5. ai, bi are the illumination parameters, and λk
i is the

inverse depth of the kth point hosted in the ith keyframe.
The full states of optimization are defined as follows:

x = [x1, x2, ..., xn, pb
c , qb

c , td] (12)

We assume the IMU in the system is moving with a constant velocity during a short period of
time. Thus, the IMU pose at any time can be extrapolated with its nearest IMU pose, linear velocity
and angular velocity, which means

pw
b (t) ≈ pw

b (t0) + vw
b (t0) · (t− t0), Rw

b (t) ≈ Rw
b (t0)[I + [ω(t0)]× · (t− t0)] (13)

where ω is the angular velocity of the IMU. With Equation (13), we can calculate the IMU poses at the
time when the images are captured.

pw
b′i
≈ pw

bi
− vw

bi
td, Rw

b′i
≈ Rw

bi
(I− [ωi]×td) (14)

Thus, considering the spatial-temporal parameters, the reprojection formula can be written as

p′(pb
c , qb

c , td) = Π
{

ρjRb
c

T[
Rw

b′j
T(Rw

b′i
(Rb

c ρ−1
i Π−1(p) + tb

c) + pw
b′i
− pw

b′j

)
− tb

c

]}
(15)

where Π(·) is the projection function, which projects a 3D point into the pixel plane. Π−1(·) is the
back projection function, which turns a pixel into a bearing vector using camera intrinsic parameters.
With Equation (15), we can evaluate the photometric error with IMU pose, velocity, point inverse depth
and the spatial-temporal parameters.
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It should be noted that we ignore the visual constraints on IMU velocity to reduce the computation
complexity, and no notable effect on accuracy is observed. All states are optimized by minimizing the
object function

min
x

{
Ephoto + Eimu + Eprior

}
(16)

where Ephoto and Eimu are the IMU error and the photometric error defined in Sections 2.4 and 2.5,
respectively. The prior error Eprior is evaluated from the prior information, and the prior is obtained by
marginalizing past states using the Schur complement [30] with the two-way marginalization strategy
proposed in [31]. To maintain consistency of the estimator and reduce computational complexity, we
apply the “First estimate Jacobians” (FEJ) approach proposed in [32], which means all states constrained
by the prior in the sliding window are linearized at the same point as in previous marginalization.
We solve the nonlinear least square problem with the Levenberg–Marquardt (L-M) method.

3.4. Criteria in Initialization and Optimization

To perform robust initialization and calibration for the spatial-temporal parameters, several
criteria should be met to ensure all procedures perform properly. The initialization should end up with
a convergence criteria satisfied. The online calibration is required to begin with sufficiently excited
motion, otherwise the system matrix will suffer rank-deficiency due to the unobservable states.

(1) Initialization termination criteria

Successful calibration of the spatial-temporal parameters (exclude extrinsic translation) and
gyroscope bias relies on the observability of these states. Under good observability, the null space
of the Jacobian for Equation (7) should be rank one. Therefore, we detect the observability of the
states by checking whether the second smallest singular value of the Jacobian σmin2

J is sufficiently large.

If σmin2
J > Tσ, these states are possible to be identified.

Additionally, we check the average rotation error to make sure the states are estimated correctly.
The average rotation is defined as follows:

Arot =

√
Erot

M
(17)

where M is the number of all stored keyframes used in initialization. The initialization process
terminates if σmin2

J > Tσ and Arot < TA.

(2) Sufficient excitation condition

Before performing the online calibration, we need to check whether the motion is excited enough.
According to the study in [16], under several types of degenerate motion, the spatial-temporal
parameters are not able to be determined completely. Thus, we verify the excitation by checking
whether the variance of the spatial-temporal parameters is sufficiently small. The covariance of full
states is the inverse Hessian matrix of the states.

Cov(x) = H−1 (18)

After the nonlinear estimator is launched, we do not optimize the spatial-temporal parameters
immediately. We set three thresholds for the variance of the extrinsic rotation, translation and temporal
offset, respectively. The specific parameters are only estimated after the corresponding variance is
lower than its threshold. For example, if Var(pb

c) < Tpb
c
, we start to estimate pb

c in the estimator. Before

that, pb
c is fixed by setting the corresponding columns of the Jacobians of the residual vector to zero.
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4. Experimental Results

We verified the performance of our initialization and online calibration with the EuRoC
dataset [33]. The dataset provides stereo images (Aptina MT9V034 global shutter, 20 FPS), synchronized
IMU measurements (ADIS16448, 200 Hz) and ground truth states (Leica MS50 and VICON). We
only used the left camera from stereo images set. To demonstrate the capability of spatial-temporal
estimation, we first set the temporal offset by manually shifting image timestamps with a constant
camera delay and generated time-shifted sequences. Then, we tested the proposed algorithm and
other methods on these sequences with the initial values of {Rb

c , pb
c , td} set to {I3×3, 03×1, 0}. All

experiments were carried out on a laptop computer with Intel CPU i7-3630QM (4 cores @2.40 GHz) and
16 GB RAM. The parameters we mentioned above were set as follows: TN = 0.6, Tf = 100, Tft = 0.025,
TA = 1.2, Tσ = 0.05, Tpb

c
= 10−4, Tqb

c
= 10−3, and Ttd = 10−7. In our experience, these parameters can

be set in a wide range and have no significant impact on the performance. It should also be noted that
we evaluated the orientation error and translation error using the following formulas, respectively:

eorien =
√

e2
yaw + e2

pitch + e2
pitch, etrans =

√
e2

x + e2
y + e2

z (19)

4.1. Spatial-Temporal Initialization Performance

In this test, the sequence V1_02_medium was used to verify the performance of the proposed
initialization. To demonstrate the capability of our approach under different temporal offsets, we set
the camera delays from −100 to 100 ms manually, and tested these time-shifted sequences with our
initialization method. The result is depicted in Figure 5a. It can be seen that the initialization could obtain
accurate extrinsic orientation and temporal offset for a wide range of temporal offsets, achieving a typical
precision of 3 degrees for the orientation and 3 ms for the time offset, which are sufficiently fine to support
the following optimization.
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Figure 5. Spatial-temporal initialization results on V1_02_medium. (a) The orientation and time offset
errors with respect to the different predefined camera delays. All the orientation errors are below three
degrees and all the temporal offset errors are lower than 3 ms, which proves our approach is able to
recover accurate enough orientation and offset under a wide range of temporal offsets. (b) Detailed
illustration of the entire initialization process when the camera delay is set to 100 ms. (Top) The spatial
orientation and time offset estimated. (Bottom) The second smallest singular value and the average
rotation error.

Typical time varied characteristic curves of the spatial-temporal parameters and the convergence
criteria are shown in Figure 5b. It is evident that, over time, σmin2

J became larger due to the accumulated
measurements, which indicates the growing observability of the orientation and offset. Additionally,
the orientation gradually converged and could be determined well even when the offset was quite
inaccurate. On the contrary, the accuracy of the time offset estimate was highly dependent on the
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observability of the system (i.e., whether σmin2
J was sufficiently large). Only when σmin2

J exceeded a
certain threshold, the temporal offset was immediately estimated at high accuracy, and the average
rotation error decreased instantly, which proved the necessity and feasibility of the proposed criteria.

4.2. Overall Performance

We next compared our method against VINS-Mono [10], which is another state-of-the-art
visual-inertial odometry algorithm with online spatial-temporal calibration ability. To test the
performance under different time offsets, we set the camera delay to 0 ms, 50 ms and 100 ms on
11 EuRoC datasets, and launched the programs on these time-biased sequences. The VINS-Mono
was launched without knowing the prior spatial-temporal parameters. The errors of the calibrated
spatial-temporal parameters and the absolute translational RMSE (Root Mean Square Error) of the
keyframe trajectory are shown in Table 1. All of these results are the median over five executions in
each sequence.

Table 1. Spatial-temporal calibration error and keyframe trajectory accuracy.

Sequence Camera Delay
(ms)

Ours VINS-Mono

eorien (◦) etrans(m) eoffset(ms) RMSE (m) eorien (◦) etrans (m) eoffset (ms) RMSE (m)

V11
0 0.583 0.022 −0.15 0.073 0.566 0.020 −1.52 0.096
50 0.588 0.023 −0.21 0.073 0.571 0.016 −1.77 0.084

100 0.577 0.022 −0.15 0.077 0.624 0.010 −3.23 0.067

V12
0 0.563 0.019 −0.09 0.118 0.534 0.046 −0.57 0.091
50 0.559 0.019 −0.10 0.116 0.623 0.018 −0.88 0.070

100 0.569 0.021 −0.10 0.143 0.672 0.018 −1.53 0.064

V13
0 0.507 0.013 −0.33 0.118 0.515 0.017 −0.35 — 1

50 0.508 0.016 −0.33 0.121 0.547 0.010 −0.87 0.407
100 0.513 0.014 −0.39 0.093 — — — —

V21
0 0.491 0.023 −0.33 0.099 0.471 0.024 −1.11 0.065
50 0.457 0.025 −0.29 0.088 0.573 0.021 −0.95 0.053

100 0.513 0.022 −0.36 0.082 0.645 0.019 −2.32 0.034

V22
0 0.553 0.020 −0.09 0.099 0.599 0.014 −0.40 0.090
50 0.558 0.020 −0.09 0.089 0.651 0.013 −0.49 0.144

100 0.558 0.020 −0.09 0.100 0.581 0.009 −0.79 —

V23
0 0.633 0.015 −0.09 0.135 0.640 0.016 −0.38 0.146
50 0.626 0.015 −0.04 0.234 0.658 0.014 −0.55 0.114

100 0.633 0.014 −0.04 0.233 0.609 0.016 −0.74 0.128

MH1
0 0.501 0.018 −0.16 0.080 0.552 0.018 −0.68 0.241
50 0.505 0.015 −0.12 0.119 0.556 0.014 −0.85 0.247

100 0.481 0.015 −0.12 0.111 0.533 0.025 −1.49 0.366

MH2
0 0.621 0.014 −0.29 0.082 0.537 0.010 −0.93 0.292
50 0.624 0.014 −0.34 0.086 0.512 0.008 −1.25 0.277

100 0.634 0.015 −0.21 0.074 0.556 0.014 −1.05 —

MH3
0 0.619 0.022 −0.01 0.161 0.619 0.019 −0.82 0.192
50 0.627 0.024 −0.05 0.133 0.671 0.014 −1.20 0.189

100 0.607 0.020 −0.09 0.173 1.132 0.035 −2.77 —

MH4
0 0.554 0.019 0.11 0.197 0.560 0.022 −1.15 0.372
50 0.521 0.013 0.17 0.178 0.558 0.013 −1.46 0.487

100 0.512 0.018 −0.03 0.143 0.468 0.007 −3.12 0.331

MH5
0 0.605 0.013 −0.09 0.162 0.538 0.020 −1.26 0.309
50 0.509 0.010 −0.20 0.207 0.547 0.017 −1.49 0.299

100 0.552 0.017 −0.17 0.205 0.435 0.088 −2.20 1.141
1 “—” means that the tracking fails at some time, and the result is of huge error.

It can be seen that our method was more robust against large temporal offset, since we determined
the offset in the initialization. The temporal offset estimated with our method achieved sub-millisecond
accuracy, which was much more accurate than the offset estimated from VINS-Mono. It can be
interpreted as having two reasons: (1) we initialized and obtained a accurate temporal offset before
the nonlinear optimization, while VINS-Mono directly estimated the offset during the nonlinear
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optimization linearizing at an inaccurate time offset; and (2) to match visual measurements to IMU
constraints, we extrapolated IMU pose with instant IMU state and measurement for visual point
reprojection, while VINS-Mono extrapolated feature position with average camera motion. The average
camera motion was of lower accuracy than instant IMU state, especially when the system was in high
dynamic environments. Both VINS-Mono and our method could estimate extrinsic orientation and
translation with errors of about 0.6 degrees and 0.02 m, respectively. In terms of the trajectory accuracy,
most of the trajectories estimated by our method were of higher accuracy than those of VINS-Mono,
especially on the MH sequences.

5. Conclusions

In this paper, we perform a direct version of monocular visual-inertial odometry, and propose
a novel initialization and online calibration for the spatial-temporal parameters without any prior
information. Specifically, our approach is able to automatically identify observability and convergence
of the spatial-temporal parameters. We highlight that our approach is a general model, and can be
easily adopted into either direct-based or feature-based VIO frameworks. Experiments demonstrated
that our approach achieves competitive accuracy and robustness compared with the state-of-the-art
approach, especially when the temporal offset is large.

Moreover, our approach can be extended for rolling shutter calibration. Considering most smart
devices (e.g., smartphones and tablets) choose rolling shutter cameras to capture images for the cheaper
price and the potentially higher frame rate and resolution than global shutter cameras, rolling shutter
calibration is essential for the visual-inertial odometry using a smart device. We plan to extend our
approach on rolling shutter cameras next.
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