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Abstract: Spectrum sensing is one of the technologies that is used to solve the current problem
of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current
spectrum sensing methods cannot well-handle a situation in which the prior information of the
licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning
is proposed that uses three kinds of neural networks together, namely convolutional neural networks,
long short-term memory, and fully connected neural networks. Experiments show that the proposed
method has better performance than an energy detector, especially when the signal-to-noise ratio
is low. At the same time, this paper also analyzes the effect of different long short-term memory
layers on detection performance, and explores why the deep-learning-based detector can achieve
better performance.
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1. Introduction

At present, the spectrum resources that can be allocated have been stretched, while the amount
of devices that need to be accessed through the wireless network will increase exponentially with
the popularization of new wireless communication technologies, such as the Internet of Things [1].
On the other side, the utilization of spectrum resources is always at a low level. An effective solution
to improve the utilization efficiency of spectrum resources and increase the access capacity of wireless
networks is to efficiently allocate dynamic spectrum resources, which is the content of intelligent
processing research [2,3]. Intelligent processing is designed to enable the system to automatically sense
and automatically access the currently available spectrum resources, autonomously learn the current
wireless environment, and automatically reconfigure the current system configuration to maximize the
utility of the available spectrum resources [4].

The intelligent processing or system intelligence of the communication network includes three
aspects: (1) sensing ability; (2) automatic adjustment of the working mode; and (3) learning ability.
Perceptual capability is one of the most important features of intelligent wireless networks and enables
the perception of the wireless environment. As a key component of cognitive radio, perceptual
capability allows wireless devices to adapt to the current working environment and maximize the
utilization of current accessible spectrum resources. The perception capability is afforded by spectrum
sensing. In a narrow sense, spectrum sensing determines the spectrum availability [4].

From the open literature, the currently available spectrum sensing techniques can be divided into
three main categories: matched filter detection, feature-based detection, and energy detection [5–19].
A matched filter detector correlates the copy of the licensed user signal with the received signal to
maximize the output Signal-to-Noise Ratio (SNR) of the received signal at decision time [5]. For a
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known signal with additive white Gaussian noise, the signal detection method based on a matched
filter possesses the best detection performance. However, all of the information about the licensed user
signals is required, and this condition is not always satisfied in practical applications [7]. The most
typical signal-feature-based detection method is based on the cyclostationary feature proposed by
Gardner, W.A. et al. [15–18]. Different from background noise, communication signals generally
exhibit cyclostationary correlation characteristics, and different signals will exhibit different cyclic
correlation characteristics. Based on some known signal parameters, the cyclic spectrum characteristics
of signals can be utilized for signal detection. Although the feature-based detection method can
obtain excellent detection performance under certain circumstances, a lack of prior information will
greatly increase the computational complexity and deteriorate the detection performance. The energy
detection method [17] is one of the simplest methods for spectrum sensing. It determines whether
the licensed user signal is present or absent by comparing the energy of the observed signal and a
predefined threshold. This method does not require any prior information about the licensed user
signal, and the computational complexity is low. However, when the SNR is low, the detection
performance is ordinary [3,19].

Since prior information on the signal of interest is not always available, especially for
non-cooperative communication, a spectrum sensing method that does not require prior information
on the signal of interest but possess excellent signal detection performance is desired. The emergence
of deep learning [20,21] provides us with the possibility to overcome this difficulty.

As shown in Figure 1, the steps of typical spectrum sensing methods can be summarized as
follows: Firstly, designing the test statistic according to the characteristic difference between the signal
of interest (i.e., the Rrimary User (PU) signal) and the noise. Secondly, based on the test statistic and
significance level, determining the decision threshold of the presence of the signal of interest. Thirdly,
calculating the value of the test statistic based on the received signal. Finally, comparing the decision
threshold and the value of the test statistic to determine if the PU signal is present. The first two steps
can be considered as the process of designing the spectrum sensing algorithm. The latter two steps
can be considered as the process of detecting the PU’s activity. We note that this is very similar to the
pattern recognition problem. The design process for test statistics corresponds to the feature design
process in pattern recognition, the determination of the decision threshold corresponds to the process
of training a classifier in the pattern recognition, the calculation of the test statistic corresponds to the
feature extraction process in the pattern recognition, and the decision of the PU’s activity corresponds
to the process of classification and identification according to the trained classifier in the pattern
recognition. These two problems can be uniformly described as follows: for the input data, firstly
designing a function transformation y = F(x) according to the input data x; secondly, determining the
classification plane γ according to the y; thirdly, according to the newly arrived data x̃, calculating the
corresponding ỹ; and, finally, making the decision according to ỹ and the classification plane γ.

Sensors 2019, 19, x 2 of 17 

 

[5–19]. A matched filter detector correlates the copy of the licensed user signal with the received 
signal to maximize the output Signal-to-Noise Ratio (SNR) of the received signal at decision time [5]. 
For a known signal with additive white Gaussian noise, the signal detection method based on a 
matched filter possesses the best detection performance. However, all of the information about the 
licensed user signals is required, and this condition is not always satisfied in practical applications 
[7]. The most typical signal-feature-based detection method is based on the cyclostationary feature 
proposed by Gardner W.A. et al. [15–18]. Different from background noise, communication signals 
generally exhibit cyclostationary correlation characteristics, and different signals will exhibit 
different cyclic correlation characteristics. Based on some known signal parameters, the cyclic 
spectrum characteristics of signals can be utilized for signal detection. Although the feature-based 
detection method can obtain excellent detection performance under certain circumstances, a lack of 
prior information will greatly increase the computational complexity and deteriorate the detection 
performance. The energy detection method [17] is one of the simplest methods for spectrum sensing. 
It determines whether the licensed user signal is present or absent by comparing the energy of the 
observed signal and a predefined threshold. This method does not require any prior information 
about the licensed user signal, and the computational complexity is low. However, when the SNR is 
low, the detection performance is ordinary [3,19]. 

Since prior information on the signal of interest is not always available, especially for non-
cooperative communication, a spectrum sensing method that does not require prior information on 
the signal of interest but possess excellent signal detection performance is desired. The emergence of 
deep learning [20,21] provides us with the possibility to overcome this difficulty. 

 
Figure 1. The steps of typical spectrum sensing. 

As shown in Figure 1, the steps of typical spectrum sensing methods can be summarized as 
follows: Firstly, designing the test statistic according to the characteristic difference between the 
signal of interest (i.e., the Rrimary User (PU) signal) and the noise. Secondly, based on the test statistic 
and significance level, determining the decision threshold of the presence of the signal of interest. 
Thirdly, calculating the value of the test statistic based on the received signal. Finally, comparing the 
decision threshold and the value of the test statistic to determine if the PU signal is present. The first 
two steps can be considered as the process of designing the spectrum sensing algorithm. The latter 
two steps can be considered as the process of detecting the PU’s activity. We note that this is very 
similar to the pattern recognition problem. The design process for test statistics corresponds to the 
feature design process in pattern recognition, the determination of the decision threshold 
corresponds to the process of training a classifier in the pattern recognition, the calculation of the test 
statistic corresponds to the feature extraction process in the pattern recognition, and the decision of 
the PU’s activity corresponds to the process of classification and identification according to the 
trained classifier in the pattern recognition. These two problems can be uniformly described as 
follows: for the input data, firstly designing a function transformation ( )Fy x=  according to the 

Figure 1. The steps of typical spectrum sensing.



Sensors 2019, 19, 2270 3 of 17

As an important method in pattern recognition, machine learning methods have been widely used
in the field of spectrum sensing. Reference [22] applies K-Nearest Neighbors (KNN) and Support Vector
Machine (SVM) to spectrum sensing. They found that spectrum sensing methods based on KNN and
SVM are more adaptive to the changing signal environments than traditional methods. Reference [23]
proposed an Artificial Neural Network (ANN) model based on energy detection and cyclic spectrum
feature detection to predict the binary channel state. Under the condition of a low SNR, the proposed
method can still detect the signals well. By representing the channel status at each time slot as a time
series, [24] uses a Multi-layer Feedforward Neural Network (MFNN) model to predict whether the
channel of the next time slot is idle based on the previous N slots. Reference [25] introduces the Hidden
Markov Model (HMM) and proposes a method to efficiently model the relationship between the current
state and multiple past states. Reference [26] constructs a multivariate time series model. Instead of
directly modeling the channel state, the model analyzes the cyclic stationary signal characteristics at
each time slot, and uses the Recurrent Neural Network (RNN) to predict the evolution of the Radio
Frequency (RF) time series data. However, current spectrum learning methods based on machine
learning have mostly been applied to the decision process. Limited by the performance of the test
statistic, the performance improvement of these algorithms is low.

Deep learning is currently one of the most popular research directions in the machine learning
field. Inspired by large-scale ANNs, it is able to adaptively extract more complex and better potential
features from input data. It has achieved great success in many fields, such as computer vision, speech
recognition, and natural language processing. As a method that can perform pattern recognition
tasks well without the need of expert features, deep learning applied to spectrum sensing tasks
will be very promising. However, from the open literature, there is still little research in this area.
Reference [27] proposes a Stacked-Autoencoder-Based Spectrum Sensing Method (SAESS) and a
Stacked-Autoencoder-Based Spectrum Sensing Method with time-frequency domain signals (SAE-TF)
to detect the activity states of PU. They are able to detect the PU’s activity solely based on the received
signals and without any requirement for prior knowledge of the PU’s signals. The method preliminarily
proves the feasibility and effectiveness of the test statistic based on deep learning, but the method is
only for the spectrum sensing task of Orthogonal Frequency Division Multiplexing (OFDM) signals.

For the spectrum sensing problem in non-cooperative communication scenarios, this paper
introduces a deep learning method into the spectrum sensing field to seek to obtain better signal
detection performance even if the SNR is low and prior information on the signal of interest is lacking.
Different from the previous methods, the machine learning method is only applied to the decision
process. This paper applies the deep learning method to the design process of test statistics, seeks
to use the proven excellent feature extraction ability to complete the design of the test statistics (i.e.,
adaptively learning a function transformation y = F(x) based on the input data), and hopes to improve
the performance of blind spectrum sensing from the root.

The spectrum sensing method proposed in this paper is shown in Figure 2. Firstly, the deep neural
network proposed in this paper is trained using the training data and corresponding labels and saving
the optimal deep neural network NNbest. Secondly, a decision threshold T for determining whether
the primary user is present is determined based on the significance level. Thirdly, the new incoming
Intermediate Frequency (IF) data is input into the trained deep neural network NNbest to obtain its
output. Finally, the presence or absence of the primary user is determined based on the output and the
decision threshold T. The deep neural network proposed in this paper for spectrum sensing consists of
three parts: one-dimensional (1D) convolutional neural networks (1D CNNs), long short-term memory
(LSTM), and fully connected neural networks (FCNNs). These three parts constitute the deep neural
network and are sequentially connected. The 1D CNN unit can aggregate local features and reduce the
dimensions of data through convolutional learning and spatial pooling operations. Therefore, a deep
convolutional neural network can extract high-level features and significantly reduce the dimension
of the output by alternately using convolution operations and pooling operations multiple times.
Raw data are directly used as the input of the deep neural networks in this paper, so the timing of the
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high-level features of the deep convolutional neural networks output is not broken. Two benefits can
be reaped when the input of deep LSTMs is the output of deep convolutional neural networks: (1) deep
LSTMs can be used to model the timing patterns of the data; (2) the problem of the high computational
complexity inherent in deep LSTMs can be effectively solved and the deep neural networks can be
trained more easily since the length of the data processed by deep convolutional neural networks is
much lower than that of raw data. The experimental results also show that this deep neural network is
suitable for spectrum sensing tasks.
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The major contributions of this paper can be summarized as follows:
The design of a deep-learning-based signal detection model using 1D CNNs, LSTM, and FCNNs

together. This is an end-to-end signal detection model that does not require any prior information of
the signal to be detected, and it can adapt to the signals of most current modulation types. It is inspired
by the matched filter and HMM, and can directly use the raw signal as the model input without any
hand-crafted feature extraction process.

The model possesses better performance. The experimental results based on the practical
communication signals show that the deep-learning-based signal detector proposed in this paper can
obtain significantly better detection performance than an energy detector under the condition that
prior information on the signal of interest is lacking. Given the condition of an in-band SNR of −9 dB to
approximately −5 dB and a false alarm rate of 0.1, the deep-learning-based signal detector can achieve
a 25~38% performance improvement over the energy detector.

We analyze the effect of different LSTM layers on detection performance. We find that the optimal
signal detection performance can be obtained when the number of LSTM layers is 2.

We explore the mechanism underlying why the deep-learning-based signal detection model can
achieve better performance. We find that the trained deep neural network learned some knowledge
about the signal of interest, and its filter also behaved like a matched filter.

The remainder of this paper is organized as follows. In the second section, we describe the
basis of spectrum sensing theory. The third section describes the system model. The deep neural
network’s structure and the related neural network foundation used in this paper are also introduced.
The experimental results are in the fourth section. The fifth section summarizes the paper.

2. Spectrum Sensing

Perception capability refers to the ability of the system to detect and access parameters that exist
in the wireless environment. It is one of the most important features of an intelligent wireless network
and a prerequisite for the device to adapt to the environment and maximize the use of accessible
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spectrum resources. A system’s perception capability is mainly achieved by spectrum sensing. In a
narrow sense, spectrum sensing refers to determining whether the spectrum is available at a specific
time and location. For a particular frequency band, the goal of spectrum sensing is to decide between
the null hypothesis H0 and the alternative hypothesis H1, where H0 indicates that the licensed user
signal is absent and H1 indicates that the licensed user signal is present. Therefore, spectrum sensing
can be expressed as a binary hypothesis test problem:

y(t) =
{

w(t),
s(t) + w(t),

H0

H1
, (1)

where y(t) indicates the received signal, s(t) indicates the licensed user signal, and w(t) indicates noise
or interference.

In spectrum sensing problems, an unlicensed cognitive radio user (also called a second user) is
able to utilize the spectrum resources when a licensed user (also called a primary user) is not present
or inactive. The performance of spectrum sensing is usually evaluated by the probability of detection
and the probability of false alarms. The detection probability is the probability of deciding H1 when
H1 is true; the probability of false alarm is the probability that the decision is H1 when H0 is true.

3. System Model

In this paper, a deep-learning-based detection model that can be used for spectrum sensing is
proposed, as shown in Figure 3. The model consists of three parts: 1D CNNs, LSTMs, and FCNNs.Sensors 2019, 19, x 6 of 17 
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The 1D CNNs consist of several convolutional units, each consisting of a 1D CNN layer and
a regularization layer (RL). The motivation for using 1D CNNs is to expect them to learn to form
matched-like filters, extract the signal features from the input data, and obtain filter gains to adapt
to the low SNR environment. At the same time, the combination of multiple matched-like filters can
improve the robustness of the system. The use of an RL is to speed up training the model and improve
the generalization capability of the model.

The LSTMs consist of several LSTM layers and an RL. The motivation for introducing LSTMs
is to expect them to establish a more efficient model of the probability distribution of the observed
sequence than the HMM, extract the timing features of the signal, and distinguish the signal and noise
from the timing regularity of the input data. The role of the RL is the same as above.

The FCNNs use a stack of multi-layer neural networks to form a deep neural network, which refines
the output features of the LSTM and attenuates the influence of task-independent features on the
decision results. The last layer is the decision layer (DeL) of the entire network, using a linear
neural network.
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The deep-learning-based signal detection model proposed in this paper directly uses the raw data
as the input for the model, and does not need any prior information about the signal of interest. It is
an end-to-end blind spectrum sensing method. The following introduces the two neural networks
involved in the system model: 1D CNN and LSTM.

3.1. 1D CNN

A 1D CNN can be thought of as a variant of a standard neural network. Unlike standard neural
networks, where the hidden layer is fully connected, a 1D CNN introduces a special network structure
that alternates between the convolution ply and the pooling ply.

3.1.1. Convolution Ply

As shown in Figure 4, each convolutional feature signal Cm(m = 1, 2, . . . , M) is connected to
multiple input feature signals through a local weight matrix Wm (a matrix of L × F), where F is the
length of the convolutional kernel (filter), and determines how many input units each convolutional
feature signal unit connects to. The corresponding mapping operation is the so-called convolution
in the field of signal processing. That is to say, each unit of the convolutional feature signal can be
obtained by the following formula:

cm,k = σ

 L∑
l=1

F∑
f=1

sl, f+k−1wl,m, f + w0,m

, (2)

where σ( ) is the activation function; cm,k is the kth unit of Cm of the mth convolutional feature signal;
sl,k is the kth unit of Sl of the lth input feature signal; wl,m, f is the f th unit of the weight matrix Wl,m,
which connects to the lth feature signal of the input feature signals and maps to the mth feature signal
of the convolutional feature signals. Equation (2) can be written in a more compact convolution form:

Cm = σ

 L∑
l=1

Sl ∗Wl,m

 (m = 1, 2, . . . , M) , (3)

where * is the convolution operator, and Sl is the lth input feature signal.
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of a convolution ply and a pooling ply.

There are two differences between the convolution ply and the standard fully connected hidden
layer. First, each convolution unit only connects to a portion of the input units. This means that each
unit of the convolution layer is a feature extracted by its corresponding partial input units. Second,
the units of the convolution layer can be organized into a feature signal, where all units of the feature
signal share the same weight vector, but only receive input units from different parts.
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3.1.2. Pooling Ply

As shown in Figure 4, the pooling operation occurs after the convolution operation, and a
corresponding pooling ply is formed. The pooling ply is also a feature extraction process, which has
the same number of feature signals as the convolution ply, except that the feature signal has a lower
dimension. The purpose of the pooling operation is to reduce the dimension of the feature signal
and enhance the invariance of the feature to deal with small disturbances. The pooling operation
applies a pooling function to multiple input feature signal units (convolution feature signal units),
wherein the number of input feature signal units of the operation is referred to as the pooling size.
Pooling functions usually have a maximum function and an average function. When the maximum
pooling function is applied, the pooling layer is defined as:

pm,k =
N

max
n=1

(
cm,(k−1)×q+n

)
, (4)

where N is the pooling size; and q is the slide size, which determines the degree of overlap of the
adjacent pool windows. Similarly, when applying the average pooling function, the output of the
pooling layer is:

pm,k = r
N∑

n=1

(
cm,(k−1)×q+n

)
, (5)

where r is the scale factor, which can be obtained through training. In image recognition tasks, N = q
is usually defined, which indicates that there is no overlap and no gaps in adjacent pooling windows.
The reference [28] claims that the performance of maximum pooling is better than that of average
pooling. In the work of this paper, we employ the maximum pooling operation.

3.2. LSTM

Given the input sequence s = (s1, s2, . . . , sT), the hidden layer sequence h = (h1, h2, . . . , hT) and
the network output vector y = (y1, y2, . . . , yT) of the standard RNN are iteratively calculated from
t = 1 to T by the following formula:

ht = H(Wshst + Whhht−1 + bh), (6)

yt = Whyht + by, (7)

where st(t = 1, 2, . . . , T) is an M-dimensional vector; ht(t = 1, 2, . . . , T) is an N-dimensional vector;
yt(t = 1, 2, . . . , T) is a P-dimensional vector; W is a weight matrix (e.g., Wsh is an input hidden layer
weight matrix); b is an bias vector; andH( ) is an activation function, usually calculated as an element.

Usually, LSTMs have better performance than the traditional RNNs. Figure 5 illustrates a simple
LSTM cell. In the LSTM version given in [29], H( ) is implemented by the following combination
function:

it = σ(Wsist + Whiht−1 + Wcict−1 + bi), (8)

ft = σ
(
Ws f st + Wh f ht−1 + Wc f ct−1 + b f

)
, (9)

ct = ftct−1 + ittanh(Wscst + Whcht−1 + bc), (10)

ot = σ(Wsost + Whoht−1 + Wcoct−1 + bo), (11)

ht = ottanh(ct), (12)

where σ is a sigmoid function, i, f , o, c are respectively the input gate, the forgetting gate, the output
gate, and the cell activation vector, and their dimensions are consistent with the hidden layer vector h.
The weight matrix (e.g., Wsi) from the cell to the gate vector is a diagonal matrix.
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Figure 5. An illustration of a long short-term memory (LSTM) cell.

An important reason why deep learning can achieve better performance than traditional ANNs is
that it has a deeper structure than traditional ANNs, and thus can obtain a higher level of representation
of the input data. Deep RNNs can be implemented by stacking hidden layers of multiple RNNs,
and the output sequence of the upper layer forms the input sequence of the next layer. Assuming that
the same hidden layer function is used for all of the stacked hidden layers, the hidden vector sequence
can be iteratively calculated from n = 1 to N and from t = 1 to T by the following formula:

hn
t = H

(
Whn−1hnhn−1

t + Whnhnhn
t−1 + bn

h

)
, (13)

where h0 = s. The output sequence y of the network is calculated by the following formula:

yt = WhN yhN
t + by. (14)

If LSTM is used for the hidden layer, we can obtain a deep LSTM, which is the structure that will
be employed in this paper.

4. Experiments

4.1. Dataset

The dataset for the experiments in this paper is the RF signal sampled from a digital radio.
The experimental data acquisition system is shown in Figure 6. Two wireless digital radios connect to
two computers, respectively, which are used as a transmitting side and a receiving side of the system to
form a wireless communication link. A digital wireless receiver connected to the horn antenna is used
to receive the RF signal from the transmitting side and convert the RF signal into IF 70 MHz. The IF
signal is captured by an oscilloscope with a sampling frequency of 250 Msps.Sensors 2019, 19, x 9 of 17 
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The model of the digital radio is AKDS700 (ANYKEY, Wuhan, China). A typical radio signal is
shown in Figure 7. The model of the receiver is an SSC024 ultrashort wave digital receiver (Changzhou
Radio Factory Co., Ltd., Changzhou, China) with a bandwidth of 20 MHz. The oscilloscope model is
a LeCroy Master 8500A (Teledyne LeCroy, New York, NY, USA). The length of collected data is 1 s.
Since the distance between the horn antenna and the transmitting side is about 15 cm, this channel can
be approximated as an ideal channel, i.e., SNR = ∞.
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Figure 7. A typical radio signal for the experiment.

Before the experiment, the data were preprocessed as follows:

1. The data were randomly split into two parts: the training set (50%) and the test set (50%).
2. Each piece of data was filtered. The filter is a rectangular filter with a center frequency of 70 MHz

and a bandwidth of 10 MHz.
3. Each piece of data was normalized. Each piece of data had its mean value subtracted from it and

was divided by its standard deviation.
4. Noise was generated. First, a white Gaussian noise was generated with the same total length

of the training dataset; secondly, the noise was filtered through the same filter as Step 1. Then,
the noise was normalized according to Step 2. Finally, the normalized noise was divided into
1-s-long data segments.

5. Noise was added to the training dataset. First, the amplitude of the noise was changed, and the
noise amplitude was subjected to a uniform distribution of 0.5–3.5. Then, the noise was added to
the training dataset.

6. The training dataset with noise added to it was normalized; the normalization was consistent
with Step 2.

7. Each piece of training data was divided into several segments with a length of L0. The attributes
(noise or signal) of each segment were marked after segmentation.

8. Each piece of test data was divided into several segments with a length of L0. The attributes
(noise or signal) of each segment’s segmentation were marked.

When the data preprocessing operation had been completed, a training dataset Train0 containing
250,000 pieces of segment data and a test dataset Test0 containing 250,000 pieces of segment data were
obtained, each of which had a length of L0 = 1000. The SNR of the training dataset ranged from −11 dB
to 6 dB.

4.2. Detection Model Evaluation

In this paper, three experiments were designed to evaluate the proposed model: (1) an evaluation
of the detection performance of the deep learning method without prior information on the signal
of interest; (2) an evaluation of the effect of different LSTM layers on the detection performance of
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the deep learning method; and (3) an attempt to explore the mechanism of the excellent detection
performance of the deep learning method.

The steps for training and testing the model are as follows:

1. Construct the deep neural network and set the training hyperparameters.
2. Train the deep neural network based on the training dataset Train0 and saving the current optimal

model NNbest.
3. Obtain the threshold TSNR=s for determining whether a signal of interest exists under the

condition of SNR = s. First, normalize the training dataset and generate noise according to the
data preprocessing Steps 2, 3, and 4 in Section 4.1; second, calculate the noise amplitude according
to the value of SNR = s; third, change the amplitude of the noise and add it to the training dataset;
fourth, normalize the training dataset with added normalized noise; fifth, input the processed
dataset into the trained deep neural network NNbest to obtain the output; sixth, according to the
output of the deep neural network NNbest, obtain the threshold TSNR=s,i for determining whether
the signal of interest exists with a false alarm P f ; and, finally, run the model 100 times to obtain a
threshold TSNR=s for determining whether or not the signal of interest exists under the condition
of SNR = s.

4. Obtain the detection probability Pd,SNR=s under the condition of SNR = s. First, obtain the
test dataset with SNR = s according to Step 3; then, input the test dataset into the trained
deep neural network NNbest to obtain its output; and, finally, obtain the detection probability
Pd,SNR=s under the conditions of SNR = s and false alarm probability P f according to the decision
threshold TSNR=s.

5. Repeating Steps 3 and 4 to obtain the detection probability
{
Pd,SNR=s

}
with the false alarm

probability P f for different SNRs.

All models were constructed, and all training was performed, with the Keras deep learning library
using the tensorflow backend. The hardware configuration was as follows: Nvidia 1080Ti graphical
processing unit (GPU), Inter Core i7-6800K central processing unit (CPU)@3.4GHz × 12.

4.2.1. Performance Evaluation

The deep-learning-based signal detection method can achieve a high detection probability without
prior information on the signal of interest. In order to facilitate an intuitive and a fair comparison of
the detection performance of the proposed method, this paper takes an energy detector as a reference
since it is a typical detection method that does not need prior information on the signal of interest.

For a completely unknown deterministic signal in a Gaussian white noise channel, according to
the generalized likelihood ratio test (GLRT), if there exists

TED =

L0∑
i=1

y2
i > γED, (15)

thenH1 is true for the energy detector, where L0 denotes the length of each test data segment. The value
of L0 is 1000 in this paper. yi indicates the data sample value. WhenH0 is true, there is

TED

σ2 ∼ χn
2, (16)

where σ2 represents the noise power; and χn
2 is the centralized χ2 distribution of degrees of freedom n.

The value of n is L0 in this paper. Therefore, the threshold γED for determining whether the signal of
interest exists can be given by

γED = inv
(
Qχn2

(
P f

))
, (17)

where inv( ) represents the inverse of the function; Qχn2 is the right tail probability of χ2; and P f is the
false alarm probability. The value of P f is 0.1 in this paper.
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The settings of the deep neural network were as follows: five 1D CNN units, two LSTM layers,
two FCNN layers, and one DeL. Each 1D CNN unit consists of four parts, which are a convolutional
layer, a pooling layer, a normalization layer, and a dropout layer. The parameters of each 1D CNN unit
are shown in Table 1. Each pooling layer uses one-dimensional maximum pooling, and pool_size is 2.
The normalization layer uses BatchNormalization. The Dropout layer coefficient is 0.4. The number
of LSTM cells is 128, the recurrent_dropout size is 0.25, the kernel_regularizer uses L2, and the
coefficient is 0.01. The dropout layer was added, followed by the LSTM, and the coefficient is 0.5.
Each FCNN layer consists of three parts, followed by a dense layer, a normalization layer, and a
dropout layer. Each dense layer consists of 128 units, and the activation function is Rectified Linear
Unit (ReLU), the kernel_regularizer uses L1, and the coefficient is 0.001. The normalization layer
uses BatchNormalization. The Dropout layer has a coefficient of 0.5. The DeL uses the dense layer,
the number of units is 1, and the activation function is a sigmoid function.

Table 1. Parameters of 1D CNNs.

CFENs Filters Kernel_Size Padding Activation Kernel_Regularizer

1D CNN unit 1 64 20 same ReLU L2(0.0001)
1D CNN unit 2 128 20 same ReLU L2(0.0001)
1D CNN unit 3 256 10 same ReLU L2(0.0001)
1D CNN unit 4 256 10 same ReLU L2(0.0001)
1D CNN unit 5 512 5 same ReLU L2(0.0001)

The training parameters of the neural network were as follows: the loss function uses binary
cross entropy, the optimizer uses Adaptive moment estimation (Adam), the learning rate is 3e − 4,
the decay rate is 1e − 8, the batch_size is 64, and the number of epochs is 250. An early-stop strategy
was employed.

Figure 8 shows the curves of the detection probability Pd of the deep-learning-based signal
detection method and the energy detection method over a wide range of SNRs with the false
alarm probability P f = 0.1, where ED indicates the energy detection method, and DL indicates
the deep-learning-based signal detection method. It can be seen from Figure 8 that the detection
performance of the deep-learning-based signal detection method is significantly better than that
of the energy detection method regardless of the SNR values. When the in-band SNR is −9 dB to
approximately −5 dB, the proposed model can achieve a 25~38% performance improvement over the
energy detection method, and this performance improvement does not require the introduction of any
prior information on the signal of interest.Sensors 2019, 19, x 12 of 17 

 

 

Figure 8. The performance of the deep-learning-based signal detector with a varying signal-to-noise 

ratio (SNR). 

For a more comprehensive comparison, Figure 9 shows receiver operating characteristics (ROCs) 

of the deep-learning-based detection method and the energy detection method with an SNR of −3 dB, 

−6 dB, −9 dB, and −12 dB. It can be seen from Figure 9 that the deep-learning-based detection method 

has obvious performance advantages compared with the energy detection method under the 

condition of no prior information on the signal of interest. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. The performance of the deep-learning-based signal detector with a varying signal-to-noise
ratio (SNR).



Sensors 2019, 19, 2270 12 of 17

For a more comprehensive comparison, Figure 9 shows receiver operating characteristics (ROCs)
of the deep-learning-based detection method and the energy detection method with an SNR of −3 dB,
−6 dB, −9 dB, and −12 dB. It can be seen from Figure 9 that the deep-learning-based detection method
has obvious performance advantages compared with the energy detection method under the condition
of no prior information on the signal of interest.
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4.2.2. Effect of Different LSTM Layers

The most obvious difference between an electromagnetic signal and an electromagnetic image is
that an electromagnetic signal is one-dimensional data and has a strong temporal correlation. Therefore,
the HMM plays a very important role in the field of electromagnetic signal processing. Inspired by
this, this paper adds LSTM layers when designing the deep neural networks in order to make the deep
neural network have the ability to model the timing law of an electromagnetic signal. This experiment
was designed to evaluate the effect of different LSTM layers on the detection performance of the deep
learning method.

Table 2 lists the Pd of the deep neural network with different LSTM layers at the level of P f = 0.1
as a function of SNR. The subscript n of LSTMn indicates the number of LSTM layers owned by the
deep neural network, and the subscript n = 0 indicates that the deep neural network does not use
any LSTM layers. The bold number indicates the maximum Pd under this SNR. As can be seen from
Table 2, deep neural networks using LSTM layer(s) can provide some improvement in detection over
deep neural networks that do not use LSTM layer(s). Taken together, the detection performance is
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optimal when n= 2, which can bring about a performance improvement of up to 2% (SNR = −10 dB)
compared with n = 0. Reference [30] proposed a modulation recognition method solely based on LSTM.
The experimental results show that the deep-learning-based method is superior to other standard
techniques when the input is raw data. At the same time, consistent with the experimental conclusions
of this paper, the best results can be obtained when the number of LSTM layers is 2. We believe that,
as mentioned before, this is because a deeper network structure can describe the input signal better.
On the other hand, the LSTM with more layers increases the number of parameters that need to be
trained, and this makes the training of the model more difficult. The result of this experiment indicates
that the LSTMs play a role similar to HMM to a certain extent, and realize the modeling of the temporal
correlation of the signals.

Table 2. Performance of different LSTM layers with a varying SNR.

−12 dB −11 dB −10 dB −9 dB −8 dB −7 dB −6 dB −5 dB −4 dB −3 dB

LSTM0 0.2941 0.3534 0.4271 0.5297 0.6367 0.7521 0.8509 0.9292 0.9721 0.9929
LSTM1 0.2965 0.3527 0.4497 0.5315 0.6367 0.7487 0.8571 0.9324 0.9737 0.9932
LSTM2 0.3045 0.3496 0.4532 0.5448 0.6432 0.7597 0.8661 0.9373 0.9789 0.9946
LSTM3 0.3080 0.3652 0.4364 0.5395 0.6490 0.7497 0.8539 0.9332 0.9759 0.9924

4.2.3. Mechanism Exploration

It is important to explore what each layer of the deep neural network has learned for future work.
We have drawn the time and frequency domain magnitude representations of some typical filters, as
shown in Figure 10. The frequency response of the filter is the 128-point Fast Fourier Transform (FFT)
after zero-padding. The time domain representation of the filter does not show a special meaning, but
its frequency response shows strong frequency selectivity. The regularity of the frequency magnitude
domain of the filter indicates that the trained deep neural network has learned some knowledge about
the signal of interest to some extent. It is important to note that the filters shown in Figure 10 are
selected and not all filters can be familiar to an expert.

Another way to visualize these filters is as follows: apply random data as their input, and then
perform a gradient descent for the output of a particular filter to find the input data that can most
activate the particular convolutional neuron [31]. This can be achieved by the method shown in
Equation (18).

max‖ f (x)‖2 s.t. ‖x‖2 = 1 , (18)

where ‖ ‖2 indicates the l2-norm; and f ( ) represents the output of a particular filter. Since the
output of the first layer of the neural network has the greatest influence on the subsequent neural
network layers and has a high correlation with the input of the neural network, we selected the
first layer filter of the neural network for experiment. Figure 11 shows the results of the time
domain and the corresponding frequency domain magnitude of the selected four filters, where the
frequency response is the 5120 point FFT after zero padding. It can be found that the results of
Figures 11a and 11d are very similar to the signal parts of the input data, i.e., the signal activates the
filter the most. The results of Figures 11b and 11c also show that the corresponding filter has strong
frequency selectivity. This experiment once again shows that the trained deep neural network has
learned some knowledge about the signal, and when the signal of interest appears, it can obtain a
larger activation output, which is very similar to the mechanism of the matched filter. Therefore,
this experimental result also undoubtedly reflects the reason why the deep-learning-based detection
method can obtain better detection performance.
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5. Conclusion

In summary, this paper proposed a spectrum sensing method based on deep learning. Firstly,
inspired by the matched filter and HMM, we used a combination of 1D CNN, LSTM, and FCNN to
establish a deep-learning-based signal detection model, which is an end-to-end signal detection model
that does not need any prior information on the signal to be detected. Next, the experimental results
showed that the proposed spectrum sensing method based on deep learning had obvious performance
advantages when a priori information on the signal to be detected was lacking. Given the condition of
an in-band SNR of −9 dB to approximately −5 dB and a false alarm rate of 0.1, the proposed method
can obtain a 25~38% performance improvement compared with the energy detector method. Then,
we analyzed the effect of different LSTM layers on the detection performance, and found that the
signal detection model proposed in this paper obtained the optimal signal detection performance
when the number of LSTM layers was 2. Finally, we explored the mechanism by which deep learning
methods can achieve better performance. We found that the trained deep neural network learned some
knowledge about the signal, and its filters also behaved like a matched filter.

This paper, as an exploration of the use of deep learning to achieve spectrum sensing, hopes
to provide other researchers with a new approach to spectrum sensing. Future work will focus on
obtaining better detection performance with less computing resources.
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