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Abstract: This paper presents the design of aperiodic concentric ring arrays for ultra-wide bandwidths
(UW-ACRA). This design of ultra-wideband arrays considers the synthesis of concentric rings in two
cases: 1) non-uniform spacing between rings with non-uniform spacing between antenna elements of
the same ring (UW-ACRAelements); and 2) non-uniform spacing between rings assuming that spacing
between antenna elements of the same ring to be equal (UW-ACRArings). This is in order to eliminate
the occurrence of grating lobes and generating array structures with useful ultra-wideband properties.
The synthesis process is carried out by the well-known method of differential evolution (DE). Wireless
sensor networks can take advantage of these properties to achieve less data traffic, efficient delivery
of information and better energy efficiency.
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1. Introduction

There is a great interest for designing antenna arrays in wireless sensor networks [1]. This is
because wireless sensor networks can take advantage of the properties of antenna arrays that facilitate
less data traffic, efficient delivery of information and better energy efficiency [1]. Non-uniform or
aperiodic [2,3] antenna arrays provide several advantages with respect to traditional periodic arrays.
They present low side lobe level (SLL) (no grating lobes) over arbitrarily large bandwidths [4], require
significantly fewer elements to generate a desired beam shaped [4], and have the ability to achieve a
low SLL without requiring any amplitude tapering [5]. Approaches to achieve low relative SLL with
periodic arrays often require significant amplitude tapering and are therefore rather inefficient.

The work of Werner et al. highlights in the previous work of wideband aperiodic antenna
arrays [2,3,6–8]. Werner et al. have analyzed different geometries and array configurations with
different optimization techniques, such as polyfractal arrays [3,6], antenna arrays based on power
series representations [7], planar antenna arrays based on aperiodic tilings [8], planar array layouts
exploiting rotational symmetry [2] and aperiodic antenna arrays with an evolutionary strategy [4],
among others. These previous papers have illustrated that the design of planar aperiodic antenna
arrays can yield very useful ultra-wideband properties.

Although there are several works on the cutting edge of aperiodic circular [9], concentric
rings [10,11], or planar arrays [2–4], a performance evaluation dealing with non-uniform concentric
rings arrays is lacking for ultra-wide bandwidths. Therefore, the aim of this paper is to illustrate
the design of non-uniform antenna arrays using the geometry of concentric rings for ultra-wideband
performance. As the inter-element spacing increases beyond the limit of a wavelength at the operating
frequency, the radiation performance deteriorates due to the arising of grating lobes [12]. However,
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when each radiating element is arranged within a concentric circular lattice, the appearance of grating
lobes can be mitigated and controlled. By exploiting this intrinsic property of the concentric ring array
layout, an optimization procedure can be employed to synthesize several planar arrays with controlled
SLL over a wide frequency range. The frequency range is specified using the fractional bandwidth
(FBW) defined previously in the literature [13]. The array bandwidth is determined by the minimum
element spacing. Element spacing is typically constrained to 0.5λ at the lowest operating frequency of
the array to avoid overlapping elements and undesirably large mutual coupling [2–4]. For arrays able
to operate effectively with no grating lobes and low side lobes at a minimum element spacing of bλ
(where b ≥ 0.5), the resulting frequency bandwidth is then 2b:1 [2–4].

This design of ultra-wideband arrays considers the synthesis of concentric rings in two cases:
(1) aperiodic array with non-uniform spacing between rings and between antenna elements of the
same ring (UW-ACRAelements case); and (2) aperiodic array with non-uniform spacing between rings
assuming that spacing between antenna elements of the same ring to be equal (UW-ACRArings case).

The innovative contribution of this paper is the application of an evolutionary optimization
algorithm to design non-uniform concentric rings arrays with desirable radiation characteristics for
wideband performance. This wideband performance is determined by the effect of varying the
minimum element spacing for different configurations of aperiodic concentric ring arrays.

The synthesis aims to eliminate the occurrence of grating lobes and generating array structures
with useful ultra-wideband properties. The synthesis process is carried out by the method of differential
evolution (DE) [14].

The remainder of the paper is organized as follows. Section 2 states the design problem and
describes the optimization procedure employed. Section 3 presents and discusses the simulation
results. Finally, the summary and conclusions of this work are presented in Section 4.

2. Problem Statement

2.1. Array Factor Model

Among the possible planar array configurations, the concentric ring array exhibits the interesting
properties of a nearly invariant pattern for a full azimuthal coverage and main beam symmetry [12].
The array factor for this geometry can be determined using the array factor expression for a planar
antenna array. The concentric ring array consists of Nr rings and Ne antenna elements in each ring on
the x-y plane, as shown in Figure 1. The array factor of this geometry can be determined using the next
expression [15]:

AF(θ,φ) =
∑Nr

n=1

∑Ne

m=1
exp[ jk(xnm(u) + ynm(v))], (1)

where u = sinθcosφ, v = sinθsinφ, k = 2π/λ is the phase constant with λ representing the operating
wavelength, θ is the angle of a plane wave in the elevation plane and φ is the angle of a plane wave in
the azimuth plane. In this case, the position of each antenna element is defined by (xnm = rncosϕnm,
ynm = rnsinϕnm), where rn represents the radial distance of each ring from the common center of the
array until the nth ring. The antenna element distribution for the case of (UW-ACRArings) is given in
each circular ring by ϕnm = 2π(m − 1)/Ne. This design case of concentric ring array does not consider a
central element in the origin.
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Figure 1. Non-uniform concentric ring array.

The array factor as a function of the non-uniform inter-element spacing in each ring and the
different radius of each ring, that is, the UW-ACRAelements case [11,16–18], can be determined using the
next expression:

AF(θ,φ, d, r) =
∑Nr

n=1

∑Ne

m=1
exp[ jkrn(u cosϕnm + v sinϕnm)], (2)

where d = [d1,1, d1,2, . . . , d1,N1; d2,1, d2,2, . . . , d2,N2; . . . ; dNr,1, dNr,2, . . . , dNr,Ne] dnm represents the arc
longitude from element m to element m + 1 on the nth ring of the array. The radii of the antenna array
are grouped in r = [r1, r2, . . . , rn, . . . , rNr]. Equation (2) is a function of the product of the radius and
the phase constant, i.e., krn = 2πrn/λ. This gives the perimeter of each ring (in terms of λ) which can be
calculated as the sum of all arc longitudes or separations between antenna elements, so, krn = 2πrn/λ
=

∑e
m=1 dm(λ), ∀n ∈ Nr. The notation in dm (λ) denotes that the separations between antenna elements

are in terms of wavelength.
The frequency range is specified by using the fractional bandwidth (FBW) defined as [13]:

FBW =
fU − fL

fM
(3)

where fM, fU and fL are respectively the center, the upper and the lower frequency. According to (3),
arrays are considered wideband when 0.2 < FBW < 0.5 and ultrawideband when FBW > 0.5 [13].

This design problem of an ultra-wideband antenna array consists of minimizing the peak sidelobe
level (PSLL) of the array factor AF(θ,φ,d,r) [2]:

PSLL = max(AF(θ,φ, d, r) <Mainbeam) (4)

while enforcing a minimum element spacing (dmin), i.e., with respect to a minimum element spacing
generated (dgenerated) by the concentric ring structure

dmin ≥ dgenerated (5)

which determines the bandwidth of the concentric ring array. Element spacing is typically constrained
to 0.5λ at the lowest operating frequency of the array to avoid overlapping elements and undesirably
large mutual coupling [2]. For arrays able to operate effectively with no grating lobes and low side lobes
at a minimum element spacing of bλ (where b ≥ 0.5), the resulting frequency bandwidth is then 2b:1 [2].
Therefore, the design problem can be set as the minimization of the next objective function (OF):

OF = PSLL + abs
(
dmin − dgenerated

)
(6)

2.2. Optimization Procedure

The optimization procedure is carried out by Differential Evolution due to its effectiveness
solving antenna array designs [19–23]. The flowchart for the DE optimization procedure is shown in
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Figure 2 [24]. The initial population is randomly generated. Each member (or potential solution) of the
population is represented by xi,G for i = 1, 2, 3, . . . , PopSize. Then, for each generated vector xi,G,
a mutation vector (vi,G+1) is calculated in according to [14]:

vi,G+1 = xr1,G + F·(xr2,G − xr3,G) (7)

The indexes r1, r2, r3 ∈
{
1, 2, . . . , PopSize

}
are different among them (r1 , r2 , r3) and also different

from index i. PopSize is the size of the population. F is a real parameter ∈ [0, 2], which controls the
amplification on the differential variation (xr2,G − xr3,G).
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Once the stage of mutation is finished, the mutation vector undergoes for crossover operation.
The trial vector ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1) is performed in according to [13]:

u ji,G+1 =

{
v ji,G+1 i f (randb( j) ≤ CR)or j = rnbr(i)
x ji,G i f (randb( j) > CR)and j , rnbr(i)

(8)

In (8), j = 1, 2, . . . , D, randb( j) is a random number ∈ [0, 1], CR ∈ [0, 1] is the crossover ratio, rnbr(i) is
randomly chosen index ∈ 1, 2, . . . , D (D is the dimension of the problem) which ensures that ui,G+1

gets at least one parameter from vi,G+1.
Each solution vector is codified by the values of spacing between rings and the values of spacing

between the elements on the nth ring. The fitness evaluation for the array factor of each solution vector
must follow the considerations given for Equation (6).

To decide whether the trial vector ui,G+1 should be selected for the next generation or not,
is compared to the target vector xi,G by greedy criterion. If the trial vector ui,G+1 has got smaller fitness
value than xi,G, then xi,G+1 is set to ui,G+1; otherwise, the old value of xi,G is retained. This procedure is
repeated over and over until the algorithm reaches the maximum number of generations G. Detailed
information of the DE optimization procedure can be found in [14].
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3. Simulation Results

The method of DE was implemented in Matlab following the methodology described in [12].
Four array configurations are considered for both design cases: 1) NT = 90 antenna elements distributed
in Nr = 5 rings, 2) NT = 126 with Nr = 6, 3) NT = 168 with Nr = 7 and 4) NT = 216 with Nr = 8, for N1 = 6,
N2 = 12, N3 = 18, N4 = 24, N5 = 30, N6 = 36, N7 = 42 and N8 = 48. The ultra-wideband characteristics
of these aperiodic concentric ring antenna arrays have been analyzed, focusing on PSLL performance
at minimum element spacing ranging from 0.5λ to 10λ. This minimum spacing range corresponds to
operating frequencies of f 0 to 20f 0, with f 0 designated as the lowest operating frequency of the array.

Figures 3 and 4 illustrate the PSLL performance of the non-uniform concentric ring arrays
optimized by DE for the case of UW-ACRAelements and UW-ACRArings, respectively. The optimization
of both geometries provides low values of PSLL for the element spacing corresponding to frequencies
of f 0 to 20f 0. The behavior of the periodic concentric ring array is determined using NT = 216 antenna
elements with Nr = 8 rings. Both aperiodic geometries present a better PSLL performance with respect
to the periodic case. The lowest values of PSLL (in each design case) are found for dmin = 0.5λ with
lower values for UW-ACRArings (ranging from−24.95 dB to−27.82 dB) with respect to UW-ACRAelements
(from −18.84 dB to −21.30 dB). If the minimum spacing is increased (operating frequencies greater
than 3f 0) the PSLL performance deteriorates for periodic case, and the case of UW-ACRAelements
presents better PSLL values with respect to UW-ACRArings, as shown in Figure 5. The minimum and
maximum values of PSLL found by the case of UW-ACRAelements and UW-ACRArings are PSLLmax =

−10.96 dB, PSLLmin = −15.92, and PSLLmax = −9.55 dB and PSLLmin = −15.01, respectively, for the
element spacing corresponding to operating frequencies greater than 3f 0. Furthermore, the case of
UW-ACRAelements covers totally the UW-ACRArings for frequency values greater than 5f 0 reaching
the maximum difference in dmin = 5.25λ for NT = 90 and Nr = 5 and 6.2λ for NT = 216 and Nr = 8.
The resolution of minimum spacing in the performance evaluation of Figures 3–5 is approximately
one wavelength. The response in the performance of the concentric ring array could be improved by
increasing the resolution of the minimum spacing in the optimization procedure. This would require
more intensive simulations and computational cost. However, the response illustrated in these Figures
provide enough information to make a fair comparison among the design cases.
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Figure 5. Comparison of the PSLL performance between the case of UW-ACRAelements and the case
UW-ACRArings.

The geometry of the non-uniform concentric rings array for the design case UW-ACRArings of
NT = 216 with Nr = 8 rings at a frequency f = f 0 (minimum element spacing of 0.5λ) is shown in
Figure 6. The array factor and a cut of the array factor at φ = 0◦ for this antenna array configuration is
demonstrated in Figure 7.
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Figure 6. Antenna array configuration of the design case UW-ACRArings of NT = 216 antenna elements
with Nr = 8 rings at a frequency f = f 0, corresponding to a minimum element spacing of 0.5λ.
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Furthermore, the antenna array configuration of the design case UW-ACRAelements of NT = 90
antenna elements with Nr = 5 rings at a frequency f = 10.5f 0 (corresponding to a minimum element
spacing of 5.25λ) is shown in Figure 8. The array factor and a cut of the array factor at φ = 0◦ for this
antenna array configuration is demonstrated in Figure 9.
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Figure 8. Antenna array configuration of the design case of UW-ACRAelements of NT = 90 antenna
elements with Nr = 5 rings at a frequency f = 10.5f 0, corresponding to a minimum element spacing
of 5.25λ.
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Table 1 illustrates a performance summary of the design cases UW-ACRAelements and
UW-ACRArings, and a comparative analysis in PSLL performance at a frequency f = f 0 (dmin =

0.5λ) and f = 20f 0 (dmin = 10λ) with respect to previous works in the literature. As shown in Table 1,
the design case UW-ACRArings outperforms all design cases when a dmin = 0.5λ is set in the array
configuration. For high bandwidth ratios the design cases UW-ACRArings and UW-ACRAelements yield
a good design trade-off between the number of elements and the PSLL performance. In this case,
UW-ACRAelements presents the best compromise between the number of antenna elements and PSLL
performance for a dmin = 10λ.

Table 1. Performance summary of the design cases UW-ACRAelements and UW-ACRArings and a
comparison with respect to previous works.

Array Configuration Number of Elements PSLL (dB) dmin = 0.5λ PSLL (dB) dmin = 10λ

Planar array (rotational
symmetry) [2] 220 −16.91 −12.05

Planar array (rotational
symmetry) [2] 600 −19.2 −16.50

Aperiodic tiling–Penrose
optimized [8] 551 −16.49 −6.50

Aperiodic tiling–Danzer
optimized [8] 811 −16.01 −10.73

UW-ACRArings 90 −24.95 −10.21

UW-ACRArings 126 −25.87 −11.16

UW-ACRArings 168 −26.59 −12.24

UW-ACRArings 216 −27.82 −13.22

UW-ACRAelements 90 −18.84 −11.20

UW-ACRAelements 126 −19.91 −12.83

UW-ACRAelements 168 −20.35 −13.76

UW-ACRAelements 216 −21.30 −14.66

Periodic Concentric Ring 216 −17.37 −6.30

This paper only considers two design objectives: SLL and minimum element spacing (bandwidth).
This is because the non-uniform arrays may offer a wider range of frequencies but suffer from a limited
ability to predictably control the worst case of peak SLL. More design objectives could be considered in
the cost function. In that case multi-objective optimization algorithms could be more efficient to search
for a Pareto approximation among all the objectives, but that could be the subject of another research
manuscript. Furthermore, the results obtained could be integrated with the results of this paper.

4. Conclusions

The simulation results demonstrated that for the antenna array configurations of aperiodic
concentric rings, the method of DE found the element spacing to provide low PSLL over an extended
bandwidth for the element spacing corresponding to frequencies of f 0 to 20f 0. Both aperiodic geometries
present a better PSLL performance with respect to the periodic case. The lowest values of PSLL (in
each design case) are found for dmin = 0.5λ with lower values for UW-ACRArings with respect to
UW-ACRAelements.

For high bandwidth ratios, the design cases UW-ACRArings and UW-ACRAelements yield a good
design trade-off between the number of elements and the PSLL performance. However, the design
case UW-ACRAelements presents the best compromise between the number of antenna elements and
PSLL performance for frequency values greater than 5f 0.
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Future studies could investigate the application of multi-objective optimization algorithms to
search for a Pareto approximation among all the design objectives. Furthermore, the application of
these multi-objective optimization techniques could be extended to other antenna array geometries.
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