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Abstract: This study presents a device for tracking, locating and communicating underwater 
vehicles as they work near the seabed. The system includes a base station placed on the seabed and 
a reflective module mounted on a hybrid underwater profiler (HUP). The base station localizes and 
communicates with the HUP working near the seabed based on laser reflections of corner cube 
retroreflectors. A tracking method based on the particle filter algorithm is then presented. 
Localization is performed using the least-squares method with refraction compensation. Lost 
tracking links are retrieved via a recovering approach based on the interpolation method. Finally, a 
communication method using a modulating retroreflector installed on the reflection module is 
proposed. The proposed tracking, localization, and communication approach provides higher 
localization accuracy with lower power consumption at low cost compared with the commonly used 
acoustic methods. The effectiveness of the proposed approach was clarified via tracking, 
localization, and communication experiments. 

Keywords: laser reflection; corner cube retroreflector; tracking; localization; communication; 
modulating retroreflector 

 

1. Introduction 

With the expansion of ocean exploration, an increasing number of underwater vehicles are being 
deployed in marine scientific research and resource prospecting. Such vehicles include autonomous 
underwater vehicles (AUVs), remotely operated underwater vehicles (ROVs), underwater gliders, 
and profilers [1–4]. Localization and communication ability are among the most important 
requirements of underwater vehicles. Localization provides accurate position information for 
navigation and accurate spatial information for oceanographic data [5,6], whereas communication 
ensures that underwater vehicles can transmit the collected data while receiving command 
information [7,8]. However, the localization and communication of underwater vehicles remain 
imperfect, particularly in close-range and near-seabed situations. 

Because electromagnetic waves are attenuated rapidly in seawater, typical device to device 
communication and localization methods used on land cannot be directly applied to underwater 
equipment [9]. Therefore, most underwater vehicles realize localization and communication using 
the acoustic method [10–12]. Although sound waves can propagate underwater over long distances 
with little attenuation [13], acoustic approaches are disadvantaged by large power consumption, 
small communication bandwidth, and expensive equipment. Moreover, when the vehicle is operated 
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near a seabed, the localization performance of the acoustic method is degraded by boundary 
reflections [14]. In contrast, optical methods offer high localization resolution and bandwidth, low 
energy consumption, and low price [15]. Consequently, they have been widely deployed in 
underwater close-range localization and communication in recent years [5,16]. Eren et al. [17] 
presented an optical detector array system that detects the precise pose of an unmanned underwater 
vehicle during its navigation. Bosch et al. [18,19] developed a method that tracks and localizes AUVs 
during close-range navigation. Their method relies on computer vision, active light markers, and an 
omnidirectional camera for fast and accurate pose estimation of the vehicle. Rust and Asada 
presented a dual-use visible light system that communicates with and localizes ROVs using 
modulated light signals [20]. However, these methods require light sources or several photosensitive 
sensors mounted on the underwater vehicle, which not only increase the energy consumption of the 
underwater submersible but also reduce the concealment and increase the cost. 

This study was motivated by the use of hybrid underwater profilers (HUPs) in long-term 
persistent monitoring over a designated area [21,22]. The profilers need to transmit the collected 
oceanographic data to the shore base through a seafloor observatory network node and obtain 
accurate position information through that node. For long-term operation during missions (usually 
more than three months), the profiler must also minimize its energy use. In this study, a base station 
that connects to the seafloor observatory network and a retroreflector module that mounts on the 
profiler are designed, which are small-sized and cost efficient. Based on these designs, a laser-
reflection approach is proposed for tracking, locating, and communicating with the underwater 
profiler. Underwater vehicles that use the proposed approach consume much less power and have a 
higher precision during localization than those that use conventional optical and acoustic methods. 

The workflow of this study about underwater profiler’s localization and communication is 
shown in Figure 1. The profiler first descends from the sea surface and collects oceanographic data. 
When it moves to near the seabed, it is tracked and located by the base station by means of laser 
reflection. The base station then sends the measured location and the task information to the profiler 
via optical communication, while the profiler sends the collected data to the base station and finally 
through the seafloor observatory network to the shore base. 

 

Figure 1. Illustration of the underwater vehicle localization and communication scheme based on 
laser reflection. 

The remainder of this paper is organized as follows: Section 2 describes the main components of 
the system and their corresponding coordinate systems. Section 3 presents the approaches for 
tracking, locating, recovering, and communicating with the profiler. Section 4 verifies the 
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performance of the proposed approach in a series of experiments. Section 5 concludes the paper and 
suggests relevant future research. 

2. System Description 

A system that tracks, localizes, and communicates with the profiler comprises two main parts: a 
base station connected to the sea-network nodes, and a retroreflector module mounted on the 
profiler. The base station is equipped with a laser source and a charge-coupled device (CCD) camera, 
which detects the status of the tracking link and obtains the profiler’s position. The retroreflector 
module mounted on the profiler reflects the interrogating laser beam from the base station while 
communicating bi-directionally with the base station. 

2.1. Base Station 

As shown in Figure 2, the base station consists of three main parts: a laser source, a 
galvanometric scanning system, and a CCD camera. All components are encased in a watertight 
housing. The laser source outputs a laser beam with a wavelength of 532 nm, which is less attenuated 
in water than other wavelengths [23]. The laser light intensity is increased by a collimating lens placed 
in front of the laser source, which narrows the spread angle of the laser beam. The front of the 
collimating lens is a total reflecting prism that reflects the laser light into the galvanometric scanning 
system. The galvanometric scanning system comprises two rotatable mirrors driven by high-speed 
motors, which control the output direction (pitch and yaw) of the laser beam. The CCD camera 
receives and senses the laser reflected by the retroreflector module on the profiler. 

Figure 2 also shows the coordinate system of the base station. The coordinate origin baseO  is set 
at the laser’s exit-point from the galvanometric scanning system. The x-axis basex  coincides with the 
forward direction of the base station, while the y-axis basey  points toward the left of the base station. 
The direction of the z-axis basez  (upwards) is then determined via the right-hand rule. The emission 

angle of the laser from the base station inq inq inq= ( , )θψΘ  comprises a yaw angle inqψ  and a pitch 
angle inqθ . The positive directions of inqψ  and inqθ  are defined as the clockwise direction along the 

basez  and basey  axes, respectively. Both angles are zero when the laser beam points toward basex . 

 

Figure 2. Major components and coordinate system of the base station. 

2.2. Retroreflector Module 

The retroreflector module is a detachable system mounted on the underwater profiler. The 
retroreflector module has three main functions: reflecting the laser interrogation beam, receiving the 
optical communication signal, and modulating the optical communication signal sent to the base 
station. Figure 3 shows the components of the retroreflector module—a corner cube retroreflector (CCR) 
array, a modulating retroreflector (MRR), and a photosensitive receiver—as well as the coordinate 
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system of the retroreflector module on the underwater profiler. The origin of this system is the 
buoyancy center of the profiler bO . The axes bz  (longitudinal axis), by and bx  point to the head of 
the profiler, the right wing, and in the direction determined via the right-hand rule, respectively. The 
position and attitude states of the profiler are represented by prf prf prf( , )= ΘX P . The attitude angle of 
the profiler is defined as prf prf prf( , )ψ θΘ = , where prfψ  and prfθ  are the yaw and pitch angles of the 
profiler, respectively. The positive directions of prfψ  and prfθ are the clockwise directions along the bx  
and by axes, respectively. prf prf,x prf,y prf,z( , , )P P P=P  is the position of the profiler in the base-station 
coordinate system. 

 

Figure 3. Major components and coordinate system of the retroreflector module mounted on the 
underwater profiler. 

The CCR is a passive object that ideally reflects the light to its source with minimal scattering 
and a 180° reflection angle (Figure 4). To enable tracking of the profiler in all directions, each CCR is 
omnidirectionally distributed around the bz  axis. Tracking and localization is enabled by the 
retroreflector array with three CCRs that reflect the laser ray from the base station. The positions of 
CCRs 1#, 2#, and 3# in the profiler coordinate system are pr,1 = (0, 0, Lr,1), pr,2 = (0, 0, Lr,2), and

r,3 r,3(0, 0, )L=p , respectively. The MRR located at r,5 r,5(0, 0, )L=p  in the profiler coordinate system 
communicates with the base station by modulating the reflected laser beam. The MMR contains two 
parts: a polymer-dispersed liquid crystal (PDLC) and a CCR. The PDLC is the optical modulator that 
controls the amount of light transmission. The optical receiver located at pr,4 = (0, 0, Lr,4) comprises six 
positive intrinsic-negative diodes around the bz  axis, which receive the optical signal from the base 
station. 
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Figure 4. Optical path diagram of CCR. 

3. Approach 

Figure 5 shows the workflow of the proposed tracking, localization and communication 
approach, which is divided into five stages. In the initialization stage, the base station searches for 
the three CCRs in the most probable area of the profiler. Tracking begins when the base station 
establishes all laser-tracking links with the three CCRs on the profiler. The tracking stage is the basis 
of localization and communication stage in each work cycle, which consists of two steps: prediction 
and sampling, followed by resampling and mean-value estimation of the tracking angles. If any 
tracking link is lost in either step, the system enters in its recovery stage. After judging the tracking 
status, the system recovers the corresponding lost links. After completing the whole tracking cycle 
for all three links, the system enters the localization stage. The profile is coarsely located by the 
geometric relationship between the three tracking links, then finely located by optimizing the 
objective function using the least-squares method. At the end of the localization phase, the accuracy 
is improved by state filtering. Finally, the communication stage performs two-step (downlink and 
uplink) communications between the base station and the profiler. After completing the 
communication stage, the cycle restarts. 
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Figure 5. Workflow of the proposed approach. 

3.1. Initialization 

The initialization stage determines the initial tracking angle of the base station. Depending on 
the state of the profiler, one of two initialization methods is selected. When the profiler descends from 
the sea surface and collects information near the seabed, the sea-network node locates the profiler by 
acoustics and sends the position information to the base station. Using this information, the base 
station calculates the initialization angle inq,i,ini inq,i,ini inq,i,ini= ( , )θψΘ . Alternatively, when the profiler 
completes the monitoring near or on the seabed, the position of the profiler is almost unchanged. In 
this case, the position of the profiler at the end of the last cycle is assumed as the initial tracking 
position. 

3.2. Tracking 

The tracking stage maintains the laser-tracking link of each profiler CCR with the base station, 
ensuring that the laser beam can illuminate the corresponding CCR during the profiler’s movement. 
The proposed tracking method based on the particle filter involves two steps: prior prediction and 
sampling, and posterior resampling and mean estimation. Figure 6 is a schematic of the proposed 
tracking method. First, the laser beam state is predicted a priori from the state of the previous cycle, 
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and the tracking object is sampled by a laser beam particle group constructed for that purpose. Based 
on the sampling response of each laser beam particle, the tracking object is resampled and the laser 
beam is estimated a posteriori from the important beam particles. The a priori prediction and a 
posteriori estimations are iterated to achieve continuous tracking of the CCR by the base station. 

 

Figure 6. Schematic of the proposed tracking method. 

3.2.1. Prediction and Sampling 

The tracking angles during the tracking cycle are predicted from the angles of the previous cycle. 
The a priori tracking angle of the ith CCR of the j-th laser beam inq,i, j,tΘ


 is calculated as: 

inq,i, j,t inq,i, j,t-1 inq,i,t-1
ˆΘ = Θ + ΔΘ


 (1) 

where inq,i, j,t-1Θ̂  is the posterior tracking angle of the ith CCR of the jth laser beam at time t−1, and 

inq,i, t -1 inq,i, t -1 inq,i, t -1( , )ψ θΔΘ = Δ Δ  represents the updated tracking angle between two adjacent cycles 
corresponding to the ith CCR. In the updated calculation, the profiler motion is assumed to have a 
constant velocity (CV), where: 

inq,i,t-1 inq,i,t -1 inq,i,t-2

inq,i,t -1 inq,i,t -1 inq,i,t -2

ψ ψ ψ
θ θ θ

Δ = −
 Δ = −

 (2) 

After acquiring the a priori prediction angle of the laser beam, the laser beam direction is 
adjusted to a corresponding prediction angle inq,i, j,tΘ


 for sampling the tracking object. There are trN  

laser beam particles in each tracking link. 
The CCD camera measures the retroreflective tracking signal a priori. When the retroreflective 

laser light intensity exceeds the CCD saturation voltage, the exposure time is reduced, and the 
ambient light can be filtered out, retaining only the laser-related pixels. The exposure time can be 
determined empirically. Panels (a) and (b) of Figure 7 show images of the laser hitting a CCR at 
exposure times of 8400 μs and 500 μs, respectively. 
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(a) 

 

(b) 

Figure 7. CCD camera imaging of the laser hitting a CCR. The exposure time of the CCD camera was 
set to 8400 μs in (a) and 500 μs in (b). 

In the tracking algorithm, the CCD response value res,i, jI  defines the number of pixels in the 
image whose brightness exceeds the brightness threshold. Figure 8 shows the sampling responses of 
the tracking link of the ith CCR by the base-station laser at time t. 

 
Figure 8. Base-station sampling responses of the ith CCR at time t. 

3.2.2. Resampling and Mean Estimation 

After the prediction and sampling processes, the resampling process inherits the particles with 
large importance and eliminates the trivial particles. When generating the a posteriori particles, the 
importance-resampling method takes the normalized importance of a particle as its resampled 
probability. The normalized sampling laser response is calculated as: 

res,i, j res,i, j res,i/ sum( )I I I=  (3) 

where res,isum( )I  is the sum of the reflection responses of all laser beams corresponding to the ith 

CCR. As mentioned above, the a posteriori laser beam particle group inq,i,tΘ̂ is generated by 
considering the sampled probability (assumed as the importance value) of each a priori laser beam. 
Importance resampling relies on the fact that the cumulative probability density of an arbitrary 
probability density conforms to the uniform distribution. Therefore, the importance of the particles 
transforms into the probability of being sampled. The resampling algorithm is given in Algorithm 1. 

Pa
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Algorithm 1: Resampling algorithm 

1: inq,i, j,tΘ̂ = ∅ , tr =0S  

2: u  is generated by the uniform probability of (0,1) 
3: for n=1 to trN  do 

4: tr tr res,i,nS S I= +  

5: if trS u>  

6: inq,i,m,t inq,i,n,tΘ̂ = Θ


 

7: end if 
8: end for 

9: return inq,i, j,tΘ̂  

The optimal tracking angle of the ith CCR inq,i,tΘ  is estimated as: 

tr

inq,i, j, t
1

inq,i, t
tr

ˆ
N

j

N
=

Θ
Θ =


 (4) 

3.3. 3D Localization 

After the tracking stage, the base station begins to locate the profiler based on the optimal 
estimated beam angle inq,i,tΘ  of each tracking link in the tracking stage (Equation (4)) and the 
position of the CCR array in the profiler’s coordinate system. The localization proceeds by coarse 
localization, followed by fine localization. 

3.3.1. Coarse Localization 

Coarse localization is based on the geometry of the base station and the profiler. Coarse 
localization assumes a vertical attitude of the profiler, which is approximately true when the profiler 
moves near the seabed. The coarse localization provides the distance between the base station and 
the profiler via the links of two CCRs. When three CCRs are available, three sources provide ranging 
information. Weighted averaging provides the rough distance from the profiler to the base station. 

The localization stage must account for the refraction of the laser beam as it enters different 
media when passing from inside the base station through the window mirror into the water. As 
shown in Figure 9, a deviation rel  is generated outside the mirror surface, the pitch angle of the laser 

beam also becomes inqθ′ . Using Snell’s law, the deviation rel  is calculated as: 

inq

inq 2

sin( )
sin( )

1 ( )
re ow

ow
ow

l w
n

n

θ
θ

=

−
 

(5) 

where inqθ  is the laser pitch angle in the air of the base station housing, and own  and oww  are the 
refractive index and thickness of the observation window, respectively. As the observation window 
is very thin ( = 2mmoww ), the refractive deviation rel  through the observation window can be ignored 
in practice. The pitch angles before and after the beam penetrates the water are related as follows: 

inq
w

inq

sin( )
sin( )

n
θ
θ

=
′

 (6) 

where inqθ′  is the pitch angle after the laser beam enters the water, and wn is the refractive index of 
water. 
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Figure 9. Light path of the laser emitted by the base station. 

Assuming a vertical pose of the profiler, this study proposes a triangulation ranging method 
that accounts for the refraction effects (see Figure 10). The distance from the profiler to the base station 
is computed as follows: 

r,1 r,2 itf inq,1 inq,1 inq,2
prf

inq,1 inq,2

inq,1
inq,1

w

inq,2
inq,2

w

/ cos( )(tan( ) tan( ))
(tan( ) tan( ))

sin( )
arcsin( )

sin( )
arcsin( )

L L d
d

n

n

ψ θ θ
θ θ

θ
θ

θ
θ

 − − −
= ′ ′−


 ′ =


 ′ =


 (7) 

where itfd  is the distance from the origin of the profiler system to the base-station observation 
window. inq,1θ  and inq,2θ  are the pitch angles for tracking two CCRs in the base station’s housing, 

and inq,1θ′  and inq,2θ ′  are the pitch angles of the corresponding laser beams in water. r,1 r,1(0, 0, )L=p  
and r,2 r,2(0,0, )L=p  are the origin positions of the two CCRs in the coordinate system of the profiler. 

 

Figure 10. Schematic of the proposed triangulation ranging method, including the refraction effects. 

The distance of the profiler from the observation window of the base station is calculated as: 
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3

,
1

prf =
3

prf i
i
d

d =


  (8) 

where ,prf id  is estimated from the tracking angles of the ith pair of CCRs. lsr,il  is the line of the ith 
laser beam in water, described by a point lsr,i lsr,x,i lsr,y,i lsr,z,i( , , )P P P=P  and a unit direction vector

lsr,i lsr,x,i lsr,y,i lsr,z,i( , , )δ δ δ=δ . The point lsr,iP  is the intersection of the ith laser beam and the window 
mirror, and is explicitly given by: 

( ) ( )

lsr,x,i itf

lsr,y,i itf inq,i

lsr,z,i itf inq,i inq,i

lsr,x,i lsr,y,i lsr,z,i ,3,1 ,3,2 ,3,3

inq,i inq,i inq,i inq,i inq,i

inq

tan( )
tan( ) / cos( )

, , , ,

cos( )cos( ) sin( ) cos( )sin( ) 0
sin(

refr refr refr

refr

P d
P d

P d
ψ

θ ψ
δ δ δ

ψ θ ψ ψ θ
ψ

=
=

=

=

−

=

T T T

T ,i inq,i inq,i inq,i inq,i
2

inq,i inq,i

2 2
2 3 1 2 0 3 0 2 1 3

2 2
1 2 0 3 1 3 2 3 0 1

2
1 3 0 2 0 1 2 3 1

) cos( ) cos( ) sin( )sin( ) 0
sin( ) 0 cos( ) 0

0 0 0 1

1 2( ) 2( ) 2( ) 0
2( ) 1 2( ) 2( ) 0
2( ) 2( ) 1 2(

q q q q q q q q q q
q q q q q q q q q q
q q q q q q q q q

θ ψ ψ θ
θ θ

 
 
 
 −
 
  

− + − +
+ − + −

=
− + −

T

T 2 2
2

0 1 2 3

) 0
0 0 0 1

( , , , )

q

q q q q














        +     

= q

 (9) 

where refrT  represents the rotation matrix of the laser beam from its initial position to its final 
position in the water, and 2T  denotes the rotation matrix of the laser beam after refraction at the 
window mirror. The quaternion q  transforms the laser from the air to the water through the rotation 
matrix, and is calculated as follows: 

( )refr refr refrcos( / 2), sin( / 2)ϕ ϕq = n  (10) 

where refrϕ  is the deflection angle of the laser beam from air to water, and refrn  is the unit vector 
along the deflection axis, expressed as: 

refr 1 2 1 2

1 inq,i inq,i inq,i

2

refr 0 0 w

0 1 2

/ ( )
(1, tan( ), tan( ) / cos( ))

(1,0,0)
arcsin(sin( ) / )

arcsin( )
n

ψ θ ψ

ϕ β β
β

 = × ⋅
 = =
 = −

= ×

n ν ν ν ν
ν

ν

ν ν

 (11) 

In (11), 1ν  is the direction vector of the laser beam before refraction and 2ν  is the normal vector 

of the observation window. Therefore, the profiler is coarsely located at prf prf,x prf,y prf,z( , , )P P P=   P with: 

2
prf,x prf lsr,x,1 lsr,z,1 lsr,x,1

2
prf,y prf lsr,y,1 lsr,z,1 lsr,y,1

2
prf,z prf lsr,z,1 lsr,z,1 lsr,z,1 r,1

/ 1

/ 1

/ 1

P d P

P d P

P d P L

δ δ

δ δ

δ δ

 = − +

 = − +


= − + −







 (12) 

3.3.2. Fine Localization 
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The three tracking links are sequentially sampled in one computing cycle, meaning that the 
optimal estimated tracking angle inq,iΘ  obtained by the earlier sampling link lags that of the later 
sampling link. As this lag affects the subsequent optimization calculation, we must synchronize the 
first two tracking links ( inq,1Θ  and inq,2Θ ) with the last tracking link inq,3Θ . Assuming that the laser 
beam angles of each tracking link vary with uniform velocity in the recently calculated cycles, and 
taking the sampling time of the third tracking link as the time baseline, the angle of the ith tracking 
link after synchronization is * * *

inq,i,t inq,i,t inq,i,t( , )ψ θΘ = . The components are computed as follows: 

*
inq,i, t inq,3,t inq,i, t inq,i, t -1

*
inq,i, t inq,3,t inq,i, t inq,i, t -1

3 ( )
3

3 ( )
3

i

i

ψ ψ ψ ψ

θ θ θ θ

− = + −
 − = + −


 (13) 

The synchronization correction of the tracking links ensures that the tracking angle errors of the 
links are approximately Gaussian distributed about the same time baseline. This condition is 
prerequisite for fine localization. 

The profiler location is optimized by the least-squares method. The laser beam is divided into a 
part in the base station housing (air) and a part in the water (Figure 11). The core problem is to 
minimize the squares of the distances opt,id  from the CCRs to their corresponding tracking laser 
beams. The position of the ith CCR in the base-station coordinate system, defined as: 

r,i r,x,i r,y,i r,z,i( , , )P P P=P  (14) 

can be calculated as: 
T T

r,i prf r,i( ,1) ( ,1)T=P p  (15) 

where r,i r,x,i r,y,i r,z,i( , , )p p p=p  is the position of the ith CCR in the profiler coordinate system. The 
transformation matrix prfT  between the coordinate systems of the profiler and the base station is 
given as follows: 

prf prf prf prf prf prf,x

prf prf prf prf prf prf,y
prf

prf prf prf,z

cos( )cos( ) sin( ) cos( )sin( )
sin( )cos( ) cos( ) sin( )sin( )

sin( ) 0 cos( )
0 0 0 1

P
P

T
P

ψ θ ψ ψ θ
ψ θ ψ ψ θ

θ θ

− 
 
 =
 −
 
 

 (16) 

The laser beam in the water *
lsr,il  is described by a point *

lsr,iP  on the window mirror and a 

unit direction vector *
lsr,iδ , where: 

* * * *
lsr,i lsr,x,i lsr,y,i lsr,z,i

* * * *
lsr,i lsr,x,i lsr,y,i lsr,z,i

( , , )

( , , )

P P P

δ δ δ

 =


=

P

δ
 (17) 

The distance from the ith CCR r,iP  to its tracking beam *
lsr,il  is then calculated as: 

*
tmp,i lsr,i

opt,i *
lsr,i

d
×

=
ε δ

δ
 (18) 

where tmp,iε  is the vector formed by *
lsr,iP  and r,iP : 

*
tmp,i r,i lsr,i−= P Pε  (19) 

The objective function based on the least-squares method is defined as the sum of the squared 
distances between the CCRs and the paths of their corresponding laser beams (Figure 11): 
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3
2

prf opt,i
1

( )
i

cost d
=

=X  (20) 

The optimal position of the profiler * * *
prf prf prf( , )= ΘX P  is then obtained as: 

prf

*
prf prfarg min ( )cost=

X
X X  (21) 

Note that the minimization in (21) is a nonlinear optimization problem that can be solved by the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm of the quasi-Newton method [24,25]. The 
BFGS algorithm executes with high efficiency and without needing to calculate a precise Hessian 
matrix. The initial position of the quasi-Newton iteration is the optimal position found in the previous 
cycle. 

 

Figure 11. Illustration of the proposed fine localization. 

 

3.3.3. State Filtering 

To reduce the influence of noise on the localization results, the profiler state is estimated by the 
Kalman filter (KF) method. 

3.3.3.1. State and Observation Model 

When the profiler moves near the seabed, its speed is small and almost constant; thus, its motion 
model approximates a CV model. The state model is expressed as: 

prf,t f prf,t-1 tw= +S A S  (22) 

where prf, tS  is the state vector of the profiler at time t: 

prf,t prf,x,t prf,y,t prf,z,t prf,x,t prf,y,t prf,z,t     
T

P P P V V V =  S  (23) 

In (23), prf,x prf,y P P  and prf,z P  are the positions of the profiler and prf,x prf,y V V  and prf,z V  are their 
corresponding velocities. In Eq. (22), the transformation matrix fA  is calculated as: 
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f

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

t
t

t

Δ 
 Δ 
 Δ
 
 
 
 
  

A =  (24) 

and tw  is the process noise, which is a Gaussian white noise with zero mean and variance fQ . The 
observation model can be expressed as: 

prf,t f prf,t-1 tv= +Z H S  (25) 

where prf, tZ  is the observation value at time t, which is actually the profiler position estimated by 
the fine localization method in Subsection 3.3.2. It is obtained as: 

*
prf,t prf,t=Z P  (26) 

The measurement noise tv  is also a Gaussian white noise with zero mean and variance fR .The 
measurement matrix fH  in (25) is given by: 

f

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 
 =  
  

H  (27) 

3.3.3.2. Prediction 

The predicted state prf,tŜ  and its associated covariance matrix f,tP  are respectively given by: 

*
prf,t f prf,t-1

ˆ =S A S  (28) 

T
f,t f f,t 1 f f−=P A P A +Q  (29) 

where *
prf,t -1S  is the optimally estimated state of the profiler at time t−1. The covariance matrix of the 

process noise fQ  is: 

f 2
vx

2
vy

2
vx

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

σ
σ

σ

 
 
 
 
 
 
 
 
  

Q =  (30) 

where 2
vxσ , 2

vyσ  and 2
vzσ  represent the variances of the profiler velocities in the basex , basey  and 

basez  directions, respectively, in adjacent calculation cycles. 

3.3.3.3. Update 

The Kalman gain f, tK  is computed as: 

T T 1
f,t f,t f f f,t f f( )−= +K P H H P H R  (31) 

Combining the predicted state and the measured position of the profiler, the optimally estimated 
state vector of the profiler *

prf,tS  and its covariance matrix f, tP  at time t are calculated as: 
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*
prf,t prf,t f,t prf,t f prf,t

ˆ ˆ( )= + −S S K Z H S  (32) 

f,t f,t f f,t( )= −P I K H P  (33) 

where the covariance matrix of the measurement noise fR  is given by: 

2
x

2
f y

2
z

0 0
0 0
0 0

σ
σ

σ

 
 
 
  

R =  (34) 

In (34), 2
xσ , 2

yσ , and 2
zσ  represent the squared errors in the three-dimensional position of the 

profiler, obtained via the least-squares method. The proposed tracking and localization algorithm 
was verified via a MATLAB simulation. The simulation setup comprised the laser source, the laser 
beams, a CCD camera model, and a CCR module. The simulated tracking and localization situation 
is visualized in Figure 12. The thick solid lines with three different colors represent the three edges 
of a CCR, which form a simplified representation of a CCR. The optical path during localization and 
tracking can be clearly observed via simulation. 

 
Figure 12. Simulation scenario of tracking and localization by the proposed method, showing the 
optical path. 

In the simulation, the underwater profiler performs sinusoidal motion on the basex , basey , and 

basez axes. The base station uses the proposed tracking and localization approach to locate the profiler. 
Figure 13 shows the time-varying positions of the profiler along the three axes in the base-station 
coordinate system, basex , basey , and basez  (top to bottom). Plotted are the actual positions and the 
results of applying and omitting the KF. 
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Figure 13. Simulated localization results as functions of time. 

The tracking errors of the proposed method with and without KF are given in Table 1. The 
accuracy criterion was the root mean squared error (RMSE). After KF, the RMSEs in the basex , basey , 
and basez coordinates were reduced by 69%, 57%, and 57%, respectively, relative to the unfiltered 
data. The results confirm that the KF significantly improved the localization accuracy. 

Table 1. Comparison of the fine localization errors with and without Kalman filtering. 

Method  RMSE in basex  (m) RMSE in basey  (m) RMSE in basez  (m) 
Fine localization 0.287 0.014 0.014 

Fine localization + Kalman filter 0.087 0.006 0.006 

3.3.4. Recovery 

During the actual tracking process, the tracking link to the CCR may be lost. The base station 
needs to recover any lost links by operating the tracking recovery algorithm. The recovery algorithm 
proceeds in two steps: tracking the status judgment and searching for missing CCRs. 

3.4.1. Tracking Status Judgment 

The status of the tracking links is usually obtained by setting a fixed threshold value. The 
maximum signal strength res,i,maxI  of the CCD camera receiving the reflected laser beam is compared 
with the threshold thrλ . If the signal strength exceeds the threshold (i.e., res,i,max thrI λ> ), the state is 
considered as valid; otherwise it is invalid. 

The fixed threshold method is simple but defective in one aspect. As the profiler gradually 
moves away from the base station, the signal strength received by the CCD camera res,i,maxI  gradually 
decreases. Therefore, if the signal strength falls below the threshold ( res,i,max thrI λ< ), a valid tracking 
state will be misjudged as a tracking failure. 

To dynamically adjust the threshold thrλ  and reduce the misjudgment probability, we update

thrλ  by a tracking status judgment method based on K-means clustering [26], and then determine the 
tracking state. K-means clustering divides the signal strengths of the CCD camera into k  categories. 
In the present case there were two clusters ( 2k = ): a cluster of signal strengths with invalid tracking 
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links (cluster 1C ), and a cluster of signal strengths with valid tracking links (cluster 2C ). pI  is the 
signal strength collected during the tracking process. To increase the judgment accuracy, two samples 
were collected in each period, one before the beginning of the tracking period ( 2 1nI − , n = 1, 2,…), and 
another during tracking ( 2nI , n = 1, 2,…). Let 1μ  and 2μ  be the centroids of clusters 1C  and 2C , 
respectively. The signal strengths in the first period 1I  (before the beginning of each tracking) and 

2I  (during tracking with valid status) were selected as the initial centroids of clusters 1C  and 2C , 
respectively. During the tracking, each new signal strength was assigned to the cluster whose mean 
minimized the squared Euclidean distance between itself and the signal: 

2 2
{ : ,1 }i p p i p jC I I I j j kμ μ= − ≤ − ∀ ≤ ≤  (35) 

where each pI  was assigned to iC . The centroids were updated by calculating the means of the 
clusters: 

= j i
jI C

i
i

I

C
μ ∈

 (36) 

If the new signal strength collected at the time of tracking ( 2nI ) is assigned to cluster 1C , then 
the tracking status is judged as invalid and the tracking recovery algorithm is invoked. 

3.4.2. Tracking Recovery Algorithm 

The core task of the tracking recovery algorithm is searching the missing tracking links. Different 
procedures are invoked for one or two lost tracking links. 

3.4.2.1. Loss of One Tracking Link 

When two tracking links are valid, the angle of the corresponding interrogation laser inq,i, tΘ  of 
the failed link is estimated by linear interpolation. Suppose (for example) that the tracking link 
corresponding to 1# CCR is lost, and the links corresponding to 2# and 3# CCRs are valid. The 
sampling angle of the laser beam to the 1# CCR angle inq,1,tΘ  can be calculated as: 

inq,2,t inq,3,t r,1 r,2T T
inq,1,t inq,2,t

inq,2,t inq,3,t r,2 r,3
2

2

cos( ) sin( )
(1 )

sin( ) cos( )

~ (0, )

~ (0, )

L L
θ θ L L

N

N
ξ

ξ

ξ ξ
ξ

ξ ξ

ξ θ

ξ λ

ψ ψθ θ
λ

θ θ

θ σ

λ σ

 −− −  
Θ = Θ + +    − −   








 (37) 

where inq,2,t inq,2,t inq,2,t=( , )θψΘ  and inq,3,t inq,3,t inq,3,t=( , )θψΘ  are the angles of the tracking links 
corresponding to 2# and 3# CCRs, respectively. ξθ  and ξλ  are the angle and length uncertainties 

in inq,1, tΘ , respectively, which follow Gaussian distributions with zero mean and variances of 2
ξθσ  

and 2
ξλσ , respectively. Figure 14 shows the recovery search angle when the corresponding link to 1# 

CCR is lost. The corresponding parameters are r,1 0.15L = , r,2 0L = , r,3 0.15L = − , inq,2,t (0,0)Θ = , 

inq,3,t (0,0.0523)Θ = , ~ (0, 0.188)Nξθ , ~ (0,0.06)Nξλ . As shown in the figure, the search area was fan-
shaped, and the search for the missing CRR was intensified in regions of dense search points. 
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Figure 14. Recovery sampling angles after losing 1# CCR. 

3.4.2.2. Loss of Two Tracking Links 

When two tracking links are lost, the algorithm first recovers one tracking link, and then 
retrieves the last link by the previously described method. Suppose (for example) that the tracking 
links corresponding to 1# and 2# CCRs are lost, but the link corresponding to 3# CCR is valid. The 
link corresponding to 2# CCR needs to be restored first. Using the tracking angles of the previous and 
current cycles, the sampling angle inq,2,tΘ  is generated as follows: 

'

'

inq,2,t -1 inq,3,t -1T T
inq,2,t inq,3,t

inq,2,t -1 inq,3,t -1

2 '

2 '

cos( ) sin( )
(1 )

sin( ) cos( )

~ (0, )

~ (0, )

θ θ

N

N
ξ

ξ

ξ ξ
ξ

ξ ξ

ξ θ

ξ λ

ψ ψθ θ
λ

θ θ

θ σ

λ σ

 −−   
′Θ = Θ + +    −   

 ′


′




 (38) 

where inq,2,t-1 inq,2,t -1 inq,2,t-1=( , )θψΘ  and inq,3,t-1 inq,3,t-1 inq,3,t-1=( , )θψΘ  are the tracking angles corresponding 

to 2# and 3# CCRs, respectively, in the previous cycle, and inq,3,t inq,3,t inq,3,t=( , )θψΘ  is the tracking angle 

corresponding to 3# CCR in the current cycle. ξθ ′  and ξλ′  are the angle and length uncertainties of 

inq,2, tΘ , respectively, which follow Gaussian distributions with zero mean and variances of '
2 '

ξθ
σ  and 

'
2 '

ξλ
σ , respectively. Figure 15 shows the recovery sampling angles of 2# CRR when links 1# and 2# are 

lost. The corresponding parameters are inq,2,t-1 (0,0)Θ = , inq,3,t-1 (0,0.0523)Θ = , 

inq,3,t (0.0213 rad,0.0503 rad)Θ = , ~ (0,0.188)Nξθ ′ , and ~ (0, 0.06)Nξλ ′ . 
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Figure 15. Recovery sampling angles when 1# and 2# CCRs are lost. 

After recovering one tracking link, the remaining link can be recovered via the one-link-lost 
recovery algorithm as described before. 

3.5. Communication 

For transmitting the oceanography data collected by the profiler to the base station, we propose 
a bidirectional communication approach, wherein the profiler also receives the command sent by the 
base station. To reduce the power consumption of profiler monitoring, the profiler and the base 
station communicate via a laser-reflection modulation method. The direction of information 
transmission is divided into downlink (base station to profiler) and uplink (profiler to base station) 
transmission. 

3.5.1. Downlink 

As described in Section 2.2, the optical information is received by an omnidirectional 
photosensitive receiver mounted at position r,4 r,4(0, 0, )L=p  of the profiler in the body coordinate 
system. In downlink transmission, the coded laser from the base station illuminates the 
photosensitive receiver on the profiler, and the data are transmitted while tracking the three CCRs. 
Downlink communication proceeds in two steps: laser beam alignment and laser coding. 

3.5.1.1. Laser Beam Alignment 

Within the time gap between the tracking and positioning of the profiler, the base station needs 
to establish the communication link by aligning the laser beam with the photosensitive receiver on 
the profiler. Beam alignment is performed via interpolation. In terms of the laser-tracking angles 
corresponding to the three CCRs, inq,1Θ , inq,2Θ , and inq,3Θ , the angle corresponding to the 
photosensitive receiver inq,4,t inq,4,t inq,4,t( , )ψ θΘ =  can be calculated as: 

r,4 r,2 r,4 r,3 r,4 r,1 r,4 r,3 r,4 r,1 r,4 r,2
inq,4,t inq,1,t inq,2,t

r,1 r,2 r,1 r,3 r,2 r,1 r,2 r,3 r,3 r,1 r,3 r,2

r,4 r,2 r,4 r,3
inq,4,t

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( )
(

L L L L L L L L L L L L
L L L L L L L L L L L L
L L L L
L

ψ ψ ψ ψ

θ

− − − − − −
= + +

− − − − − −
− −

= r,4 r,1 r,4 r,3 r,4 r,1 r,4 r,2
inq,1,t inq,2,t i

r,1 r,2 r,1 r,3 r,2 r,1 r,2 r,3 r,3 r,1 r,3 r,2

( )( ) ( )( )
)( ) ( )( ) ( )( )

L L L L L L L L
L L L L L L L L L L L

θ θ θ




 − − − − + + − − − − − −

(39) 
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where inq,1 inq,1 inq,1( , )ψ θΘ = , inq,2 inq,2 inq,2( , )ψ θΘ = , and inq,3 inq,3 inq,3( , )ψ θΘ =  are the tracking angles 
corresponding to CCRs 1#, 2#, and 3#, respectively. 

3.5.1.2. Laser Encoding 

When the laser beam is aligned with the photosensitive receiver on the profiler, the base-station 
laser needs to modulate its light intensity. We emphasize that the profiler and the base station must 
be synchronized by a high-precision clock chip before the laser coding. 

Encoding is accomplished via carrierless amplitude modulation (CAM): when the bit is 1 or 0, 
the base station transmits or turns off the laser light, respectively. The bit is dictated by the intensity 
of the light reaching the photosensitive receiver at the receiving end (1 when the intensity exceeds 
the threshold, and 0 when it is below the threshold). 

When a downlink communication is required during the tracking process, the inquiry laser of 
the base station first aligns the laser beam with the photosensitive receiver on the profiler using 
Equation (39) and then modulates the laser light via the CAM code at the agreed synchronization 
time-point. Finally, the profiler end demodulates the light intensity of the photosensitive receiver to 
achieve downlink communication. 

3.5.2. Uplink 

As described in Section 2.2, an MRR is located at position r,5 r,5(0, 0, )L=p  of the profiler in the 
body coordinate system. The MRR modulates the reflected laser for communicating with the base 
station. The uplink communication process is similar to downlink communication, involving laser 
beam alignment and encoding. 

3.5.2.1. Laser Beam Alignment 

The beam alignment in uplink communication is similar to that in downlink communication. 
The laser beam angle corresponding to the MMR on the profiler inq,5,t inq,5,t inq,5,t( , )ψ θΘ =  is obtained via 
interpolation as follows: 

r,5 r,2 r,5 r,3 r,5 r,1 r,5 r,3 r,5 r,1 r,5 r,2
inq,5,t inq,1,t inq,2,t

r,1 r,2 r,1 r,3 r,2 r,1 r,2 r,3 r,3 r,1 r,3 r,2

r,5 r,2 r,5 r,3
inq,5,t

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( )
(

L L L L L L L L L L L L
L L L L L L L L L L L L
L L L L
L

ψ ψ ψ ψ

θ

− − − − − −
= + +

− − − − − −
− −

= r,5 r,1 r,5 r,3 r,5 r,1 r,5 r,2
inq,1,t inq,2,t i

r,1 r,2 r,1 r,3 r,2 r,1 r,2 r,3 r,3 r,1 r,3 r,2

( )( ) ( )( )
)( ) ( )( ) ( )( )

L L L L L L L L
L L L L L L L L L L L

θ θ θ




 − − − − + + − − − − − −

(40) 

3.5.2.2. Reflected light encoding 

During uplink communication, the base station laser first aligns the MRR using Equation (40). 
The profiler encodes the reflected light intensity by voltage-controlling the PDLC transmittance by 
the CAM method. When the bit is 1, the PDLC is powered on and non-opaque, so the light can be 
retro-reflected to the CCD camera on the base station. When the bit is 0, the PDLC is powered down 
and opaque, and the CCD camera cannot receive the reflected laser. The bit value (1 or 0) is decided 
by the CCD camera based on the received light intensity. 

4. Experimental Results 

To conveniently verify the feasibility of the proposed tracking, localization, and communication 
approach in the laboratory, we constructed a simplified version of the profiler module. The module 
was evaluated via two tracking and localization experiments and one preliminary communication 
experiment. 

4.1. Tracking and Localization Experiments 

The performance of the tracking and localization method was first determined in a basic tracking 
test performed in a 4-m-long pool. The base station and a CCR array were placed at opposite ends of 
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the pool (see Figure 16), and the CCR array was moved at approximately 0.2 m/s (the approximate 
speed of a real HUP). Using the proposed method, the base station was required to track and locate 
the CCR array. The tracking and localization results are shown in Figure 17. The results confirmed 
that the base station can effectively track and locate the CCR array. 

 

 
(a) 

   
(b) (c) (d) 

Figure 16. Tracking and localization experiment in the pool. (a) The base station emits laser beams 
and tracks the CRR; Bottom panels show the laser-tracking links of (b) 1# CCR (top CCR); (c) 2# CCR 
(middle CCR); and (d) 3# CCR (bottom CRR). 

 
Figure 17. Experimental tracking and localization results. 

z 
(m
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To verify long-distance tracking and localization by the proposed method, the distance was 
measured in a 15-m-long pool as shown in Figure 18. The profiler end was replaced by a CCR array 
installed on a mobile platform. 

 
 

(a) (b) 

Figure 18. Tracking and ranging experiment in the long pool. (a) Photograph of the long-pool 
experiment; (b) base station tracking the mobile platform in the experiment. 

The performance of the localization approach was tested at five points located at 9.25, 10.25, 
11.25, 12.25, and 13.6 m from the base station. After the base station completed initialization, the 
mobile platform was sequentially moved to each of the five points, and it stayed there for a period of 
time. Figure 19 shows the raw measurement data and the data after Kalman filtering collected during 
the experiment. The mean values of the KF-filtered data at the five points are listed in Table 2. The 
localization error is 0.165 m at 13.6 m and the error rate is 1.21%. The localization error decreases with 
the decrease of the distance. The error of the nearest localization distance at 9.25 m is 0.062 m, and 
the error rate is 0.67%. It can be seen from the test results that the tracking algorithm is effective and 
achieves a high localization accuracy. 

 
Figure 19. Tracking and ranging results of the long-pool experiment. 
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Table 2. Comparison between the actual distance and the measurement data. 

Actual Distance (mm) Measurement Data Mean (mm) RSME (mm) Error Ratio 
9250  9271  62  0.67% 

10,250  10,293  81  0.79% 
11,250  11,322  102  0.90% 
12,250  12,352  139  1.13% 
13,600  13,740  165  1.21% 

4.2. Preliminary Communication Experiment 

To preliminarily verify the feasibility of reflective (uplink) communication by the proposed 
method, an initial test was conducted in the 4-m-long pool. As shown in Figure 20, an MRR 
comprising a CCR and a PDLC film was placed at one end of the pool. 

  
(a) (b) 

Figure 20. Preliminary communication experiment. (a) The MRR used in the experiment, which 
contains a CCR behind a PDLC film; (b). MRR operating during the experiment. 

During the experiments, the MRR was switched at 20 Hz. The light-intensity sampling frequency 
and exposure time of the CCD camera at the base station were 200 Hz and 500 μs, respectively. 
Sampled raw pictures at high-level and low-level modulation are shown in Figure 21. Here, the light-
intensity threshold of the CCD camera was set to 150. Figure 22 shows the output of the MRR and 
the data received by the camera of the base station. The base station well received the information 
modulated by the MRR. 

 

(a) 

 

(b) 

Figure 21. Images received by the CCD camera during the underwater reflective communication test: 
(a) high-level modulation image and (b) low-level modulation image. 
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Figure 22. Results of the reflective communication experiment. 

5. Conclusions and Future Work 

Conventional acoustic methods are not straightforwardly applicable to localization and 
communication of underwater vehicles in close-range and near-seabed situations. Therefore, we 
proposed a laser reflection- based localization and communication method with low power 
consumption, low cost, and high resolution. In this paper, an underwater base station is connected to 
an observation network on the seabed for locating and communicating with a HUP, and a matching 
reflection module is mounted on the HUP. The base station tracks the HUP by laser light emission. 
The reflector reflects and modulates the incident laser with very low power consumption. 

A particle filter-based approach was proposed for tracking the HUPs. This process includes a 
priori prediction and sampling based on the previous cycle, and importance resampling based on the 
sampled response. The HUP’s location is coarsely determined via a geometric calculation with 
refractive compensation, and finely determined via a nonlinear optimization method based on the 
objective function obtained by the least-squares method. The localization accuracy is further 
improved by Kalman filtering. The effectiveness of the filtering method was first verified in 
simulation results. To recover any link failure during tracking, we developed a tracking state 
discrimination method based on K-means clustering, which restores the link via linear interpolation. 
The interpolation method also aligns the corresponding module when the base station communicates 
with the HUP. After alignment, the communication is encoded using the CAM method. 

The feasibility and performance of the proposed tracking and localization methods were 
evaluated in two experiments. The base station effectively and stably tracked the moving reflector 
and performed accurate localization. The positioning error at the farthest localization distance of 13.6 
m in the experiment was 0.165 m, and the localization accuracy increased as the distance decreased. 
The communication methods of the proposed system were then verified in a small pool. The CAM 
encoding method was used to convey complete information to the reflective end, enabling the base 
station to receive all information and implement the uplink communication. 

In future work, we will first conduct a field trial over a longer distance to verify the effective 
range of the system. After that, we will integrate the retroreflector module into the existing HUP, and 
deploy the base station in the South China Sea, where it will be connected to the existing seabed-
observation network. This deployment will fully verify the proposed tracking, localization, and 
communication methods. 
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