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Abstract: Using camera sensors for ground robot Simultaneous Localization and Mapping (SLAM)
has many benefits over laser-based approaches, such as the low cost and higher robustness. RGBD
sensors promise the best of both worlds: dense data from cameras with depth information. This paper
proposes to fuse RGBD and IMU data for a visual SLAM system, called VINS-RGBD, that is built
upon the open source VINS-Mono software. The paper analyses the VINS approach and highlights
the observability problems. Then, we extend the VINS-Mono system to make use of the depth
data during the initialization process as well as during the VIO (Visual Inertial Odometry) phase.
Furthermore, we integrate a mapping system based on subsampled depth data and octree filtering
to achieve real-time mapping, including loop closing. We provide the software as well as datasets
for evaluation. Our extensive experiments are performed with hand-held, wheeled and tracked
robots in different environments. We show that ORB-SLAM2 fails for our application and see that
our VINS-RGBD approach is superior to VINS-Mono.

Keywords: visual-inertial systems; SLAM; inertial motion tracking; ground robots; rescue robots;
sensor fusion; state estimation; RGBD sensor

1. Introduction

With the sensor and algorithm innovations [1], mobile robots are getting smaller and smarter and
are addressing new applications in medicine, agriculture, and security applications [2,3]. The improved
sensors allow them to become much more capable for perception, mapping, and navigation.

Unlike indoor navigation, which focuses more on 2D, even and structured environments,
rescue robots need more mobility to face various, complicated scenarios such as slopes, stairs, and
tunnels [4–6]. Search and rescue robots are usually equipped with LIDAR and high-quality IMU
sensors, which are fused with the wheel odometry to estimate the poses and the map [7–9]. However,
these leads to expensive robots, which is undesirable, because such mobile rescue robots have a
high risk of breaking or being lost during operation. In the past years, we have seen great advances
in the area of computer vision, also with respect to vSLAM (visual Simultaneous Localization and
Mapping) [10]. Since then, many methods have been proposed to improve the accuracy, robustness, and
efficiency of vSLAM, such as using first estimation Jacobian [11] to reduce the inherent nonlinearity in
the system. Optimization-based methods also have become very popular [12]. Additionally, monocular
cameras were combined with other sensors such as depth cameras [13,14] and IMU [15–17] to achieve
more robust performance.
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However, these approaches are mostly used in hand-held or UAV (Unmanned Aerial Vehicle)
applications, where the motions follow smooth, curved trajectories and frequently change the velocity.
Thus, even with strong rotation, when there are few features to track in the image sequences, the IMU
can still sense the motion well, which, thus, limits the pose estimation to an acceptable error [15,17].

On the other hand, ground robots have some unique advantages in rescue scenarios [18],
compared to aerial robots, for example the long operation time, the rich sensor payload [19] and
the ability to traverse in very confined areas. Hence, ground robots still play a critical role in search
and rescue scenarios [6]. When rescue robots traverse difficult 3D terrain, the motions can be more
complicated [4,20] than those of a UAV. There are very sudden accelerations when falling off a small
edge or a stair step, or bumping into a small obstacle. This will result in strong ego-motions, which
make it difficult for vSLAM and VIO (Visual Inertial Odometry) to track the features. Fusing the vision
data with IMU readings is a direct idea to solve this problem. However, moving straight on a planar
environment, the trajectories are mostly in constant acceleration and quite often constant in speed,
which leads to a close to zero acceleration. In this case the VINS (Vision-aided INertial System) model
suffers extra unobservable directions [21], which leads to inaccurate estimations.

This challenge becomes even tougher for tracked robots or small-sized robots. Besides above
problem of unobservability, the IMU readings suffer from large amounts of noise. This is because the
small, tracked robots, with a relatively small mass, get easily excited from small obstacles such as stones
or sand, over which the robot drives, leading to big and frequent vibrations. An additional challenge
rescue robots face is, that there are often high illumination changes and also, that environments can
have few features, because everything is covered with dust [22]. So visual trackers for rescue robots
face additional challenges.

In recent decades we have seen many innovative and improved sensor concepts, such as RGBD
cameras, LIDAR and event cameras [23]. They are perceiving the environments using different
approaches and integrate several different sensors on a single board thanks to the advances in MEMS
(MicroElectroMechanical System) technology. Kinect and Kinect V2 are two very popular RGBD
cameras using structured light and the latter ToF (Time of Flight) technology, respectively. They are
both quite large and do not work outdoors, because the sunlight is over shining the infrared light
emitted by the devices. LIDARs work outdoors and are quite accurate, but they deliver quite sparse
data, are quite expensive and relatively fragile, due to the moving parts (mirror). In the last few years,
Intel released their RealSense camera series [24], from R200 to ZR300 to D415/D435 [25] and other
models. Some of them share the same market niche as Kinect, while others are facing robotic systems
which are compact and relatively cheap. A big advantage of some of those devices, such as ZR300, is,
that they come with an integrated IMU. For robotics, a challenging problem is the limited measurement
range of those sensors, with a large minimum range and a small maximum. This significantly limits its
application and thus many open source VIO or SLAM systems [15,17] only make use of the integrated
fisheye camera and IMU sensor. Fortunately, Intel released the D435i [26] after the D415/D435.
It integrates the same IMU as the ZR300, but uses the vision sensors of the D435, such that we can take
advantage of D435’s excellent range (0.2–10 m+), combined with the time-synchronized accelerometer
and gyroscope measurements. Another advantage of the Intel RealSense sensor series is, that they also
work outdoors in sunny conditions, due to their stereo-infrared camera approach [24,27,28], but also
project an infrared pattern to be able to detect features-less surfaces.

The goal of our work is to enable a small rescue robot to do visual SLAM and thus ultimately
navigation. We address the difficulties described above and propose to utilize the three different sensor
readings of color, depth and IMU provided by the Intel RealSense D435i camera. For that, we base our
solution, VINS-RGBD, on the open source VINS implementation [15], which is using RGB and IMU.
We extend the framework to also incorporate the depth readings and ultimately build an RGBD inertia
SLAM system for ground robots. The main contributions of our work are as follows:

• Formulation and implementation of a depth-integrated initialization process for the
VINS-RGBD system.
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• Formulation and implementation of a depth-integrated Visual Inertial Odometry (VIO),
overcoming the degenerated cases of a vision and IMU only VIO system.

• Design and implementation of a backend mapping function to build dense point clouds with
noise suppression, which is suitable for further map post processing and path planning.

• A color-depth-inertial dataset with handheld, wheeled robot, and tracked robot motion, with
tracking system data for ground truth poses.

• Thorough evaluation of the proposed VINS-RGBD system using the three datasets
mentioned above.

We provide the dataset [29], which also includes a video of the experiments, and VINS-RGBD [30]
as open source for the benefit of the robotics and visual SLAM communities.

The rest of the paper is structured as follows: Section 2 describes important related work and
the applicability towards VIO with ground robots. Section 3 gives an overview of the system which
we base our work, VINS-Mono, and the observability problem it meets. Section 4 introduces our
VINS-RGBD approach while Section 5 gives corresponding experiments and results. In Section 6 we
draw conclusions and discuss future work.

2. Related Work

Compared to LIDAR Simultaneous Localization and Mapping (SLAM), which has under
development for decades, visual SLAM (vSLAM) has recently gained more and more attention,
especially after the influential work of Davison et al. [10], which showed that SLAM with a single
camera can run in real-time on a PC. Extended Kalman Filter (EKF) or its variants are often used in
LIDAR SLAM, and also in that first MonoSLAM [10]. Optimization based methods are becoming
more popular, since they can find the sparsity of the Hessian matrix in the optimization function and
can usually provide more accurate results. PTAM [31] was the first optimization based method and
also the first one to propose to do tracking and mapping in parallel. Based on that tracking front end
and optimization back end, approaches such as ORB-SLAM [12] were developed, which additionally
use bag-of-words [32] to do loop detection to reduce the accumulative error. After projecting the
environment to image planes, the depth information is lost and only the perspective geometry
relationship is saved. Therefore, monocular SLAM is up-to-scale. However, combined with another
camera with a fixed, known baseline, we can obtain the depth by calculating the disparity of sufficiently
distinguishable feature points. Next to this stereo camera approach also structured light and Time
of Flight (ToF) techniques, combined with a color camera, can also provide depth and color data,
thus RGBD data. Visual SLAM with RGBD cameras [13,33] can be applied to robot autonomy and
navigation. As both stereo and RGBD SLAM are using a single camera as the perception source, the
performance is limited by camera characteristics such as motion blur under fast rotation, distortion
caused by the rolling shutter, and also the short measurement range of the RGBD camera.

For ground robots quite often the trajectory estimation, so the localization of the robot, is assumed
to be on the flat ground. We can thus estimate the trajectory under the 2D plane constraint, which
accelerates the estimation speed and also improves the robustness with the motion model constraint.
Scaramuzza [34] models the 2D motion to approximate planar circular motion, thus a 1-point minimum
relative pose estimate solver can be applied. With a general planer motion model, an iterative 2-point
algorithm [35] using the Newton method, a 3-point algorithm which is using a linear equation and
non-iterative 2-point algorithms [36] were proposed.

Unlike Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs), especially
quad-copters, have to estimate their motion in 3D with 6 degrees of freedom. To avoid obstacles
also the unknown scale factor has to be solved. So there is considerable work on vSLAM for UAVs
where the cameras are combined with inertial measurement units (IMU) to achieve robust and scale
deterministic pose estimation. Due to the complex motions of the UAV, the IMU is sufficiently activated
and thus unobservable states are avoided. The visual and inertial fusion also called VINS (Visual
INertial System). It is usually divided into the categories of loosely and tightly coupled systems, where
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the former [37,38] treats the two sensors as individual pose estimation sources and fuses them by
using EKF. Tight coupled visual inertial fusion has both EKF based algorithms such as ROVIO [17],
MSCKF [39] and optimization based algorithms such as VINS-Mono [15] and OKVIS [40]. Tightly
coupled methods joint all the IMU and camera states together and usually get more accurate results.
Most of the VINS are developed to deploy on UAVs or handheld applications. They only fuse a single
camera with IMU, as this already gives good results in their application. However, in optimization
based algorithms, it is easy to add other residual terms, hence, making it possible to fuse IMU with
stereo or even more other sensors [41]. This can also solve the problem mentioned in [21], which
is that the scale is unobservable under special motions. However, they only give the results of 2D
performance, and also requite a complex configuration of the stereo camera with the IMU sensor,
especially w.r.t time synchronization. Besides the unobservability problem, initial values of VINS are
crucial for the subsequent VIO (Visual Inertial Odometry) process, and lots of work [42–44] has been
put into achieving better performance, mostly for handheld or UAV applications.

Combining RGBD sensors with IMUs for visual SLAM is another way to solve the scale
unobservability problem [21], which is also suitable for ground robots navigation. RGBD sensors
calculate the depth independently and efficiently and also output dense depth images rapidly. An IMU
RGBD extrinsic calibration is proposed in [45], where they analyze the observability and design an
OC (Observability Constrained) EKF to improve consistency. A loosely coupled method, which fuses
inertial and RGBD cameras for mobile devices is introduced in [46], where an array of Kalman filters
is used. Another loosely coupled method is proposed in [47], with application in direct methods
of frame-to-frame motion estimation. There, the performance of the IMU aid is evaluated in both
semi-dense and fully dense tracking processes. Ref. [48] is the first tightly coupled optimization-based
method in RGBD inertial fusion, which focuses on 3D reconstruction with running in real-time on a
GPU, while [49] is another extended Kalman filter based indoor scene reconstruction RGBD-inertial
method. By utilizing inertial fusion and kernel cross-correlators to match point clouds in the frequency
domain, Wang et al. [50] propose a non-iterative odometry, where a dense indoor fused map is given.
Ling et al. [51] simply combine Kinect depth images with ORB features to achieve indoor 2D robot
pose estimation. However, in this paper only limited qualitative results are reported.

Three-dimesnional reconstruction differs from mapping for robotics mainly in the fact that robots
are primarily interested whether a location is occupied or free, while 3D reconstruction cares more
about the texture of the estimated shapes. In robotics the original point cloud map is then usually
treated as an input to different kinds of post-processes, that are employed to make use of the map.
Elevation maps [52] are 2.5D representations which store one height-value per cell in the x-y plane.
Multi-Level surface maps [53] are another more powerful map representation that also supports loop
closing. OctoMap [54] is a real 3D map representation based on octrees, which can be dynamically
expanded with regard to global and local planning scenes. Yang et al. [55] propose an update strategy
to OctoMap after loop closing, which builds a globally consistent map.

A benchmark comparison of the VINS algorithms is discussed in [56]. Although it is aiming for
flying robots, the results show that VINS-Mono [15] achieves the most accurate performance while
having a low computational resource requirement. Therefore we build our the RGBD inertia system for
3D pose estimation of ground robots on the open source VINS Implementation and call it VINS-RGBD.
We also extend the VINS system to include a mapping module that is making use of the dense depth
information from the RGBD sensor. This 3D map enables further applications such as path planning
and navigation. Hence, we propose to generate noise-eliminated point clouds in an octree.

3. VINS-Mono Analysis

VINS-Mono [15] is a tightly coupled, nonlinear optimization based method consisting of a feature
tracking module, a visual-inertial odometry which contains the necessary estimator initialization
process for the IMU parameters and the metric scale initialization, and a sliding window optimization
method which is taking the initialization value as the start value. Moreover, a pose graph module
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is taking care of relocalization (i.e., loop detection) and the subsequent global optimization. It is
a state-of-the-art visual-inertial system, which has a good performance on UAVs and hand-held
applications. The system structure is shown in Figure 1. The red solid line blocks represent the
modules we modified to incorporate depth information, and the red dashed line blocks are the
modules we newly added. Black blocks are original modules of VINS-Mono. We first introduce the
original blocks as the base of our work.

Figure 1. Core system structure. The solid line blocks indicate the original core pipeline of VINS-Mono.
Red solid line blocks represent the modules of VINS-Mono that we modified. Red dashed line blocks
represent the modules we newly added. VINS-Mono starts with the input of a color image sequence
and IMU flow. IMU values are pre-integrated between every color frame, while visual features are
detected and tracked. Then, the data is passed to SFM (Structure From Motion) to get an up-to-scale
pose estimation. Once the visual and inertial alignment and initialization are done, the system starts to
do a sliding window based local VIO process and is using the global pose graph optimization module
to achieve the loop-closure task. The camera pose is then in a global consistent configuration.

3.1. Vision Front End

VINS-Mono supports both rolling and global shutter cameras. It is using the KLT sparse optical
flow algorithm [57] to track Shi–Tomasi features [58]. The features are made to be uniformly distributed
over the images to achieve a robust tracking performance. Keyframes are selected by checking the
average parallax between the current frame and the latest keyframes, along with the number of tracked
features. If the parallax is beyond a certain threshold or the number of tracked features is below a
certain threshold, a new keyframe is inserted.

3.2. IMU Pre-Integration

An IMU typically includes three orthogonal axis accelerometers (at) and a 3-axis gyroscope (ωt),
which measure acceleration and angular velocity with respect to an inertial frame. Affected by noise,
IMU measurements commonly contains additive white noise n and time-varying bias b:

ãt = at + bat + Rt
wgw + na

ω̃t = ωt + bwt + nw
(1)

As shown in Equation (1), accelerometers and gyroscopes suffer from noise that is usually modeled
as Gaussian white noise,

na ∼ N
(

0, σ2
a

)
, nω ∼ N

(
0, σ2

ω

)
(2)
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The bias is usually modeled as a random walk process [15,17,59].

ḃat ∼ N
(

0, σ2
ba

)
, ḃωt ∼ N

(
0, σ2

bω

)
(3)

The accelerometer estimation also suffers the need to compensate the gravity vector gw in world
coordinate system. Earth’s rotation is usually neglected, because it is very small compared to the noise
mentioned above.

MEMS-IMUs typically have an accelerometer and gyroscope output rate of 200–400 Hz, while
cameras usually have a frame rate around 30 Hz. Since they are in different orders of magnitude, i.e.,
there are about 10 IMU measurements between two camera frames, IMU measurements are usually
pre-integrated between two visual frames. The pre-integrated values are treated as constraints between
the two camera frames, which is used later during the local window optimization together with the
camera reprojection residuals.

We are using bk and bk+1 to indicate two consecutive camera frames, where k is the frame index.
As mentioned above, there are a couple of IMU measurements between time tk (at frame bk) and time
tk+1 (at frame bk+1). The pre-integration is then defined as follows:

α
bk
bk+1

=
∫∫

t∈[tk ,tk+1]
Rbk

t · at dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
Rbk

t · at dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]

1
2

Ω (ωt) · γbk
t dt

(4)

The three items in Equation (4) α, β, γ are corresponding to translation, velocity and rotation,
respectively. at and ωt are ideal values without noise and bias. Having ω∧ as the skew symmetric
matrix of a vector, Ω (·) is defined as follows:

Ω(ω) =

[
−ω∧ ω

−ωT 0

]
(5)

To save computational resources, the bias bat and bωt are assumed to be constant during the
pre-integration calculation between two consecutive camera frames. Then, the Jacobian matrixes with
respect to every pre-integration items are calculated to correct the effect of bias changes. And if the
estimated bias changes a lot, the pre-integration process is re-propagated under the new bias value.

3.3. Visual-Inertial Initialization and VIO

VINS-Mono tightly couples camera and IMU states in estimation. Also, as we have seen above,
the IMU has a complex parameterization of the noise and bias. Thus, an initial process is necessary for
parameter initialization of values such as gyroscope bias, gravity vector direction, and the metric scale
for the up-to-scale mono visual SFM part. Once the initialization is done, the system can do the sliding
window based local VIO process.

3.3.1. Visual-Inertial Initialization

The SfM problem can be solved up-to-scale using only visual information. If the extrinsic
(

pb
c , qb

c

)
,

where (·)b
c indicates translation (position p) or rotation (quaternion q) of the body/IMU frame with
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respect to the camera frame, is provided offline [60,61], then the IMU pose
(

pw
bk

, qw
bk

)
is also determined

up-to-scale by a scalar s and camera pose
(

pw
ck

, qw
ck

)
,

qw
bk
= qw

ck
⊗
(

qbk
ck

)−1

spw
bk
= spw

ck
− Rw

bk
pbk

ck

(6)

Here, w is set to equal the first camera frame, and ⊗ represents quaternions multiplication.
Combining these states with the IMU pre-integration term γ, we can calibrate the gyroscope bias.

We have all IMU orientations qw
bk

and the pre-integration term γ in the window. Using B to represent
all frame indexes in the window, the gyroscope bias is obtained by minimizing a least-square function:

min
δbw

∑
k∈B

∥∥∥qw
bk+1

−1 ⊗ qw
bk
⊗ γ

bk
bk+1

∥∥∥2

γ
bk
bk+1
≈ γ̂

bk
bk+1
⊗
[

1
1
2 Jγ

bω
δbω

] (7)

Here Jγ
bω

represents the Jacobian matrix of the pre-integration term γ with respect to bω.
Combining the states with the IMU pre-integration terms α and β, the velocity, gravity vector, and

scale can also be calculated by formulating a linear measurement model and solving this least square
problem. We present this part in Section 4.2.

3.3.2. Visual-Inertial Odometry

Once the initialization is done, the sliding window based local VIO process is active to
continuously estimate the state. With extrinsic transform between the camera and IMU

(
pb

c , qb
c

)
calibrated offline, the state variables in the sliding window are defined as follows:

X = [x0, x1, . . . xn, ρ0, ρ1, . . . ρm]

xk =
[
pw

bk
, vw

bk
, qw

bk
, ba, bω

]
, k ∈ [0, n]

(8)

n is the number of frames in the sliding window, xk is IMU state synchronized with the kth camera
frame, which contains velocity, orientation and position, acceleration and gyroscope bias with respect
to world frame. [ρ1, . . . ρm] represents the inverse depth from triangulation of all landmarks [62] in
the frame of their first observation.

The IMU residual rB between two consecutive frame observations z̃bk
bk+1

and states X is then
defined(denoted as symbol .

=) as follows:

rB
(

z̃bk
bk+1

,X
) .
=



δα
bk
bk+1

δβ
bk
bk+1

δθ
bk
bk+1

δba

δbω


=



Rbk
w

(
1
2 gw∆t2

k − vw
bk

∆tk + pw
bk+1
− pw

bk

)
− α̃

bk
bk+1

Rbk
w

(
gw∆tk + vw

bk+1
− vw

bk

)
− β̃

bk
bk+1

2
[

qw−1

bk
⊗ qw

bk+1
⊗
(

γ̃
bk
bk+1

)−1
]

xyz
ba bk+1

− ba bk

bω bk+1
− bω bk


(9)

Here, δα
bk
bk+1

, δβ
bk
bk+1

corresponds to translation and velocity IMU pre-integration residual terms,

respectively. δθ
bk
bk+1

is in axis-angle representation and corresponds to the rotation pre-integration
residual term and is also the rotation residual. [·]xyz is the function that converts quaternions to the
axis-angle vector representation.
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The camera visual residual rC is defined as the sum of the reprojection errors of every landmark
visible in the window. Knowing the extrinsic calibration

(
pb

c , qb
c

)
, the camera poses can be transformed

to the IMU poses. Combined with all landmark depths in the state vector, it is easy to formulate the
reprojection residual. During the sliding window based VIO process, new states are continuous added
while old states are eliminated. Directly discarding the old states will cause a loss of accuracy, thus a
marginalization strategy, implemented using the Schur complement [63], is used. The VIO optimization
function containing the residuals of marginalization rp, IMU rB and camera rC is written as:

min
X

∥∥rp −HpX
∥∥2

+ ∑
k∈B

∥∥∥rB
(

z̃bk
bk+1

,X
)∥∥∥+ ∑

(l,k)∈C
ρ
(∥∥rC

(
z̃ck

l ,X
)∥∥) (10)

Here, rp, Hp are the constructed prior information coming from the marginalization. The pair
(l, k) indicates the lth feature observed in the kth camera frame in the window. ρ(·) is the Huber norm
loss function to reduce outlier influence.

3.4. Loop Detection and Pose Graph Optimization

As the sliding window based VIO is running, the error is unavoidably accumulated, due to all
kinds of noise, such as IMU and camera measurement noise, calculation accuracy error, the residual
error at the end of the optimization as well as errors induced by the marginalization process. Like most
SLAM systems, VINS-Mono also incorporates a loop closure model, which is using a Bag of Words
approach (DBoW2) [32] for loop detection. Once the loop is detected, the loop constraint is added
together with other relative transformation constraints between sequential keyframes. Then, the pose
graph optimization process is active to distribute the error on all poses. In normal applications such as
handheld and UAVs, the scale is observable thanks to the accelerometer measurements. The roll and
pitch angles are also observable from the IMU. The global pose graph optimization hence, only needs
to perform in 4-DOF of x, y, z, and yaw.

3.5. Observability Analysis of VINS-Mono

For dynamic systems, observability is a fundamental property, and the nullspace of the
observability matrix is corresponding to system’s unobservable directions. More specifically, the
rank of the nullspace is equal to the number of unobservable directions, while each unobservable
direction has a corresponding physical meaning [64]. Besides, the observability is a system inherent
property and hence, independent from the implementation. Since VINS-Mono is still using the
normal VINS system modeling equations [64], it suffers from four unobservable directions, which
are the 3-DOF global translation and the 1-DOF rotation around the gravity vector, which is the yaw
angle. It is degenerated under special motions, which are frequently encountered with ground robots.
For instance, when robots are moving at constant local acceleration,

ab
t

.
= Rb

waw
t ≡ ab, ∀t ≥ t0 (11)

such as a uniform linear motion of turning at a constant velocity, the system has another unobservable
direction, which corresponds to scale. Note that the acceleration of the IMU is inherently measured in
body frame, however to avoid ambiguity, we explicitly label the frame in Equation (11). To simplify
the problem, we consider one state and change the corresponding visible landmarks expression in
Equation (8) to contain x, y, z, denoted as f :

Y =
[
pw

bk
, vw

bk
, qw

bk
, ba, bω, f0, . . . fl

]
(12)
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Thus, the corresponding up-to-scale state vector Y ′ can be written as:

pw
bk

′ = spw
bk

= pw
bk
+ (s− 1)pw

bk

vw
bk

′ = svw
bk

= vw
bk
+ (s− 1)vw

bk

qw
bk

′ = qw
bk

b′a = ba − (s− 1)ba

b′ω = bω

f ′i = s fi = fi + (s− 1) fi, i = 0, . . . l

(13)

where we use superscript ′ to represent up-to-scale. The error state [64] of Y ′ is therefore:

[
δqw

bk

′
]

xyz
δb′ω
δvw

bk

′

δb′a
δpw

bk

′

δ f ′0
...

δ f ′l


=



[
δqw

bk

]
xyz

δbω

δvw
bk
+ (s− 1)vw

bk

δba − (s− 1)at

δpw
bk
+ (s− 1)pw

bk

δ f0 + (s− 1) f0
...

δ fl + (s− 1) fl


=



[
δqw

bk

]
xyz

δbω

δvw
bk

δba

δpw
bk

δ f0
...

δ fl


+ (s− 1)



03×1

03×1

vw
bk

−at

pw
bk

f0
...
fl


(14)

After rewriting the equation, we get:

δY ′ = δY + (s− 1)Ns (15)

It is shown in [65] that Ns lies in the nullspace of the observability matrix, under the condition
that Equation (8) is satisfied. It is clear that the error state can be changed by arbitrary s with the same
system measurements. Hence, the system is suffering scale unobservability under this special motion.
The physical interpretation is also presented in [65]: The accelerometer bias can not be distinguished
from true acceleration and since monocular VINS is relying on acceleration to achieve scale information,
it is unobservable under this condition.

To intuitively show the constant local acceleration motion, we plot measured acceleration values
under three different scenarios in Figure 2. The columns from left to right represent handheld, wheeled
robot under circular motions and tracked robot under uniform linear motion and rows from top
to bottom represent the x, y, z axes separately. The raw acceleration values are plotted in red. Just
for visualization in Figure 2 we also show the result of a lowpass filter in blue for the wheeled and
tracked robot data, which contain lots of noise. It is clear that in the handheld applications, the IMU is
sufficiently excited, especially in x and y direction, while wheeled and tracked robots under circular
and uniform linear motion have almost constant acceleration. Besides, they suffer considerably from
noise, especially for the tracked robots. Although IMU-preintegration can overcome most noise since
if it is zero mean, the monocular system still becomes unstable when the noise is quite large, which is
the usual condition of tracked robots.



Sensors 2019, 19, 2251 10 of 29

-3

-2

-1

0

1

2

3 Acc X-axis

Wheeled

Acc X-axis
Lowpass of Acc X-axis

Wheeled

Wheeled

Tracked

Tracked

Tracked

Handheld

Handheld

Handheld

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Acc Y-axis

Acc Z-axis

Acc X-axis
Lowpass of Acc X-axis

Acc Y-axis
Lowpass of Acc Y-axis

Acc Y-axis
Lowpass of Acc Y-axis

Acc Z-axis
Lowpass of Acc Z-axis
Acc Z-axis
Lowpass of Acc Z-axis

Acc Z-axis
Lowpass of Acc Z-axis
Acc Z-axis
Lowpass of Acc Z-axis

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Figure 2. Acceleration values of handheld, wheeled robots and tracked robots shown separately.
The left column is three-axis acceleration under normal handheld motion, the middle column is the
acceleration of a wheeled robot which is driving a circular motion. The right column is the acceleration
of a tracked robot which is under a uniform, linear motion. The red curves indicate measured raw
acceleration values of the IMU sensors and the blue curves in the two right columns indicate the
acceleration values after a lowpass filter.

On the other hand, when robots are performing no rotation motion

Rbt
w ≡ Rb

w, ∀t ≥ t0 (16)

they suffer other unobservable directions, which makes all three global orientations unobservable.
Wu et al. [21] developed mVINS (VINS within a Manifold), which incorporates VINS with manifold
motions to solve the problem. Unfortunately, for rescue robots, the assumption is invalid due to the
complexity of the terrain. Thanks to the loop closure model and our map filter, though it is left with an
unobservable global orientation, we can still estimate a good trajectory and build nice maps.

4. VINS-RGBD

To address the scale unobservability problem described above and to improve the overall accuracy
and robustness, we propose to incorporate the depth measurements of the RGBD sensor into the
VINS-Mono system. We will be using the Realsense D435i RGBD sensor, which has an integrated
IMU. Our algorithm contains a feature tracker node which is tracking features on the RGB image and
gets the distance information from depth image. By utilize depth images, the system initialization
gains another source of scale information, thus can be more robust and accurate. The VIO process is
also working with the depth source to address the scale unobservable problem under constant local
acceleration motion, but it also increases the accuracy for normal motions. Last but not least, we
develop a mapping function which builds dense point clouds and eliminates noise at the same time.

4.1. Depth Estimation

The feature extracting and tracking method used as well as keyframe decision criteria are
introduced as presented in Section 3.1. The tracked 2D features in the color images are combined
with the pixel values in the same location of the depth images, which are aligned to the color frame.
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Then, the 3D points together with their coordinates in the image frame are passed to the following
initialization or VIO process. Since the D435i sensor is using stereo infrared cameras with additional
structure light, and also due to the intrinsic characteristic of depth sensor, holes and some patterns
(zero measurement) of structure light remain, although the depth images have been processed by the
hole-filling filter RealSense provides. On the one hand, if a 3D feature is observed multiple times in
different frames, we can reject zero and other incorrect depth measurements with our depth verification
algorithm. Points which cannot achieve relatively accurate depth are further passed to the original
VINS-Mono triangularization process, where their depth can be estimated, as long as they are observed
in two different color frames.

4.2. System Initialization

After the tracking module, 3d points are extracted from each image with respect to the image
frame which first observed them. VINS-Mono is using a window based optimization. We first need
to set the value of the state vector, i.e., Equation (8). In VINS-Mono, since only the color source is
available, the initial poses of the camera, hence, the IMU in window, are solved using the five-point
algorithm [66]. The leads to the up-to-scale problem. Although the up-to-scale poses are then aligned
to the IMU to achieve absolute scale, since IMU are always suffering noise, especially in ground robot
applications and on low-cost IMU, the results of alignment are not always good and stable. With the
depth source available in our VINS-RGBD approach, it is first feasible to perform the absolute scale
pose initialization of cameras using PnP (Perspective-n-Point) algorithms [67–69]. The PNP problem is
estimating the camera poses by using 2D features in the images and their corresponding 3D points in
space. The difference of five-point algorithm and PNP algorithms is illustrated in Figure 3.

Figure 3. Illustration of 3D point projections on 2D images. C and C′ are camera centers at different
times with a rotation and translation R, t between them. X is a 3D point. X, R and t are unknown
in monocular VINS. In the left image RGBD is used and the depth of the pixels is used to get X and
PNP [67–69] is used to get R, t with constant scale factor. The right image illustrates the unknown scale
factor when using just RGB. By having at least 5 point pairs like x and x′, five-point algorithm [66] can
be applied to get solutions.

Equation (6) is then rewritten without scale s,

qw
bk
= qw

ck
⊗
(

qbk
ck

)−1

pw
bk
= pw

ck
− Rw

bk
pbk

ck

(17)

As shown in Equation (7), by getting the IMU pre-integration term γ, the gyroscope bias is
calibrated initially. Since the scale is known, later parameters initialization only contains velocities and
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gravity vector, which can be calculated by minimizing terms δα
bk
bk+1

, δβ
bk
bk+1

of Equation (9) in window
with respect to variables vw

bk
, gw. Thus, the state vector can be defined as:

Xkinit
=
[
vw

bk
, vw

bk+1
, gw

]
, k ∈ [0, n− 1] (18)

The linear measurement model is:

z̃k =

 α̃
bk
bk+1
− Rbk

w

(
pw

bk+1
− pw

bk

)
β̃

bk
bk+1

 =

[
−Rbk

w ∆tk 0 1
2 Rbk

w ∆tk
2

−Rbk
w Rbk

w Rbk
w ∆tk

]
.
= HkXkinit

T + nk (19)

The linear least square problem is then defined by adding all the residual terms:

min
Xallinit

∑
k∈[0,n−1]

∥∥∥z̃k −HkXkinit
T
∥∥∥2

(20)

After solving the least square problem, another gravity refinement approach is applied as in
original VINS-Mono, since the magnitude of the gravity is always known. By taking advantage of
this information, the gravity vector can be modelled as a unit vector plus two DOF perturbation
in its tangent space. Note that the acceleration bias does not include in the initialization process,
since the gravity vector is a few orders of magnitude larger than the bias, which is making it hard to
recover. This affects the scale recovery to a certain degree in VINS-Mono, however, has less influence
on our VINS-RGBD.

4.3. Depth-Integrated VIO

The depth-integrated VIO process takes over the image streams once the initialization is done.
The process start from the last state X in Equation (8). Then, the window slides once to marginalize
the oldest or latest frame based on a parallax calculation, where keyframes are also decided. The next
new xk is propagated by IMU integration and then added to the window. Based on all states in the
window, in VINS-Mono points which do not have depth are triangulated to achieve depth. In our
implementation, the depth is attached in each observation frame of a feature. Thus, a consistent depth
verification Algorithm 1 can be applied to filter noisy depth measurements. For the points which are
beyond the depth sensor’s range, the original triangularization method is used. Note that the sensor’s
range does not need to be equal to device real range. It can be manually set by the user. This way the
user can compensate for the increased error for faraway points in RGBD sensors.

Once we have all features in the window with their verified depth, the camera visual residual, i.e.,
the reprojection error, can be calculated. With IMU residual and marginalization prior in Equation (10),
the Ceres non-linear optimization solver [70] is used to solve the problem. However, for low-cost IMUs
such as Realsense D435i is using, noise and bias are in bad condition, which violates the modelling
in Equation (1). Hence, we set the features whose depth come from depth verification algorithms as
constant while leaving the features whose depth come from triangularization still as optimization
variables, as Figure 4 shows.



Sensors 2019, 19, 2251 13 of 29

Algorithm 1: Depth verification algorithm.
Data: T : transformation between observation frames,

P : set of all features within observation frames
F : set of observation frames containing 2D points and depth
C: verified depths set

Result: verified consistent depth in reference frames
initialization;
for feature f in P do

if f has no depth then
C ← ∅;
for frame ∈ F with f ∈ frame do

for frame’ ∈ F \ f rame with f ∈ frame’ do
project 3D point p of f in f rame to 2D image point of f in f rame’;
calculate projection residual;
if residual < threshold then

transform p to reference frame;
get depth d of transformed point;
C ← d;

end
end

end
calculate mean dmean in C;
if dmean between device range then

set depth for f as dmean

end
end

end

Figure 4. Depth integrated VIO process.
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4.4. Loop Closing

After detecting a loop using the Bag of Words approach, VINS-Mono is estimating the transform
between the two frames using a PnP approach on the 3D points estimated by triangulation. Thus, our
VINS-RGBD is automatically also improving the loop closing transform estimation, since the used
depths are now provided by the more reliable RGBD sensor.

4.5. Mapping and Noise Elimination

Different from Kinect Fusion [14], which uses GPU accelerated ICP [71] for finding matched
points between two depth images, to make the system compact and suitable for small robot integration,
we simply project 3D points from each depth image, which are synchronized with keyframes with
their corresponding poses estimated by VINS, to build the map. With this straightforward method,
however, it does not match corresponding points among frames, resulting in a lot of redundant points.

In order to better manage the point clouds, an octree [72] structure is maintained. Octree is a
tree-like data structure used to describe three-dimensional space, each node of which represents a
volume element of a cube. A parent cube can be at least cut into eight equal child cubes. Such the
number of child nodes of any node in the tree cannot be anything but eight or zero. The volume
elements represented by the eight child nodes are added together to be equal to the volume of the
parent node. The resolution defines the size of the smallest voxel. A basic structure of octree is as
shown in Figure 5.

Figure 5. Octree Structure.

To achieve real-time low-cost mapping and navigation, we first downsample every depth image
with step size 10 to get around 3000 points, while the original depth image contains more than
300,000 points at a resolution of 640 × 480. Note that these points are inherently different from the
feature points that the tracking thread provides. They are able to provide dense information, which is
useful in navigation tasks, especially in the ground robot application, since they are not only doing
obstacle avoidance but also interaction with obstacles in environments such as going over stairs.

After downsampling, we set the upper bound of each leaf node in the octree to only contain
five map points. Any extra points coming later are rejected and also removed from the point vector
attached on each keyframe, as Figure 6a shows. This may loss information, however, the resolution of
the octree can always set high enough to satisfy the application demand. Also note that we are not
aiming to do a 3D reconstruction, but to build a map applicable to ground robots, especially for rescue
robot navigation.
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(a) Eliminate points in VIO process. (b) Eliminate points after loop closure.

Figure 6. Points elimination. (a) illustrates the elimination during the VIO process. Cameras in figures
represent keyframes. The points (blue) are continuously added to the octree leaf nodes until reaching
the upper bound. Later coming points (gray) are rejected and also removed from point vector of
corresponding keyframe to save space. After loop closure, as illustrated in (b), if a leaf node contains
fewer points than a given threshold, the points are discarded, both in the octree and point vector of
the keyframe.

On the other hand, when a loop is detected and closed, we need to update all the points after
loop closure, where the time consumption is linearly related to the number of points. Setting the
upper bound of the capacity of each leaf node significantly reduces the number of newly added points,
ensuring the performance of real-time mapping. However, the loop closure algorithms minimize the
error and thus may change all poses in the loop circle. There might still exist a few poses which have a
significant error. The 3D points of those frames ideally should not be projected to the map. To achieve
this we set a threshold on the number of points in a leaf: Points in leaves containing a fewer number
than the threshold points are discarded. The threshold is depending on the velocity, frame rate and
keyframe selection strategy. For instance, if the robots move fast, it may occur that most of the numbers
of points in octree leaf nodes are less than the threshold and be discarded incorrectly. Besides, the
depth image provided by the depth camera has noise which considered as random. Our elimination
strategy can also discard them, thus leading to a more consistent map. The elimination process is
shown in Figure 6b.

5. Experiments and Results

To our knowledge, there is no public dataset which contains color, depth and IMU data together.
The EuRoC MAV visual-inertial datasets [73] contains stereo images rather than dense depth images
directly. Besides, they are also aiming to MAV (Micro Aerial Vehicle) applications. The RGBD SLAM
Datasets [74] provided by TUM contains RGBD images; however, they only have accelerometer data.
To this end, the experiments are all evaluated in real-world environments compared to the original
VINS-Mono by using a RealSense D435i camera. The datasets are also attached with our open source
code. To comprehensively evaluate our system, we perform both single and integrated experiments.
The first single experiment evaluates the scale drift problem during local constant acceleration motion.
The second single experiment validates our depth-integrated VIO process illustrated in Figure 4.
The integrated experiments with handheld, wheeled and tracked robots are then performed to show
the versatility of our system. Last but not least, the mapping results are shown in different scenarios.
The experiments are all running on an Intel NUC equipped with i7-8559U CPU at 2.7–4.5 GHz



Sensors 2019, 19, 2251 16 of 29

and 16 GB memory; no GPU is used. The ground truth poses in experiments are provided by our
OptiTrack [75] tracking system and we evaluate the trajectories using the methods provided by [76].

5.1. Scale Drift Experiment

The scale drift experiment is performed on a Jackal [77] UGV, driving at a constant radius circle.
When the monocular VINS system is under constant radius circular motion (radius about 2 m, speed
about 0.4 m/s), the scale direction is unobservable, as we showed in Section 3.5. However, combined
with absolute depth information, another scale resource is integrated into the system. Figure 7
illustrates our VINS-RGBD compared to VINS-Mono with ground truth. For comparison we also
tested both systems with deactivated loop closing (no loop), showing the performance of only the
pure VIO. Our system is well aligned with the ground truth in both loop and no loop conditions.
Since RealSense D435i is using a low-cost IMU, the monocular VINS drifts a lot as shown in Figure 8.
Actually, VINS-Mono initialized with a wrong scale, which can be seen in Figure 7b.
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Figure 7. Scale drift evaluation with loop closure (a) and with deactivated loop closing (b).
The trajectories are produced by a wheeled Jackal UGV.
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Figure 8. Absolute scale drift percentage of the deactivated loop closing experiment.

5.2. Open Outdoor Experiment

RGBD cameras usually use structured light or ToF (Time of Flight) technology to achieve dense
depth images, which also limits the measurement range to several meters. Also, since they are active
infrared sensors, they usually get over shined by the sunlight. For those reasons almost all handheld
and UAV applications use color only VINS. RealSense D400 series is using a stereo approach with
structure light as backup for uniform surfaces and has a maximum range up to 10 m. The error also
increases exponentially with distance. In this paper we proposed to use a verified depth within a
certain range and use the triangularization method to estimate points beyond depth measurement
range, as shown in Figure 4. We evaluate this part in a handheld open outdoor scenario which shown
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in Figure 9b. The trajectories estimated by VINS-Mono and our system aligned to Google Maps are
shown in Figure 9a. We can see the performance of both algorithms is similar, which validates that our
system does not degenerate in outdoor and out-of-range scenarios.

(a) (b)
Figure 9. Open outdoor experiment. (b) shows a representative moment when our system is running,
where the points are far away and most of them are beyond depth range of the device. The color in
more red indicates the longer of tracking times. (a) shows the trajectories aligned to Google Maps.
The blue one is estimated by our system, and the purple one is from VINS-Mono.

5.3. Integrated Experiments

The integrated experiments cover handheld, wheeled robot and tracked robot tests. We evaluate
the trajectories of our proposed VINS-RGBD and VINS-Mono with the ground truth poses from
the tracking system. The RMSE (Root-Mean-Square Error) is used to evaluate the absolute error
after aligning every trajectory to its corresponding ground truth path. The absolute translation and
orientation are also calculated to compare. Besides, the relative pose error is shown to give a more
comprehensively evaluation. To highlight the comparisons between the two methods, we disable the
loop detection and optimization in the following tests, however, loop performance is also evaluated in
the form of RMSE in Table 1.

Table 1. RMSE of three different experiments in meters. “-” denotes no loop, “x” denotes test failed.

Experiment VINS-RGBD VINS-RGBD with loop VINS-Mono VINS-Mono with loop

Handheld Simple 0.07 - 0.24 -
Handheld Normal 0.13 - 0.20 -

Handheld With more Rotation 0.18 0.20 0.23 0.23

Wheeled Slow 0.20 0.16 0.39 0.27
Wheeled Normal 0.17 0.09 0.18 0.09

Wheeled Fast 0.23 0.20 0.63 0.31

Tracked 1 Ground and Up-down Slopes 0.11 0.10 x x
Tracked 2 Cross and Up-down Slopes 0.17 0.23 x x

Tracked 3 Cross and Up-down Slopes and Ground 0.21 0.24 0.77 0.75

5.3.1. Handheld and Wheeled Experiment

To show the versatility of our system, we perform handheld experiments with RealSense D435i
under different motions. The trajectories are shown in Figure 10 and the absolute and relative error of
the test “With more rotation” is shown in Figure 11. It is shown that with depth information integrated,
the handheld application, which is like UAVs, also has better performance compared to the original
VINS-Mono. In Figure 10a,c, the scale evaluation of VINS-Mono method is in bad condition, however,
our method not only recovers scale more accurate but also has better performance in relative pose
estimation, which is shown in relative error part of Figure 11.
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Figure 10. Handheld trajectory estimation.
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Figure 11. Handheld Absolute and Relative Error in “With more rotation” Experiment. The first two
rows show the absolute position and orientation error, where the left results are from our VINS-RGBD
and right are from VINS-Mono. The last row shows the relative translation and yaw error of our
VINS-RGBD and VINS-Mono, respectively.

The wheeled robot hardware platform is shown in Figure 12a, which is a commercial wheeled
ground vehicle with differential drive. The wheeled acceleration reading of IMU in Figure 2 is from
this platform, which is shown that small sized wheeled robots usually suffer larger acceleration noise
than handheld applications. This is due to the mechanism of such robots, because large vehicles such
as passenger vehicles usually have larger wheels which can absorb more shock and independent shock
mitigation systems that small-sized robots do not have. In the rescue field, small sized wheeled robots
are also used sometimes in easy terrain. Figures 13 and 14 show the trajectories and error comparison
of our wheeled robot. The trajectories are from the robot driving on the ground with two up-down
slopes with different velocities (average speeds: slow: 31 min 148 s; normal: 32 min 74 s; fast: 48 min
99 s (with intermittent high speed phases)). Our VINS-RGBD aligned to ground truth better, especially
in slow and fast experiments. In the normal velocity test, both methods have good performance, which
may be caused by the sufficiently activated accelerometer under this motion. However, with faster
motion, which is shown in Figure 13c, since more motion blur from the color camera is introduced,
the performance degenerates. In the relative error diagrams of Figure 14, the relative translation error
performance is much better in our method while relative yaw does not have much difference, which is
as was expected since, adding depth information into VINS has a large effect on translation evaluation
but little on orientation.
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(a) Wheeled Robot. A ramp is visible in the background. (b) Tracked Robot.

Figure 12. Robot Hardware Platform.
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(a) Slow Top View.
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(b) Normal Top View.
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Figure 13. Wheeled Robot trajectory estimation. Driving on flat ground with two ramps (approximate
position indicated in (a). (b,c) are similar).

5.3.2. Tracked Experiment

The self-developed tracked robot hardware platform is shown in Figure 12b, which has a typical
operation size of 0.4 × 0.3 × 0.4 m, and four independent flippers for obstacle crossing. Since the size
is smaller than regular rescue robots, there is lots of shaking caused by tracks during the movement,
which causes pose estimation to be more difficult, as Figure 2 shows. Besides, the movement in 3D
scenes usually contains sudden falls from obstacles, and fast rotations, which causes strong ego-motion
and makes the camera only SLAM such as ORB-SLAM2 fail, as shown in Figure 15. We perform the
tracked robot experiments in three different tests: Ground and Up-down Slopes; Cross and Up-down
Slopes; Cross and Up-down Slopes and Ground. The schematic trajectories are shown in Figure 16,
which is the resulting map from our method under the handheld approach, with light blue, green and
red colors, respectively. The three trajectories evaluations are shown in Figures 17 and 18. As can be
seen in Figure 17, the trajectories are flexuose even on the ground truth. The performance degenerated
due to this factor, where VINS-Mono does not work in the first two tests and also hardly works in the
last test. Our method has a larger error than previous handheld and wheeled tests. However, it is still
at an acceptable level. The RMSE of all the nine experiments is listed in Table 1, which shows that
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with depth-integration, our method has a better performance. Figure 19 shows representative selected
frames in handheld, wheeled and tracked robots, respectively.

0 5 10 15 20 25 30
Distance [m]

−400

−200

0

200

400

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

0 5 10 15 20 25 30
Distance [m]

−800
−600
−400
−200

0
200
400
600

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

0 5 10 15 20 25 30
Distance [m]

−10
−8
−6
−4
−2

0
2
4
6
8

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

0 5 10 15 20 25 30
Distance [m]

−10

−5
0

5

10

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

3.0 6.0 9.0 12.0 15.0
Distance traveled [m]

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
sl

at
io

n
er

ro
r

[m
]

VINS-RGBD

VINS-Mono

3.0 6.0 9.0 12.0 15.0
Distance traveled [m]

0
1
2
3
4
5
6
7
8

Y
aw

er
ro

r
[d

eg
]

VINS-RGBD

VINS-Mono

Figure 14. Wheeled Robot Absolute and Relative Error in “Slow” Experiment. The first two rows show
the absolute position and orientation error, where the left results are from our VINS-RGBD and right
are from VINS-Mono. The last row shows the relative translation and yaw error of our VINS-RGBD
and VINS-Mono respectively.
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Figure 15. ORB-SLAM in Tracked 2 (Cross and Up-down Slopes) test. It lost track three times. We reset
the ORB-SLAM once it lost track and get four individual trajectories. The red points indicate the
beginning and end of four trajectories. Note that since we align trajectories separately, the aligned
result could look good, which should not be treated as the real performance of this method.
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(a) (b)

Figure 16. Tracked robot experiment site. (a) Real Trajectory Testing Environment; (b) Hand-drawn
trajectories of the tracked robot experiments. Tracked 1: light-blue; Tracked 2: green; Tracked 3: red.
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Figure 17. Tracked robot trajectory estimations. Start point on the left for all three experiments.
(a) Tracked 1: Ground and Up-down Slopes. Top View (top), Side View (bottom); (b) Tracked 2: Cross
and Up-down Slopes. Top View (top), Side View (bottom); (c) Tracked 3: Cross and Up-down Slopes
and Ground. Top View (right), Side View (left).
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Figure 18. Tracked Robot Absolute and Relative Error in the “Cross and Up-down Slopes and Ground”
experiment. The first row shows the absolute position and orientation error of our system. The relative
translation and yaw error together with the scale drift percentage comparison of our VINS-RGBD and
VINS-Mono are shown in the last two rows.

(a) Handheld (b) Wheeled (c) Tracked

Figure 19. Selected frames from the handheld, wheeled and tracked experiments.

5.4. Map Comparison

In Section 4.5 we proposed to bound the point clouds by eliminating points using octree during
the VIO process. The resulting point clouds are further filtered if an octree leaf node contains fewer
points than another threshold. This strategy can build maps with different density point clouds, which
also accelerates the loop closing speed.

The experiments are performed a 60 cm version of the ASTM Standard Test Method for Evaluating
Emergency Response Robot Capabilities. Those are ASTM E2803-11 Confined Area Obstacles: Inclined
Planes and ASTM 2827-11 Crossing Pitch/Roll Ramps [78], the first test methods with the rails is still in
the standardization process. Those test methods are also extensively used in RoboCup Rescue [79,80],
for which we plan to use VINS-RGBD.

Figure 20 shows the results of our VINS-RGBD mapping. In every column, there is one of the test
methods. The rows with the maps show the mapping with all subsampled points on the top, the maps
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with the upper limit of five points in an octree cell in the middle and the maps where additionally
points in cells with fewer than three points are filtered in the bottom. Note that the last filter step is
triggered manually here to keep it consistent with the above maps. Comparing the third rows to the
second rows, we can see that the map structure remains very similar while the point density is reduced.
The last rows eliminate points if fewer than a threshold of 3 are in a cell. We can see that the point
clouds is further reduced, mainly in areas which are of little interest. To quantitatively evaluate the
efficiency of the octree structure based strategy, we perform experiments in three different size scenes:
lab (large), arena (middle), and arena (small) in Table 2. The corresponding map results are shown
in Figure 21. The experiments evaluate the upper bound number during the VIO process, filtering
after loop closing is disabled to keep the results consistent. We can see with the upper bound number
decreasing, the number of points is also reduced near linearly. The last two columns list the update
time after loop closure with an octree leaf capacity at 5 and the speed up rate compared to origin
points. This is calculated by points rate, since the points update time is linearly related to the number
of points.

Figure 20. Mapping results in ASTM Standard Test Methods.
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Table 2. Efficiency of the octree structure.

Scene Octree Resolution (m) Origin (Points) Octree 5pts Octree 3pts Octree 1pt Loop Cost 5pts (ms) Speed up (5pts)

lab (large) 0.05 3,981,242 2,026,884 1,562,519 760,411 378 49.1%
arena (middle) 0.02 6,153,656 849,748 619,237 284,029 159 86.2%
arena (small) 0.02 4,259,847 198,161 128,615 48,091 37 95.3%

Figure 21. Mapping result corresponding to comparison in Table 2, from left to right: lab (large), arena
(middle), arena (small).

6. Conclusions

We proposed a system to fuse color, depth and inertial sensors for trajectory estimation and
mapping for small ground rescue robots. Our system called VINS-RGBD is based on the state-of-the-art
software VINS-Mono. We are taking advantage of the RealSense D435i, which is small, lightweight and
has an integrated IMU. We extend the VINS-Mono system to make use of the depth data during the
initialization process as well as during the VIO phase. Exhaustive experiments and comparisons
with handheld, wheeled robots and tracked robots are performed to evaluate the performance
and versatility of our system. Our software is available as open source and the dataset is also
provided. The experiments show the excellent performance of our system compared to the ground
truth trajectories, to the VINS-Mono system and also to an ORB-based approach. We show that for
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ground robots, especially for tracked robots, the noise of the IMU readings is very high due to the
vibrations induced by the ground contact. More importantly, under some special motions common for
ground robots, the acceleration bias cannot be estimated since it is unobservable. This is a problem
for traditional VIO systems, that are relying heavily on the IMU to estimate the unknown scale factor.
Using depth information we can prevent the IMU from having a too big negative effect on the results,
thus enabling our solution to provide good maps for applications such as path planning or navigation.

In this work, we fuse the RGBD camera data with both gyroscope and accelerometer
measurements from the IMU. However, in some extreme situations such as very challenging terrain,
the accelerometer is susceptible to high-frequency noise and becomes unreliable. One naive way
is to only fuse the RGBD camera images with the gyroscope and don’t use the accelerometer, since
the depth camera already provides absolute scale information. However, both accelerometer and
depth camera have their degeneration conditions. Using both accelerometer and depth cameras also
has advantages, e.g., the gravity vector estimated from the accelerometer can correct the pitch and
roll angle of the camera. Thus, we keep both and are working on finding better ways to model the
accelerometer, especially in extreme conditions. With a pose ground truth, such as recorded in our
dataset, it is easy to get accelerometer ground truth and make it possible to use deep learning to model
the accelerometer or even IMU more correctly. With better sensors modelling, we expect to achieve
more accurate trajectory estimation and mapping results.

To build a whole navigation system, we are also working on flipper planning of our tracked
robot under the limited environmental perception, since RGBD cameras typically only provide one
view of the environment rather than 360 degrees by LIDAR. The 3D path planning is also a further
topic together with ground robot navigation map generation, by utilizing the consistent point cloud
information provided by our VINS-RGBD system.

Author Contributions: Conceptualization, Z.S.; Investigation, Z.S.; Methodology, Z.S.; Software, Z.S. and R.L.;
Supervision, S.S.; Validation, R.L.; Visualization, R.L.; Writing—original draft, Z.S.; Writing—review & editing, S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bloss, R. Sensor innovations helping unmanned vehicles rapidly growing smarter, smaller, more autonomous
and more powerful for navigation, mapping, and target sensing. Sens. Rev. 2015, 35, 6–9. [CrossRef]

2. Bloss, R. Unmanned vehicles while becoming smaller and smarter are addressing new applications in
medical, agriculture, in addition to military and security. Ind. Robot 2014, 41, 82–86. [CrossRef]

3. Birk, A.; Schwertfeger, S.; Pathak, K. A networking framework for teleoperation in safety, security, and
rescue robotics. IEEE Wirel. Commun. 2009, 16, 6–13. [CrossRef]

4. Colas, F.; Mahesh, S.; Pomerleau, F.; Liu, M.; Siegwart, R. 3D path planning and execution for search and
rescue ground robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 3–7 November 2013; pp. 722–727.

5. Pathak, K.; Birk, A.; Schwertfeger, S.; Delchef, I.; Markov, S. Fully autonomous operations of a jacobs rugbot
in the robocup rescue robot league 2006. In Proceedings of the IEEE International Workshop on Safety,
Security and Rescue Robotics, Rome, Italy, 27–29 September 2007; pp. 1–6.

6. Thrun, S.; Thayer, S.; Whittaker, W.; Baker, C.; Burgard, W.; Ferguson, D.; Hahnel, D.; Montemerlo, D.;
Morris, A.; Omohundro, Z.; et al. Autonomous exploration and mapping of abandoned mines. IEEE Robot.
Autom. Mag. 2004, 11, 79–91. [CrossRef]

7. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized
particle filters. IEEE Trans. Robot. 2007, 23, 34. [CrossRef]

8. Birk, A.; Vaskevicius, N.; Pathak, K.; Schwertfeger, S.; Poppinga, J.; Buelow, H. 3-D perception and modeling.
IEEE Robot. Autom. Mag. 2009, 16, 53–60. [CrossRef]

http://dx.doi.org/10.1108/SR-02-2014-621
http://dx.doi.org/10.1108/IR-10-2013-410
http://dx.doi.org/10.1109/MWC.2009.4804363
http://dx.doi.org/10.1109/MRA.2004.1371614
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/MRA.2009.934822


Sensors 2019, 19, 2251 26 of 29

9. Kohlbrecher, S.; Von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable slam system with full 3d motion
estimation. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics,
Kyoto, Japan, 1–5 November 2011; pp. 155–160.

10. Davison, A.J. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the
ICCV 2003, Nice, France, 13–16 October 2003; Volume 3, pp. 1403–1410.

11. Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. Analysis and improvement of the consistency of extended
Kalman filter based SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, 19–23 May 2008; pp. 473–479.

12. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

13. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D mapping with an RGB-D camera. IEEE Trans.
Robot. 2014, 30, 177–187. [CrossRef]

14. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.;
Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of
the IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October
2011; pp. 127–136.

15. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans.
Robot. 2018, 34, 1004–1020. [CrossRef]

16. Li, M.; Mourikis, A.I. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 2013,
32, 690–711. [CrossRef]

17. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based
approach. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 298–304.

18. Murphy, R.R.; Kravitz, J.; Stover, S.L.; Shoureshi, R. Mobile robots in mine rescue and recovery. IEEE Robot.
Autom. Mag. 2009, 16, 91–103. [CrossRef]

19. Ghamry, K.A.; Kamel, M.A.; Zhang, Y. Cooperative forest monitoring and fire detection using a team of
UAVs-UGVs. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS),
Arlington, VA, USA, 7–10 June 2016; pp. 1206–1211.

20. Menna, M.; Gianni, M.; Ferri, F.; Pirri, F. Real-time autonomous 3D navigation for tracked vehicles in rescue
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014; pp. 696–702.

21. Wu, K.J.; Guo, C.X.; Georgiou, G.; Roumeliotis, S.I. Vins on wheels. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5155–5162.

22. Fritsche, P.; Zeise, B.; Hemme, P.; Wagner, B. Fusion of radar, LiDAR and thermal information for hazard
detection in low visibility environments. In Proceedings of the IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 96–101.

23. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 µs Latency Asynchronous Temporal Contrast
Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [CrossRef]

24. Keselman, L.; Woodfill, J.I.; Grunnet-Jepsen, A.; Bhowmik, A. Intel (r) realsense (tm) stereoscopic depth
cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1267–1276.

25. Carfagni, M.; Furferi, R.; Governi, L.; Santarelli, C.; Servi, M.; Uccheddu, F.; Volpe, Y. Metrological and
Critical Characterization of the Intel D415 Stereo Depth Camera. Sensors 2019, 19, 489. [CrossRef]

26. Intel RealSense Depth Camera D435i. Available online: https://www.intelrealsense.com/depth-camera-
d435i (accessed on 14 May 2019).

27. Yang, K.; Wang, K.; Hu, W.; Bai, J. Expanding the detection of traversable area with RealSense for the visually
impaired. Sensors 2016, 16, 1954. [CrossRef]

28. Vit, A.; Shani, G. Comparing RGB-D Sensors for Close Range Outdoor Agricultural Phenotyping. Sensors
2018, 18, 4413. [CrossRef]

29. Available online: https://robotics.shanghaitech.edu.cn/datasets/VINS-RGBD (accessed on 14 May 2019).
30. Available online: https://github.com/STAR-Center/VINS-RGBD (accessed on 14 May 2019).

http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2013.2279412
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1177/0278364913481251
http://dx.doi.org/10.1109/MRA.2009.932521
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.3390/s19030489
https://www.intelrealsense.com/depth-camera-d435i
https://www.intelrealsense.com/depth-camera-d435i
http://dx.doi.org/10.3390/s16111954
http://dx.doi.org/10.3390/s18124413
https://robotics.shanghaitech.edu.cn/datasets/VINS-RGBD
https://github.com/STAR-Center/VINS-RGBD


Sensors 2019, 19, 2251 27 of 29

31. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th
IEEE and ACM International Symposium on Mixed and Augmented Reality; IEEE Computer Society: Washington,
DC, USA, 2007; pp. 1–10.

32. Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans.
Robot. 2012, 28, 1188–1197. [CrossRef]

33. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras.
IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

34. Scaramuzza, D. Performance evaluation of 1-point-RANSAC visual odometry. J. Field Robot. 2011,
28, 792–811. [CrossRef]

35. Ortin, D.; Montiel, J.M.M. Indoor robot motion based on monocular images. Robotica 2001, 19, 331–342.
[CrossRef]

36. Choi, S.; Kim, J.H. Fast and reliable minimal relative pose estimation under planar motion. Image Vis.
Comput. 2018, 69, 103–112. [CrossRef]

37. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial state estimation
and self-calibration of mavs in unknown environments. In Proceedings of the IEEE International Conference
on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 957–964.

38. Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion
approach applied to mav navigation. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3923–3929.

39. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April
2007; pp. 3565–3572.

40. Leutenegger, S.; Furgale, P.; Rabaud, V.; Chli, M.; Konolige, K.; Siegwart, R. Keyframe-based visual-inertial
slam using nonlinear optimization. In Proceedings of the 2013 Robotics: Science and Systems Conference,
Berlin, Germany, 24–28 June 2013.

41. Qin, T.; Cao, S.; Pan, J.; Shen, S. A General Optimization-based Framework for Global Pose Estimation with
Multiple Sensors. arXiv 2019, arXiv:1901.03642.

42. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017,
2, 796–803. [CrossRef]

43. Mu, X.; Chen, J.; Zhou, Z.; Leng, Z.; Fan, L. Accurate Initial State Estimation in a Monocular Visual-Inertial
SLAM System. Sensors 2018, 18, 506.

44. Hong, E.; Lim, J. Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation. Sensors
2018, 18, 4287. [CrossRef]

45. Guo, C.X.; Roumeliotis, S.I. IMU-RGBD camera 3D pose estimation and extrinsic calibration: Observability
analysis and consistency improvement. In Proceedings of the IEEE International Conference on Robotics
and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2935–2942.

46. Brunetto, N.; Salti, S.; Fioraio, N.; Cavallari, T.; Stefano, L. Fusion of inertial and visual measurements for
rgb-d slam on mobile devices. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, Santiago, Chile, 11–12 and 17–18 December 2015; pp. 1–9.

47. Falquez, J.M.; Kasper, M.; Sibley, G. Inertial aided dense & semi-dense methods for robust direct visual
odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, South Korea, 9–14 October 2016; pp. 3601–3607.

48. Laidlow, T.; Bloesch, M.; Li, W.; Leutenegger, S. Dense RGB-D-inertial SLAM with map deformations.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 6741–6748.

49. Zhu, Z.; Xu, F. Real-time Indoor Scene Reconstruction with RGBD and Inertia Input. arXiv 2018,
arXiv:1812.03015.

50. Wang, C.; Hoang, M.C.; Xie, L.; Yuan, J. Non-iterative RGB-D-inertial Odometry. arXiv 2017,
arXiv:1710.05502.

51. Ling, Y.; Liu, H.; Zhu, X.; Jiang, J.; Liang, B. RGB-D Inertial Odometry for Indoor Robot via Keyframe-based
Nonlinear Optimization. In Proceedings of the IEEE International Conference on Mechatronics and
Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 973–979.

http://dx.doi.org/10.1109/TRO.2012.2197158
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1002/rob.20411
http://dx.doi.org/10.1017/S0263574700003143
http://dx.doi.org/10.1016/j.imavis.2017.08.007
http://dx.doi.org/10.1109/LRA.2017.2653359
http://dx.doi.org/10.3390/s18124287


Sensors 2019, 19, 2251 28 of 29

52. Herbert, M.; Caillas, C.; Krotkov, E.; Kweon, I.S.; Kanade, T. Terrain mapping for a roving planetary
explorer. In Proceedings of the International Conference on Robotics and Automation, Scottsdale, AZ, USA,
14–19 May 1989; pp. 997–1002.

53. Triebel, R.; Pfaff, P.; Burgard, W. Multi-level surface maps for outdoor terrain mapping and loop closing.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,
9–15 October 2006; pp. 2276–2282.

54. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robots 2013, 34, 189–206. [CrossRef]

55. Yang, S.; Yang, S.; Yi, X.; Yang, W. Real-time globally consistent 3D grid mapping. In Proceedings of the
IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017;
pp. 929–935.

56. Delmerico, J.; Scaramuzza, D. A benchmark comparison of monocular visual-inertial odometry algorithms
for flying robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 2502–2509.

57. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. 1981.
Available online: https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
(accessed on 14 May 2019).

58. Shi, J.; Tomasi, C. Good Features to Track; Technical Report; Cornell University: Ithaca, NY, USA, 1993.
59. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial

Odometry. IEEE Trans. Robot. 2017, 33, 1–21. [CrossRef]
60. Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending kalibr: Calibrating the extrinsics

of multiple imus and of individual axes. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4304–4311.

61. Zhi, X.; Schwertfeger, S. Simultaneous hand-eye calibration and reconstruction. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1470–1477.

62. Civera, J.; Davison, A.J.; Montiel, J.M. Inverse depth parametrization for monocular SLAM. IEEE Trans.
Robot. 2008, 24, 932–945. [CrossRef]

63. Sibley, G.; Matthies, L.; Sukhatme, G. Sliding window filter with application to planetary landing. J. Field
Robot. 2010, 27, 587–608. [CrossRef]

64. Hesch, J.A.; Kottas, D.G.; Bowman, S.L.; Roumeliotis, S.I. Consistency analysis and improvement of
vision-aided inertial navigation. IEEE Trans. Robot. 2014, 30, 158–176. [CrossRef]

65. Wu, K.J.; Roumeliotis, S.I. Unobservable Directions of VINS under Special Motions; Department of Computer
Science & Engineering, University of of Minnesota: Minneapolis, MN, USA, 2016.

66. Nistér, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell.
2004, 26, 756–777. [CrossRef]

67. Gao, X.S.; Hou, X.R.; Tang, J.; Cheng, H.F. Complete solution classification for the perspective-three-point
problem. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 930–943.

68. Lepetit, V.; Moreno-Noguer, F.; Fua, P. Epnp: An accurate o (n) solution to the pnp problem. Int. J.
Comput. Vis. 2009, 81, 155. [CrossRef]

69. Penate-Sanchez, A.; Andrade-Cetto, J.; Moreno-Noguer, F. Exhaustive linearization for robust camera pose
and focal length estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2387–2400. [CrossRef]

70. Agarwal, S.; Mierle, K. Ceres Solver. 2012. Available online: http://ceres-solver.org/ (accessed on
14 May 2019).

71. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control
Paradigms and Data Structures; International Society for Optics and Photonics: Bellingham, WA, USA, 1992;
Volume 1611, pp. 586–607.

72. Meagher, D. Geometric modeling using octree encoding. Comput. Graphics Image Process. 1982, 19, 129–147.
[CrossRef]

73. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC
micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [CrossRef]

http://dx.doi.org/10.1007/s10514-012-9321-0
https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TRO.2008.2003276
http://dx.doi.org/10.1002/rob.20360
http://dx.doi.org/10.1109/TRO.2013.2277549
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/TPAMI.2013.36
http://ceres-solver.org/
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/10.1177/0278364915620033


Sensors 2019, 19, 2251 29 of 29

74. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Algarve, 7–12 October 2012; pp. 573–580.

75. OptiTrack. Available online: https://optitrack.com (accessed on 14 May 2019).
76. Zhang, Z.; Scaramuzza, D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 7244–7251.

77. Jackal. Available online: https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
(accessed on 14 May 2019).

78. ASTM 2827-11 Crossing Pitch/Roll Ramps. Available online: https://www.astm.org/Standards/E2827.htm
(accessed on 14 May 2019).

79. Sheh, R.; Schwertfeger, S.; Visser, A. 16 Years of RoboCup Rescue. KI-Künstliche Intelligenz 2016, 30, 267–277.
[CrossRef]

80. Sheh, R.; Jacoff, A.; Virts, A.M.; Kimura, T.; Pellenz, J.; Schwertfeger, S.; Suthakorn, J. Advancing the state of
urban search and rescue robotics through the RoboCupRescue robot league competition. In Field and Service
Robotics; Springer: Berlin, Germany, 2014.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://optitrack.com
https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
https://www.astm.org/Standards/E2827.htm
http://dx.doi.org/10.1007/s13218-016-0444-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	VINS-Mono Analysis
	Vision Front End
	IMU Pre-Integration
	Visual-Inertial Initialization and VIO
	Visual-Inertial Initialization
	Visual-Inertial Odometry

	Loop Detection and Pose Graph Optimization
	Observability Analysis of VINS-Mono

	VINS-RGBD
	Depth Estimation
	System Initialization
	Depth-Integrated VIO
	Loop Closing
	Mapping and Noise Elimination

	Experiments and Results
	Scale Drift Experiment
	Open Outdoor Experiment
	Integrated Experiments
	Handheld and Wheeled Experiment
	Tracked Experiment

	Map Comparison

	Conclusions
	References

