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Abstract: As the foundation of model control, robot dynamics is crucial. However, a robot is a
complex multi-input–multi-output system. System noise seriously affects parameter identification
results, thereby inevitably requiring us to conduct signal processing to extract useful signals from
chaotic noise. In this research, the dynamic parameters were identified on the basis of the proposed
multi-criteria embedded optimization design method, to obtain the optimal excitation signal and then
use maximum likelihood estimation for parameter identification. Considering the movement coupling
characteristics of the multi-axis, experiments were based on a two degrees-of-freedom manipulator
with joint torque sensors. Simulation and experimental results showed that the proposed method
can reasonably resolve the problem of mutual opposition within a single criterion and improve the
identification robustness in comparison with other optimization criteria. The mean relative standard
deviation was 0.04 and 0.3 lower in the identified parameters than in F1 and F3, respectively, thus
signifying that noise is effectively alleviated. In addition, validation experimental curves were close
to the estimation model, and the average of root mean square (RMS) is 0.038, thereby confirming the
accuracy of the proposed method.

Keywords: dynamic parameter identification; excitation optimization; maximum likelihood estimation;
robotics; motion control; experiment design; signal processing

1. Introduction

A manipulator is a complicated multi-input–multi-output (MIMO) system, which has strongly
coupled nonlinear characteristics. Given structured and unstructured uncertainties, such as elastic
deformation, assembly clearance, inertia, Coriolis, gravity, and friction torque, the repetitive positioning
accuracy of a robot and the perceived accuracy of joint torque information are seriously affected.
Most robot manufacturers do not provide related information or partial parameters to obtain an accurate
dynamic model [1,2]. Therefore, experimental identification is the optimal choice for obtaining these
types of information. However, sensor measurement and process noise will challenge experimental
identification. To mitigate the effects of nonlinearity and improve the advanced model-based control
performance, a complete noise reduction system must be considered to perform the accurate estimation
of dynamic parameters, including statistics of noise characteristics, excitation signal optimization, and
noise processing.

Some researchers have provided significant contributions to the model of robot dynamics
identification. Gautier constructed a model based on energy identification in [3] and a power model
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in [4], depending only on the functions of joint position and velocity to avoid introducing acceleration
significantly, thereby leading to including non-negligible noise in the estimation process. A direct
inverse dynamic identification model, which is based on an output error, has been proposed in [5];
this model solely requires force/torque measurement to substitute a usual position output. The most
common model of identification is inverse dynamic identification model (IDIM), which provides more
information than other models. In addition, the model can be linearly formulated with respect to a set
of minimal dynamic parameters, thereby allowing us to construct a well-conditioned over-determined
regression matrix [6–8].

Subsequently, parameters are estimated through numerical optimization based on the
abovementioned models. The least squares (LS) method [9] and maximum likelihood estimation
(MLE) [10] technique are the typical robot parameter identification methods under the class of estimation
algorithms. Moreover, these techniques can be expanded in several ways, such as the weighted least
squares (WLS) estimation method [11] and nonlinear least squares (NLS) optimization method [5].
Another common alternative estimation approach is based on the Kalman filter and its expansions,
such as the extended Kalman filter (EKF) and unscented Kalman filter [12]. Gautier compared the
WLS method with EKF estimation for parameter identification of a two degrees-of-freedom (DOF)
robot in [13]; the estimation results obtained through the two techniques were similar, but the EKF was
sensitive to initial conditions, and its convergence velocity was slower than that of the WLS method.
With the further improvement of instrument variable theory, some researchers have aimed to bridge the
gap between theory and control engineering practices and complete the MLE method with profound
statistical characteristics in [14–16]. These attempts have undeniably achieved favorable identification
effects, but the choice of auxiliary variables is significantly affected by system control law. Moreover,
several other identification methods for a manipulator are based on the genetic algorithm (GA) in [17]
and neural networks to improve the accuracy of estimation in [18,19]. Detailed summaries of these
methods can be found in [6,20] for further understanding.

Furthermore, an experimental design is a crucial link in a closed-loop identification process,
because the noise on joint position and output torque measurements, friction, and other unmodeled
effects seriously affect the accuracy of estimated parameters. To reduce the bias and obtain favorable
results, the exact statistical properties of the uncertainty terms must be determined. An appropriate
experiment is designed by reducing the sensitivity of the system to noise and minimizing the values
of the variances of the estimated parameters [14,16]. This process consists of two parts, namely,
excitation trajectory design and optimization criterion. In [10,21], the closed-loop identification
process is combined with an optimal excitation trajectory using parameterized finite Fourier series.
The optimization process implements an iterative procedure until the Cramér–Rao lower bound is
reached. Atkeson [22] proposed an excitation trajectory of a fifth-order polynomial in a joint space.
Moreover, the excitation signal based on modified Fourier series [2], the finite sum of harmonic sine
functions [17], and the function formed by combining several ways [23] are extended well. Two main
optimization criteria are adopted; one criterion is based on minimizing the condition of an observation
matrix [24]; the other criterion is to minimize the variations in the Fisher information matrix [10,21].
However, noise exists in the input and output, but most optimization technologies are justified by
observing a one-sided error and cannot perform full optimization. In addition, considering the time
cost in the optimization process, Jingfu [25] proposed a new trajectory design method based on
Hadamard’s inequality. This method is certainly a good innovation, but time is relatively loose and
seems insignificant in offline optimization identification.

The present research aims to realize the dynamic parameter identification of a manipulator
as accurately as possible. The primary contribution is that an improved optimization algorithm is
proposed on the basis of the multi-criteria embedded nonlinear optimization method to design the
exciting trajectory for minimizing the impact of noise. Considering the influence of a certain criterion
on solving the parameter identification, our approach aims to reduce the condition of the observation
matrix and determinant of the Fisher information matrix simultaneously in a nonlinear optimization
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process. In the present research, the model that will be considered is based on IDIM and is linear in
the parameters to be identified, thereby implying that the input and output of the robot correspond
to the output and input functions of the identification model. In addition, extracting the base set of
the parameters is advantageous. Furthermore, the appropriate weight values are obtained on the
basis of the statistical characteristics of noise. All joints of the robot are designed simultaneously in
the identification procedure to solve the MIMO coupled problem. The simulation and experimental
results show that this method can identify parameters accurately and is superior to the other nonlinear
optimization methods in terms of robustness, time consumption, and other factors. In addition,
the proposed optimization method is not limited to a series robot but also applicable to the optimized
experimental design of parallel and exoskeleton robots. This condition is due to the fact that, to obtain
a high-precision dynamic model, the input must fully stimulate the motion form of the system to
ensure that the experimental data can fully reflect the physical characteristics of the system, and a
good excitation design can reduce the impact of noise on the results. Examples of this include system
identification of aircraft, parameter identification of sorting robots, friction identification, force-free
control and collision detection.

The remainder of this paper is organized as follows. Section 2 introduces the development of
a dynamic linear model, and the MLE method is used to estimate the robot parameters. Section 3
presents the different optimization criteria and describes the process of obtaining optimal excitation
trajectories based on a single criterion and with the proposed multi-criteria embedded nonlinear
optimization method. Section 4 discusses the identification experiment process and compares the
traditional method with the proposed algorithm. Section 5 analyzes the relevant experimental results.
Section 6 provides some conclusions drawn from this research.

2. Modeling and Identification of Robot Parameters

In this section, we obtained the identification procedure using the IDIM and the WLS estimation
technologies to identify the base parameters of a multi-jointed robot. To reduce the system noise, we used
mean and low pass filtering based on a periodic excitation trajectory to improve the signal-to-noise ratio.
Moreover, we could obtain the estimated results using the linearized formulation model. The specific
identification procedure is illustrated in Figure 1.
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Figure 1. Overall procedure of parameter identification. 
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2.1. Dynamic Identification Model

Generally, we can determine the dynamic model of an n-joint rigid robot based on the
Euler–Lagrange or the Newton–Euler formulation in the joint space as

M(q)
..
q + C(q,

.
q)

.
q + G(q) + τ f = τ (1)

where M(q) ∈ <n×n is the inertia matrix, C(q,
.
q) ∈ <n×n contains Coriolis and centripetal matrix,

G(q) ∈ <n is the vector of the gravitational matrix, τ f ∈ <
n is the friction force term, τ ∈ <n is the input

torque vector to the system, and q ∈ <n is the vector of relative generalized coordinates used to model
the system,

.
q,

..
q ∈ <n represents the generalized velocities and accelerations based on differentiation

of q. The friction forces are described as [26]

τ f = Fcsgn(
.
q) + Fv

.
q (2)

where Fc, Fv ∈ <
n×n are the diagonal matrices that describe the coefficient of Coulomb and viscous

friction, correspondingly.
The mathematical model (1) in a linear parameterized form that depends on a set of parameters

must be rewritten for dynamic parameter identification. Modified Denavit and Hartenberg [27]
convention can help us obtain the linear model with Ns standard parameters.

τ = φs(q,
.
q,

..
q)θs (3)

where φs(q,
.
q,

..
q) ∈ <n×Ns is the regression matrix of a nonlinear function of joint position, velocity, and

acceleration vectors, and θs ∈ <
Ns×1 is the vector of standard parameters to be estimated. A total of 12

standard parameters are used by each link and joint for rigid robots, which contain the mass mj of each
link j, the first mass ( mx j my j mz j ) moments of link j, the six components of the inertia tensor
of link j at the origin of frame j, ( Ixx j Ixy j Ixz j Iyy j Iyz j Izz j ) and the coefficients of viscous
and Coulomb friction torque of joint j ( Fc j Fv j) .

The factor that truly affects robot dynamics is only part of the inertial parameters and can be
estimated through identification procedures. The set of a minimum number of inertial parameters,
that is, the base parameter set, can be selected on the basis of a numerical method with respect to
the QR decomposition [28] or by regrouping the standard parameters through linear relations [29,30].
The dynamic equation (3) can then be regrouped into another form with Nb identifiable base parameters.

τ = φb(q,
.
q,

..
q)pb (4)

where φb(q, q, q) ∈ <n×Nb is a subset of the regression matrix φs, and pb ∈ <
Nb is the base parameters

by regrouping.

2.2. Data Acquisition and Signal Processing

In fact, the known system must be given continuous excitation signals to demonstrate the
mechanical and physical properties fully. Although the observation matrix φb has full rank, and pb can
be obtained through the pseudo-inverse matrix from Equation (4), the solutions of identification are
local and unreliable given the complex modeling errors, measurement noise, friction, and other factors.
The ideal dynamic model is inexistent. Thus, assuming that the fundamental frequency ω f , sampling
frequency ωs, and the kth sampling time as tk of the excitation trajectory are known, Equation (4) can be
extended in an over-determined set with M = ωs/ω f measurement points over one period T as follows:

Γ = F(q,
.
q,

..
q)pb + ε (5)
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where Γ ∈ <nM×1 is the measured force/torque vector; F(q,
.
q,

..
q) ∈ <nM×Nb is the observation matrix,

also called the global information matrix; ε ∈ <nM is the zero mean random vector of errors derived
from the term of nonlinear noise.

Considering that the collected data (e.g., position and torque data) contain noise, it is a fundamental
step to reducing the influence of noise on τ and F for improving the accuracy of parameter identification
results. Here, velocity and acceleration are the numerical differentiation with respect to the position q.
In the process of data collection, given the periodicity of excitation trajectory, we combined the mean
filtering algorithm and a second-order low-pass digital Butterworth filter to process signal noise,
especially acceleration and torque.

2.3. MLE for Parameter Estimation

System identification aims to determine a system model based on input and output data from
a specified class of models, thereby making it equivalent to the estimated system. The principle is
depicted in Figure 2. The same signal X is used to excite the system prototype Mp and the system
model Me. Moreover, the output signals are τm and τp, respectively, and the error is e. An error
criterion function J(a) = eTΣe, which can be taken as the function of the error, is specified to modify the
parameter vector a. Recursion is repeated until the error criterion J(a) is minimal.
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Robot identification handles the problem of estimating the model parameters from the measured
ones based on a statistical framework during a robot excitation experiment. Assuming that the
measured joint position qm(k) and torque τm(k) at kth sampling time conform to a random zero-mean
Gaussian noise εq(k), ετ(k), i.e.,

qm(k) = q(k) + εq(k)
τm(k) = τ(k) + ετ(k)

(6)

where εq(k) and ετ(k), i.e., εq(k) + ετ(k) = ε, are integrated to satisfy Equation (5). The noise-free version
of these variables satisfies Equation (4).

From the perspective of statistics, the MLE method is conducted for the dynamic parameters of
the robot [10]. First, a likelihood function of joint angles qm(k) and joint moment τm(k) measurement
value is constructed. Second, the MLE of parameter vector p is obtained by maximizing the function.
Given that the noise on different measurements are independent of each other and obey the Gaussian
distribution, the following quadratic cost function can be minimized:

L(qm, τm|p) =
1
2

M∑
k=1

n∑
j=1

ε2
q j
(k)

σ2
q j

+
ε2
τ j
(k)

σ2
τ j

 (7)

where L(qm, τm
∣∣∣p) is the likelihood function, εqj(k) and ετj(k) are the noise on the joint position and

torque of the jth joint, respectively. σ2
qi

and σ2
τi

are their corresponding variances. Detailed steps for
determining these variables can be obtained in [31].

Considering Equation (4), the minimization problem of Criterion (7) will be transformed into
an NLS optimization problem, thereby implying the necessity to obtain the εqj(k) and ετj(k) of
every estimated parameter p with respect to the given measured data qm(k) and τm(k) in practical
implementation. This process is nearly infeasible using the present formulation. However, we can find
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that, in the actual experimental process, the noise level of the measurement value is much lower in
the joint angle than in the actuator force of the joint. Therefore, no noise and error may be realized in
measuring the joint angle. At this time, the maximum likelihood estimator of the parameters can be
obtained by maximizing the likelihood function. Considering that the maximum likelihood function is
equivalent to the logarithm of the likelihood function, the maximum likelihood parameter estimation
method can be significantly simplified by taking the logarithm of the original likelihood function.
Under this assumption, the MLE method reduces to the linear WLS estimation algorithm, whose
weighted function is the inverse of the noise to the standard deviation of the torque value of the
measured actuator [31].

pml = (FtΣ−1F)
−1

FtΣ−1Γ (8)

where

F =


φ(qm(1),

.
qm(1),

..
qm(1))n×Nb

φ(qm(2),
.
qm(2),

..
qm(2))n×Nb

...
φ(qm(M),

.
qm(M),

..
qm(M))n×Nb

 (9)

Γ =


τm(1)n
τm(2)n

...
τm(M)n

 (10)

and Σ is the diagonal covariance matrix of the measured actuator torques such that Σ =

diag
(
σ2

1IM . . . σ2
j IM . . . σ2

nIM
)
, where IM is the (M × M) identity matrix [30]. The covariance

matrix of MLE pml is equal to (
FTΣ−1F

)−1
(11)

Furthermore, if all the noise of the measured actuator torque has the same standard deviation,
then the MLE will further degrade to the standard linear LS method (e.g., pls = (FtF)−1FtΓ). This result
certainly loses the significance of the statistical framework.

3. Obtaining the Optimal Robot Excitation Trajectories

The optimal experiment design refers to the problem with respect to a nonlinear optimization
with motion constraints, that is, generally, constraints on joint angles, velocities, and accelerations,
and on the robot end effector positions in the Cartesian space to avoid collision with the environment
and with itself. In addition to the generality, some researchers have added other conditions to the
constraints, such as singular values of the observation matrix [32]. Given the actuator displacement
as the control input, a criterion must be designed to represent the sensitivity of the input and output
variables with respect to the solution of the estimate parameters. Considering the interaction between
different optimization criteria, our main contribution is to propose a multi-criteria embedded nonlinear
optimization method to obtain the optimal excitation.

3.1. Optimal Criteria for the Experiment Design

Common optimization problems are based on the deterministic framework and obtain the solution
of dynamic parameters by minimizing the error term (i.e., ε in Equation (5)). To equilibrate the
disturbance influence of the input and output noise on the parameter estimates, the condition number
of the regression matrix is typically selected as the optimization objective function [2]. Gautier and
Khalil [24] optimized a linear combination with a factor for equilibrating the observation matrix using
this criterion and a fifth-order polynomial trajectory. Armstrong [33] described the optimization
design of the experiment trajectory based on maximizing the minimum singular value of the square
matrix FTF; some ways to expand on this condition have been used in [17,32]. Jingfu [25] proposed an



Sensors 2019, 19, 2248 7 of 17

approach by using the trace of the square matrix FTF based on Hadamard’s inequality. The collection
of these methods can be found in [24,34].

Another common optimization problem is based on a statistical framework, and its most
prominent feature is that the statistical characteristics of noise are considered in the optimization
process. The representative one is the optimal objective function of the deformation of the Fisher
information matrix (e.g., (FTΣ−1F)−1) presented by Swevers [10] for the MLE parameter identification
of a serial robot. Afterward, it has been applied for a parallel robot [35]. Subsequently, many
improvements and applications based on this criterion can be found in [15,21,23,31,36].

Notably, a new criterion based on a multi-objective optimization method is proposed in [37].
The main contribution of this approach is to find trajectories with favorable properties in accordance
with more than a single criterion. This method solves the uncertainty of some solutions when the
lower boundary is non-convex, but it must obtain the appropriate optimization weight value of the
objective function in advance, thus undoubtedly increasing the computation and easily falling into the
local solution of multiple optimizations.

From the linearized parameter model (5), we can determine that the condition number of the
regression matrix represents the influence of the disturbance on the identification solution, and the
physical meaning represented by the determinant value of the covariance matrix is the volume of
the area of the maximum probability density function of the parameter to be estimated. Given the
abovementioned characteristics, we propose a multi-criteria embedded optimization method, in which
the optimization criteria (−log(det(FTΣ−1F)−1)) are embedded in the constraint conditions, and the
interaction between the two criteria is compromised. In addition, the embedded optimization method
makes the dual objective function optimized simultaneously in the optimization iteration process,
thus avoiding the sensitivity of the multi-objective optimization approach to the goal weight value.
The physical meaning is to obtain a regression matrix with good “behavior” when the solution of the
estimated parameters is relatively determined, so as to reduce the sensitivity of identification results
to interference.

The abovementioned optimization criteria are summarized in Table 1. Next, we will obtain the
excitation trajectory based on our proposed optimization method.

Table 1. Some criteria for the experiment optimization design.

No. Criteria References Frameworks

1 1
λmin(FTF) Armstrong [33] deterministic

2 Cond(F) Gautier and Khali [24] deterministic
3 ω1Cond(F) +ω2

Fmax
Fmin

Gautier and Khali [24] deterministic
4 ω1Cond(F) +ω2

1
λmin(FTF) Presse and Gautier [34] deterministic

5 − log(det(FTΣ−1F)) Swevers et al. [10] statistical (D-optimality)

6
1∏Nb

g=1 Fs
g

Jingfu et al. [25] deterministic
(Hadamard’s inequality)

7

 cond(F) −ω1γ ≤ F∗1
− log(det(FTΣ−1F)) −ω2γ ≤ F∗2

Miguel et al. [37] statistical

3.2. Optimal Excitation Signal for the Experiment Design

Swevers proposed the excitation trajectory based on a finite Fourier series in [10]. The trajectory
for each joint is a finite sum of N harmonic sine and cosine functions. The main advantages of these
functions are that: First, they satisfy the numerical average in the time domain due to periodicity
and conveniently improve the signal-to-noise ratio of the measurement. Second, the velocity and
acceleration can be calculated using the position vector in analytical forms without using the numerical
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differentiation method. In addition, the effect on robot flexibility can be avoided by selecting an
appropriate frequency bandwidth. The specific form for the jth of an n-link robot is defined as follows

q j(t) =
N∑

l=1

a j,l
ω f l sin(ω f lt) −

N∑
l=1

b j,l
ω f l cos(ω f lt) + q j0

.
q j(t) =

N∑
l=1

a j,l cos(ω f lt) +
N∑

l=1
b j,l sin(ω f lt)

..
q j(t) = ω f

N∑
l=1

b j,ll cos(ω f lt) −
N∑

l=1
a j,ll cos(ω f lt)

(12)

where j = 1,2. t ε [0, T] with T is the period cycle time, ωf is the fundamental frequency, and ωf = 2π/T.
N is the number of harmonics, and qj0 is the position offset of the joint of the excitation reference
trajectory. In Reference [31], the fundamental frequencyωf is considered as a variable of the optimization
problem to be added to the optimization design of the excitation trajectory, but the optimization
results are not reflected in this process, so the selected variables are inappropriate. The base frequency
must be in a good bandwidth range (e.g., the so-called bandwidth, which reflects the noise filtering
characteristics of the system and also used to measure the transient response performance of the
system). The trade-off of selecting the fundamental frequency is discussed in [10], it cannot be used as
a variable in this optimization process. Here, 2N + 1 parameters are applied as the variables for the
trajectory optimization problem of per joint. All variables include the Fourier coefficients of two joints
(e.g., qi0, al = [a j,l, . . . , a j,N], bl = [b j,l, . . . , b j,N]).

Various optimization criteria are listed in Table 1. Considering the interaction between single
different optimization criteria and combining with the actual physical meaning representation,
the condition number of the regression matrix is adopted as the optimization objective function.
In order to make the identification results insensitive to noise, the optimization problem is actually
expressed as searching suitable values in constraint domain to minimize the objective function:

objFunc = F4 = minimize Cond(F) (13)

Generally, the constraint domain mainly depends on the kinematics and geometric information of
the robot system, including the position, velocity, acceleration information of the actuator and start and
end points of joints. However, the optimization results are often affected by singular solutions in the
optimization process, and it is easy to fall into the local optimum. In order to avoid these situations,
we add F2 = (−log(det(FTΣ−1F)−1)) to the constraint as an additional constraint. Thereby, the excitation
trajectory must be subjected to the following constraints:

(− log(det(FTΣ−1F)−1
)) < ω2;∣∣∣q j(t)

∣∣∣ ≤ qmax ∀i, t∣∣∣∣ .
q j(t)

∣∣∣∣ ≤ .
qmax ∀i, t∣∣∣∣..q j(t)

∣∣∣∣ ≤ ..
qmax ∀i, t

q j(t0) = q j(t f ) = 0 ∀i, t
.
q j(t0) =

.
q j(t f ) = 0 ∀i, t

..
q j(t0) =

..
q j(t f ) = 0 ∀i, t

(14)

whereω2 represents the constraint target value of F2, which is derived from the objective value obtained
when only F2 is used as the optimization objective function; qmax (rad),

.
qmax (rad s−1), and

..
qmax (rad s−2)

denote the bounds of joint position, velocity, and acceleration, respectively; and t0 and t f correspond
to the initial and the end times; these constraints indicate that the position, velocity, and acceleration
of the robot at the initial and end points of the reference trajectory are equal to 0, otherwise a strong
tremor of the system will result and affect the accuracy of the parameters. Objective values are updated
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iteratively until the condition number of the regression matrix converges to the minimum and the
optimization results satisfy the whole constraint space, the optimization terminates. At this point,
the multi-objective embedded optimization method has been established.

4. Identification Implementation Process

A planar two degrees-of-freedom (2-DOF) manipulator was adopted to evaluate the effectiveness
of the method, which is designed here, as demonstrated in Figure 3. Compared with a single joint,
the 2-DOF manipulator considers coupling factors, and its method is applicable to the parameter
identification of additional DOFs. The considered manipulator has two revolute joints equipped with
brushless motors produced by Maxon, which is equipped with an encoder for position measurements.
The output end of the motor is equipped with a harmonic reducer at a reduction ratio of 80, and
the output end of the reducer is equipped with a spoke-type torque sensor. To protect the torque
sensor from axial force crosstalk, deep-groove ball bearings and thin-wall cross roller bearings are
simultaneously equipped at the connection between the link and joint for unloading the undesired
load. The control unit of the robot is constituted by Platinum Maestro Network Motion Controller
based on EtherCAT, which is produced by Elmo, and the control algorithms are implemented in C++.
The joint coordinates are defined in accordance with Denavit–Hartenberg notation and collected in
vector q = [q1 q2]T, where qi represents the angular position of joint j. The command torque vector is
defined as τ = [τ1 τ2]T, where τi represents the torque applied to joint j.
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4.1. Dynamic Model of the Planar Manipulator

The base parameter model of this robot contains five parameter combinations of the links with
respect to the z0-axis and the first-order moments of the second link based on applying the dynamic
formulation derived by Craig [38]. The friction that is modeled only in prismatic joints (independent
generalized coordinates) given the friction in spherical and rotational joints (dependent generalized
coordinates) can be neglected [39]. Therefore, we can obtain the vector pb of the identifiable parameters
using regrouping standard parameters presented as follows:

pb = [ (m1 + m2)d2
1 + m2d2

2 m2d1d2 m2d2
2 (m1 + m2)gd1 m2gd2 Fv1 Fc1 Fv2 Fc2 ]

T

Following the Newton–Euler approach, the planar manipulator dynamic model is expressed in
Equation (4). From this equation, we can determine the regression matrix, including

F =

 ..
q1 c2(2

..
q1 +

..
q2) − s2(2

.
q1

.
q2 −

.
q2

2) q2
2 s1 s12

.
q1 sgn(

.
q1) 0 0

0 c2
..
q1 + s2

.
q2

1
..
q1 +

..
q2 0 s12 0 0

.
q2 sgn(

.
q2)

,
where si = sin(qi) and ci = cos(qi).
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4.2. Simulation of the Excitation Trajectory Optimization

Several kinds of excitation trajectories are obtained by the optimization design of condition
number (Cond(F)) as a criterion or (−log(det(FTΣ−1F)−1)) as the criterion or based on multi-objective
optimization as the criterion. For each optimization, the trajectory is parameterized through five-term
Fourier series, yielding 11 parameters for each joint (e.g., N = 5). The fundamental frequency of the
trajectories is 0.05 Hz, and the sampling rate of the simulation is 100 Hz. The length of the data sequence
M is 2000 data in one period. The optimization process was performed in MATLAB R2017a environment
using the nonlinear constrained optimization tools “Fmincon” and “Fgoalattain”. According to the
motor parameters and motion constraints, the optimization constraints are set as follows:

• Embedded criterion F2 = (−log(det(FTΣ−1F)−1)) < −75;
• Joint angle limits (rad): −3.14 < q1 < 3.14, −3.14 < q2 < 3.14;
• Joint velocity limits (rad/s): −5.2 <

.
q1 < 5.2, −5.2 <

.
q2 < 5.2;

• Joint acceleration limits (rad/s2): −4.5 <
..
q1 < 4.5, −4.5 <

..
q2 < 4.5;

• The position, velocity, and acceleration of the two joints at the initial and end times are 0.
e.g., q j(0) =

.
q j(0) =

..
q j(0) = q j(20) =

.
q j(20) =

..
q j(20).

In addition, the covariance matrix Σ in the optimization process was derived from a random
trajectory, and the parameter was estimated through the traditional linear LS method (refer to [30]
(p. 294)), as plotted in Figure 4. This process aims to collect the noise characteristics of the system,
that is, σ1 = 5.0832 N2m2, and σ2 = 0.0499 N2m2. The target values of the multi-objective optimization
criterion were obtained from the optimization results of the former criterion. In Table 2, we selected
ω1 = 8 and ω2 = −75.
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Table 2. Values of the objective function for the exciting trajectories.

Trajectories Optimization Criteria

F1 = Cond(F) F2 = −log(det(FT Σ−1F)−1) F3 =multi-objective

F1 F2 F1 F2 F1 F2

1 8.9564 −46.8065 14.0528 −75.3467 7.9318 −75.6224
2 4.5228 −56.7127 9.9266 −74.1939 7.8595 −76.3168
3 5.4290 −53.1933 9.236 −69.6214 7.9149 −75.7974
4 4.0043 −58.1891 10.8305 −77.0334 7.9156 −75.9591

To avoid special situations, the results of each criterion for four selected trajectories are summarized
in Table 2. When solving the optimization problem with the F1 criterion, the values of F2 were higher
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than those obtained when only F2 was used. Furthermore, the opposite occurs when the optimization
problems were solved by F2. Moreover, the optimization process is easily trapped in the local
minimum. This phenomenon had been resolved, that is, it will not significantly increase the value
of other criteria when the relevant appropriate solutions are obtained. Either by using a weighted
objective function to convert two objective functions in a single function as provided in [24,33] or by
using a multi-objective optimization procedure based on the goal programming in [37] (the results of
multi-objective optimization are shown in the last two columns of Table 2). However, the optimization
results are sensitive to the goal values given the value setting of 2-DOF, as listed in Table 3. Therefore,
a multi-criteria embedded (e.g., F4) nonlinear optimization method is considered.

Table 3. Influence of goal value selection on the optimization results.

Trajectories Goal Weight Values

F3 ω1 = 5, ω2 = −70 F4 ω2 = −75 F4 ω2 = −70

F1 F2 F1 F2 F1 F2

1 5.0354 −69.5180 6.9067 −75.0035 6.5072 −70.01
2 4.9852 −70.2078 7.8303 −75.1107 5.0119 −70.0229
3 5.0671 −69.0545 8.2943 −75.0018 5.5365 −70.0113
4 5.0431 −69.396 7.7889 −75.0008 4.8974 −70.0218

4.3. Multi-criteria Embedded Nonlinear Optimization

According to Equation (14), the F2 criterion is added to the constraint condition. The middle
two columns of Table 3 show the results of the multi-criteria embedded optimization. In this table,
this method is mainly affected by the weight values in the constraint conditions and reduces the DOF
in comparison with the multi-objective optimization criteria. In addition, the optimization method is
equivalent to introducing penalty function into the objective function, thereby slightly improving the
robustness, and this approach has a clear physical meaning.

Similar to the optimization process of F1 and F2, the nonlinear constraint optimization function
“Fmincon” was also used in the MATLAB R2017a environment. This optimization tool adopts the
sequential quadratic programming (SQP) algorithm to solve the quadratic programming sub-problem
in each step of the iteration process and further update the Lagrangian Hessian matrix until the value of
objective function converges to the minimum and the optimization results satisfy the whole constraint
space. In order to improve the optimization precision, we extend the iteration times and the error
tolerance to enough to search for the solutions within the constraint space, such as “MaxFunEvals” or
“TolFun,” which is set as 5000, 1e-10, respectively. Moreover, the F2 criterion in the constraint condition
must satisfy the target value ω2 = −75, and the optimization must satisfy the Cramér–Rao lower bound
in [10]. Figure 5 exhibits the influence of the number of points used for representing the trajectory on
Cond(F). The final optimization converges to a certain value. The number of trajectory points is affected
by some evaluation termination conditions in the optimization function. The evaluation conditions can
be modified to obtain the optimal solution convergence. Figure 6 depicts an optimization trajectory
obtained through the proposed method. The joint position, velocity, and acceleration correspond to
the independent motion parameters of the actual 2-DOF manipulator.
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4.4. Experimental Procedure

The parameter identification process of the 2-DOF manipulator was conducted as follows:
Experimental design. Some optimization trajectories were obtained in accordance with the

optimization criteria discussed previously. To achieve an improved comparison, the optimal trajectory
obtained from the same starting point was selected to satisfy the experiment requirements.

Data acquisition. The controller was equipped with the PID control law to achieve the motion. The
trajectory was derived from the abovementioned optimization results (i.e., 11 harmonic functions per
joint). During the actual movement, the sampling interval was 0.01 s, and the duration of one period
was 20 s. To improve the signal-to-noise ratio, each trajectory continued to move for 320 s, and data of
15 consecutive periods were used for mean filtering. Torque information was collected using torque
sensors, position information using a motor incremental encoder, and the velocity and acceleration
information through Fourier trajectory differential analysis. All signals were processed through a
second-order low-pass digital Butterworth filter to process, and the cutoff frequency was 5 Hz.

Identification. The WLS estimation method was used for the parameter identification of all
experimental trajectories. The weights were derived from the noise characteristics of the random
trajectory identification results, as described in Section 4.2. The position deviation was close to 0,
thereby satisfying the zero-noise hypothesis.

Model validation. The accuracy of the obtained parameter estimates could be verified for a
different validation trajectory by comparing the measured torque and the predicted torque based on
the model and the measured position data.
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5. Results

This section provides the results of the experiments described above. In Section 4.2, 12 correlation
terms involved in the regression matrix are considered for the experimental design, and the 12
correlation terms are used to identify the dynamic parameters. The identification results and their
relative deviations (σi) are summarized in Table 4. The relative standard deviation is used to establish
a statistical analysis and characterize the quality of parameter estimation as mentioned in [40].

Table 4. Identified dynamic parameters and their respective deviations of the 2-DOF robot.

Index
F1 F2 F3 F4

pb σi pb σi pb σi pb σi

1 0.0157 1.99 0.0235 0.94 0.1161 0.56 0.1088 0.81
2 0.0894 0.2 0.0241 0.22 0.0216 0.95 0.0126 1.3
3 0.0023 9.5 0.0017 4.5 0.0363 0.57 0.0329 0.86
4 4.1514 0.009 3.9575 0.011 4.0847 0.036 4.0530 0.049
5 1.2168 0.018 1.2257 0.017 1.2357 0.08 1.2641 0.11
6 0.1253 0.34 0.0918 0.38 0.0146 6.91 0.0742 1.85
7 0.1982 0.087 0.0675 0.46 0.1390 0.91 0.2511 0.69
8 0.1123 0.37 0.0429 0.55 0.0273 3.37 0.0259 4.84
9 0.0692 0.21 0.1072 0.23 0.0767 1.65 0.0930 1.84

mean 1.41 0.81 1.67 1.37

The results presented in Table 4 show that the mean values of the relative standard deviation are
lower in each parameter than in other criteria when the F2 criterion is used because this method finds
the estimation with a minimal parameter variance. By contrast, the relative standard deviation mean of
each parameter estimated through the multi-criteria embedded optimization method (e.g., F4) is lower
than that based on F1 and F3. However, F2 leads to a higher condition number than other methods,
and the identification results are sensitive to noise, as displayed in Table 5. The experiments presented
in Table 5 are deliberately designed to increase or decrease the torque residual noise. This process is
allowed because obtaining fully determined noise is infeasible in the actual experiment. The results
show that F4 is more robust than F2. In addition, the relative standard deviation of individual
parameters obtained through each method is relatively high because the cited method fails to handle
the unmodeled dynamics properly and consider the analytic derivative obtained after the trajectory
reparameterization, thus resulting in the difference with the actual parameters. Evidently, all estimated
parameters have physically feasible values.

Table 5. Comparison of sensitivity with the noise of F2 and F4.

Noise (σ1, σ2) pb

F2

(5.0832,0.0499) 0.0235 0.0241 0.0017 3.9575 1.2257 0.0918 0.0675 0.0429 0.1072
(0.0516,0.0161) 0.0458 0.0065 0.0189 3.9864 1.2145 0.0340 0.0972 0.0533 0.1111

(8,1) 0.0384 0.0123 0.0132 3.9776 1.2161 0.0526 0.0876 0.0486 0.1083

F4

(5.0832,0.0499) 0.1088 0.0126 0.0329 4.0530 1.2641 0.0742 0.2511 0.0259 0.0930
(0.0516,0.0161) 0.1072 0.0100 0.0313 4.0530 1.2492 0.0747 0.2509 0.0280 0.0923

(8,1) 0.1079 0.0113 0.0321 4.0528 1.2579 0.0745 0.2510 0.0269 0.0972

Parameters obtained through the multi-criteria embedded optimization are used to generate
dynamic trajectories, and then the measured torques are compared with the predicted torques,
as displayed in Figure 7. Compared with the identification results of the optimized trajectory presented
in Figure 4, the residual torque value is smaller than that of the latter, that is, σ1 = 0.0516 N2m2, and
σ2 = 0.0161 N2m2. Despite a peak error in the predicted torque curve when the speed or acceleration
is reversed, this result is reasonable due to assembly clearance or flexibility. In addition, to verify the
accuracy of the identification model, an optimization trajectory that is different from F4 is selected in
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Section 4.2 for verification. The verification results are illustrated in Figure 8. Notably, both curves are
close. Table 6 presents the root mean square (RMS) of the measured and predicted residuals.
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Table 6. Root mean square (RMS) of the measured and predicted residuals (Nm).

Joints F4 Validation

Joint1 0.227 0.235
Joint2 0.127 0.195

6. Discussion and Conclusions

To achieve an ideal model control effect and improve human–robot interaction abilities, an accurate
dynamic model must be designed. The experimental design, as an important part of parameter
identification, must optimize the excitation trajectories. In this research, some optimization criteria for
dynamic parameter identification experiments are evaluated. The results indicated that adopting only
F1 or F2 criteria will significantly affect the optimization results of the opposition criterion. Although
the multi-objective optimization criterion has solved the problem, this criterion was significantly
affected by selecting the goal values. Combined with the advantages and disadvantages of each
criterion, the multi-criteria embedded optimization method was innovatively proposed. The main
contribution is to reduce the DOF of the goal values by adding the criterion to the nonlinear optimization
constraints. Furthermore, the optimization results are converted to be mainly restricted by a single time.
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Considering the motion coupling characteristics of the joint with multiple DOFs, a 2-DOF platform
was selected. Based on the optimization simulation and actual experiments, the results showed that
the proposed method has achieved the rationalization of the multi-criteria optimization compared
with only a single criterion optimization, and the robustness was higher than the multi-objective
optimization criterion. The verification experiments presented that the identification results are
considerable, and the proposed approach can be considered a suitable procedure for designing the
exciting trajectories and improving the results of parameter identification. This method is not only
limited to serial robots but also applicable to parallel and exoskeleton robots.

Most existing parameter identification methods focus on off-line identification. However,
considering the mechanical wear, aging, temperature, and other nonlinear factors during the
use of robots, real-time online identification has become a trend. Therefore, as mentioned in the
literature [15,19,41–45], various optimization algorithms and intelligent control theories for improving
identification effects must be combined to enable the robots to have the ability of autonomous
identification and learning to achieve an efficient and accurate motion control, which have wide
applications. In addition, future work will be expanded to include additional DOFs, such as the
commonly used 6-DOF or redundant arms, rather than only a 2-DOF manipulator. Furthermore,
non-planar motion planning and human–robot interaction control will be realized, and the nonlinear
factors, such as flexibility and assembly clearance, will be further investigated.
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