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Abstract: Passive source localization is a challenging task for one receiver, and the pressure sensor
provides relatively simple information. An ocean-bottom seismometer (OBS) sensor placed on
the seafloor surface can provide more information—not only pressure information, but also three-axis
(x-, y-, and z-axis) velocity information at the seafloor interface. In this paper, an OBS sensor was
used to estimate the position of the broadband sound source in a Pekeris shallow water waveguide
with elastic bottom. As the dynamics that characterize ocean acoustic applications are inherently
nonlinear, non-Gaussian, and non-stationary processes that quickly vary with space and time,
sequential Bayesian filtering, such as particle filtering (PF), is able to adapt to these environmental
changes. Simulation results show that the PF method with the vertical wave impedance (the ratio of
the pressure and vertical particle velocity) in the frequency domain as a measurement vector is not
affected by source depth and source spectrum information, making it more tolerant and more robust
than that with pressure in positioning. Experimental data results verified the effectiveness of the PF
method with the vertical wave impedance for the localization of the explosive source.

Keywords: OBS sensor; particle filtering; vertical wave impedance

1. Introduction

Localization of an underwater sound source is an important practical problem in underwater
acoustics. Of all the methods for source localization, matched-field processing (MFP) attracted
a huge amount of interest over the years. MFP is a technique combining hydro-acoustic physics
and signal processing technology that made important progress in underwater acoustic positioning.
However, the matched field method uses a deterministic model, which is plagued by mismatch problems,
including environmental mismatch, statistical mismatch, and system mismatch [1]. Sequential filtering
provides a suitable framework for estimating and updating unknown parameters of a system as data
become available. Moreover, sequential filtering is demonstrated to be a powerful estimation tool,
employing prediction from previous estimates and updates stemming from physical and statistical
models that relate acoustic measurements to the unknown parameters [2]. An adaptive model-based
approach using the state-space formulation was for the first time implemented by Candy et al. [3].
Coupling a nonlinear optimization algorithm with the extended Kalman filter (EKF)-based ocean
acoustic model can solve the source localization problem in a complex ocean environment.
This approach is capable of solving the mismatch problem to some extent. Furthermore, Candy et al. [4]
provided a model-based Bayesian processor to estimate the bearings of moving sources using
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horizontally towed array data. The processor uses the particle filtering (PF) as the estimator,
which has better tracking performance than classical nonlinear filters (e.g., extended/unscented
Kalman filters). A particle filtering method for the estimation of such arrivals was presented by
Michalopoulou and Jain [5,6]. Furthermore, successful localization with real data was demonstrated
using arrival times and corresponding probability density functions (PDFs) extracted via particle
filtering [7]. These researches generally used sound pressure signals received by the hydrophone
array. In Reference [8], the vertical specific acoustic impedance (the ratio of the complex pressure
field and vertical pressure gradient) was used to sense ocean-bottom geo-acoustic properties in
the Pekeris environment using a sequential approach. This approach was applied to data collected off

the Senegalese coast. Previous studies were generally based on the fluid seabed, without considering
the effects of shear waves. However, the seabed in the real marine environment is generally an elastic
medium. Therefore, we derive the vertical wave impedance which the ocean-bottom seismometer
(OBS) sensor obtained in Pekeris waveguide with an elastic bottom. Then, a passive ranging method
for the broadband acoustic source using vertical wave impedance is proposed in this paper based on
the particle filtering approach.

The remainder of this paper is organized as follows: in Section 2, the pressure and vertical
wave impedance in the frequency domain are constructed in Pekeris waveguide with elastic bottom.
In Section 3, the PF framework for estimating the position of the source is introduced. In Section 4,
the positioning performances of the pressure and vertical wave impedance as the measurement vector
are simulated and analyzed based on the PF method. In Section 5, the presented estimation localization
method is employed to process the experimental data. Conclusions are given in Section 6.

2. Theoretical Modeling

In the cylindrical coordinate system, the Pekeris waveguide with elastic bottom, as shown in
Figure 1, was built to obtain the pressure and vertical wave impedance received by the OBS sensor.
In this section, the pressure field and velocity field expressions are established in normal mode based on
wavenumber integration approaches. Thus, in Section 2.1, we briefly introduce the derivation process
of potential functions based on wavenumber integration approaches; then, in Section 2.2, the potential
function expressions are represented in normal mode form, and then the pressure and the vertical
wave impedance at the seafloor interface are obtained.
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Figure 1. The Pekeris waveguide with elastic bottom. 

2.1. Potential Functions 

The depth of the uniform water layer is denoted as H, and the density and the sound speed of 
water are ρ1 and c1, respectively. The elastic bottom is assumed to be homogeneous and semi-infinite. 
The density, the compressional wave, and the shear wave speed of the bottom are constants that are 
expressed as ρ2, cp, and cs, respectively. As shown in Figure 1, the horizontal axis is range r, the vertical 
axis is depth z, the plane z = 0 is considered as the sea surface, and the broadband source is positioned 
at (0, zs). The spectrum of the source is denoted as S(ω). The OBS sensor is placed on the seafloor 
interface as a receiver. The potential function of sound field in water is denoted as ϕ1, and potential 
function of sound field in elastic medium is the sum of the scalar potential function ϕ2 and vector 
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2.1. Potential Functions

The depth of the uniform water layer is denoted as H, and the density and the sound speed of
water are ρ1 and c1, respectively. The elastic bottom is assumed to be homogeneous and semi-infinite.
The density, the compressional wave, and the shear wave speed of the bottom are constants that are
expressed as ρ2, cp, and cs, respectively. As shown in Figure 1, the horizontal axis is range r, the vertical
axis is depth z, the plane z = 0 is considered as the sea surface, and the broadband source is positioned
at (0, zs). The spectrum of the source is denoted as S(ω). The OBS sensor is placed on the seafloor
interface as a receiver. The potential function of sound field in water is denoted as ϕ1, and potential
function of sound field in elastic medium is the sum of the scalar potential function ϕ2 and vector
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potential function
→

ψ. In the cylindrically symmetric case, only the component along the θ direction

exists for
→

ψ, which is denoted as ψ referring to Reference [9]. The derivation process of potential
functions is detailed in Appendix A.

The expression of ϕ1,ϕ2,ψ can be written as

ϕ1(r, z) =


∞∫
0

2 sin β1z
β1

[
β1 cos β1(H−zs)−ibβ2K sin β1(H−zs)

β1 cos β1H−ibβ2K sin β1H

]
J0(ξr)ξdξ, 0 ≤ z < zs

∞∫
0

2 sin β1zs
β1

[
β1 cos β1(H−z)−ibβ2K sin β1(H−z)

β1 cos β1H−ibβ2K sin β1H

]
J0(ξr)ξdξ, zs ≤ z < H

, (1)

ϕ2 = −

∞∫
0

2ξσK
χ2

2b sin β1zseiβ2(z−H)

β1 cos β1H − ibβ2K sin β1H
J0(ξr)ξdξ z > H , (2)

ψ =

∞∫
0

2iξβ2K
χ2

2b sin β1zseiγ(z−H)

β1 cos β1H − ibβ2K sin β1H
J1(ξr)ξdξ z > H , (3)

where β1 =
√

k2
1 − ξ

2, β2 =
√

k2
2 − ξ

2, γ =
√
χ2 − ξ2, k1 = ω/c1, k2 = ω/cp, χ = ω/cs,

b = ρ1/ρ2, σ =
(
2ξ2
− χ2

)
/2ξ,K = χ4/

[
4ξ2

(
σ2 + β2γ

)]
, ξ is horizontal wavenumber, and ω is

the angular frequency.

2.2. Pressure and Vertical Wave Impedance

According to the formula

J0(ξr) = 1
2

[
H(1)

0 (ξr) + H(2)
0 (ξr)

]
H(2)

0 (ξr) = −H(1)
0

(
ξreiπ

) ,

the first integral in Equation (1) can be rewritten as

ϕ1(r, z) =

∞∫
−∞

sin β1z
β1

[
β1 cos β1(H − zs) − ibβ2K sin β1(H − zs)

β1 cos β1H − ibβ2K sin β1H

]
H(1)

0 (ξr)ξdξ, 0 ≤ z < zs, (4)

with H(1)
0 (·) as the first kind of zero-order Hankel function.

By Cauchy’s method of residues, the integral of Equation (4) will be equal to

ϕ1(r, z) = Res
{
Z1(z, ξ)H(1)

0 (ξr)ξ
}
−

∫
branch line

Z1(z, ξ)H(1)
0 (ξr)ξdξ

= ϕN(r, z) + ϕL(r, z)

, (5)

where ϕN(r, z) is called the normal mode, and ϕL(r, z) is called the lateral wave.
The expression of ϕN(r, z) is written as

ϕN(r, z) = 2πi
∑
n

sin β1nz
β1n

β1n cos β1n(H−zs)−ibβ2nK sin β1n(H−zs)
∂
∂ξn

(β1n cos β1nH−ibβ2nK sin β1nH)
H(1)

0 (ξnr)ξn

= 2πi
∑
n

F2
n sin β1nz sin β1nzsH

(1)
0 (ξnr)

(6)
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where

F2
n =

β1n

Hβ1n − sin β1nH cos β1nH − b2K2
n tan β1nH sin2 β1nH − ibβ1nβ2n

∂Kn
∂ξn

sin2 β1nH/ξn

∂Kn

∂ξn
= −

χ4

4

2ξn
(
σ2

n + β2nγn
)
+ ξ2

n

[
2σn

(
1 + χ2

2ξ2
n

)
− β2n

ξn
γn
−

ξn
β2n
γn

]
ξn4(σn2 + β2nγn)

2

and values of ξn are determined by the dispersion equation, i.e., β1n cos β1nH − ibβ2nKn sin β1nH = 0.

Similarly, ϕN(r, z) in the depth domain zs ≤ z < H also can be obtained with the same expression
as Equation (6).

Due to the effect of the shear wave, the expression of the lateral wave is more complicated than
that in Reference [9]. Specifically, the lateral wave mainly consists of two parts. One integration along
the branch at first runs from k2 + i∞ to k2 along the left side of the branch line with the negative
imaginary part of β2, then runs from k2 to k2 + i∞ along the right side of the branch line with the positive
imaginary part of β2. The other integration along the branch at first runs from χ+ i∞ to χ along the left
side of the branch line with the negative imaginary part of γ, then runs from χ to χ+ i∞ along the right
side of the branch line with the positive imaginary part of γ. Under the assumption that k2 < χ < k1,
the approximate expression of lateral wave is

ϕL(r, z) = ϕLk(r, z) + ϕLχ(r, z), (7)

where

ϕLk(r, z) =
∫ k2+i∞

k2

sin β1z
β1

{
(2ξ2

−χ2)
2
β1 cos β1(H−zs)+β2[4ξ2γβ1 cos β1(H−zs)−ibχ4 sin β1(H−zs)]

(2ξ2−χ2)2β1 cos β1H+β2[4ξ2γβ1 cos β1H−ibχ4 sin β1H]

−
(2ξ2

−χ2)
2
β1 cos β1(H−zs)−β2[4ξ2γβ1 cos β1(H−zs)−ibχ4 sin β1(H−zs)]

(2ξ2−χ2)2β1 cos β1H−β2[4ξ2γβ1 cos β1H−ibχ4 sin β1H]

}
H(1)

0 (ξr)ξdξ

≈


2bk2χ

4 sin
√

k2
1−k2

2z0 sin
√

k2
1−k2

2z

(k2
1−k2

2) cos2
√

k2
1−k2

2H

1
r2 ei(k2r− π2 ), i f cos

√
k2

1 − k2
2H , 0

−
2b(2k2

2
−χ2)

2
χ4 sin

√
k2

1−k2
2z0 sin

√
k2

1−k2
2z[

4k2
2γ

√
k2

1−k2
2 cos

√
k2

1−k2
2H−ibχ4 sin

√
k2

1−k2
2H

] 1
r eik2r, i f cos

√
k2

1 − k2
2H = 0

, (8)

ϕLχ(r, z) =
∫ χ+i∞
χ

sin β1z
β1

{
(2ξ2

−χ2)
2
β1 cos β1(H−zs)−ibβ2χ

4 sin β1(H−zs)+4ξ2β2γβ1 cos β1(H−zs)

(2ξ2−χ2)2β1 cos β1H−ibβ2χ4 sin β1H+4ξ2β2γβ1 cos β1H

−
(2ξ2

−χ2)
2
β1 cos β1(H−zs)−ibβ2χ

4 sin β1(H−zs)−4ξ2β2γβ1 cos β1(H−zs)

(2ξ2−χ2)2β1 cos β1H−ibβ2χ4 sin β1H−4ξ2β2γβ1 cos β1H

}
H(1)

0 (ξr)ξdξ

≈



8 sin
√

k2
1−χ

2zs sin
√

k2
1−χ

2z

bχ sin2
√

k2
1−χ

2H

1
r2 ei(χr+ π

2 ), i f cos
√

k2
1 − χ

2H = 0

−
χ2b sin

√
k2

1−χ
2zs sin

√
k2

1−χ
2z

2(k2
1−χ

2) cos2
√

k2
1−χ

2H

1
r eiχr, i f

 cos
√

k2
1 − χ

2H , 0,

b
√
χ2 − k2

2 tan
√

k2
1 − χ

2H +
√

k2
1 − χ

2 = 0


8(k2

2−χ
2)b sin

√
k2

1−χ
2zs sin

√
k2

1−χ
2z

χ
[√

k2
1−χ

2 cos
√

k2
1−χ

2H+b
√
χ2−k2

2 sin
√

k2
1−χ

2H
]2

1
r2 ei(χr− π2 ), i f

 cos
√

k2
1 − χ

2H , 0,

b
√
χ2 − k2

2 tan
√

k2
1 − χ

2H +
√

k2
1 − χ

2 , 0



(9)

Equations (8) and (9) show that, in general, lateral waves attenuate more quickly than spherical
waves during propagation, and will possess a significant value only for distances not far from the source.
In order to reflect the phenomenon more intuitively, the transmission losses (TLs) of normal modes,
the lateral wave, and the spherical wave are shown in Figure 2. The simulation environment parameters
are shown in Table 1, the sound source depth is 20 m, and the receiver is placed on the seafloor interface.
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Here, the frequency is 50 Hz. Figure 2 shows that the lateral wave attenuation decays faster with
distance. Thus, in general, when long-range sound transmission is considered, the contribution of
the lateral wave usually can be neglected and

ϕ1(r, z) ≈ ϕN(r, z) = 2πi
∑

n
F2

n sin β1nz sin β1nzsH
(1)
0 (ξnr). (10)

Table 1. Parameters of the ocean environment.

Medium Depth(m) Density(g/cm3) Compression Wave Speed (m/s) Shear Wave Speed (m/s)

Fluid 50 1.0 1500 /
Elastic bottom / 1.5 3800 1800
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In the fluid, the relationships between potential function, complex pressure, and the vertical
particle velocity at angular frequency ω are as follows:

p(r, z,ω) = ρ1ω
2S(ω)ϕ1(r, z) = 2πiS(ω)ρ1ω

2
∑

n
F2

n sin β1nz sin β1nzsH
(1)
0 (ξnr); (11)

vz(r, z,ω) = −iωS(ω)
∂ϕ1(r, z)
∂z

= ω2πS(ω)
∑

n
F2

nβ1n cos β1nz sin β1nzsH
(1)
0 (ξnr) (12)

Because the vertical particle velocity is continuous at z = H, the ratio of the pressure and the vertical
velocity received by the OBS is

Zz(r, H,ω) =
p(r, H,ω)
vz(r, H,ω)

= iρ1ω

∑
n

F2
n sin β1nH sin β1nzsH

(1)
0 (ξnr)∑

n
F2

nβ1n cos β1nH sin β1nzsH
(1)
0 (ξnr)

. (13)

If only the single normal mode is considered, the expression of vertical wave impedance is
represented as (Zz = iρ1ωsinβ1nH/β1ncosβ1nH). Hence, the vertical wave impedance is only related
to the receiver depth and is independent of the distance. Therefore, for ranging, the vertical wave
impedance must take into account the normal mode order of two and above.
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3. PF Framework

PF is a sequential Monte Carlo (MC) method employing the sequential estimation of relevant
probability distributions using the importance sampling (IS) techniques and the approximations of
distributions with discrete random measures [10–13]. PF is a technique to implement sequential
Bayesian estimators via MC simulation [14]. PF has the advantage that the noise model and the system
model are not limited. Compared with the Kalman filter, PF can be applied to nonlinear systems and is
not limited by Gaussian distribution. The PF framework for estimating the position of the source
is organized as follows: in Section 3.1, a general background about the state-space equation for
the estimation of evolving parameters in dynamical systems is given together with the basics of
Bayesian filtering. In Section 3.2, the filter equations are derived starting from the basic IS concepts,
moving to sequential importance sampling (SIS), finally deriving the commonly used PF, often referred
to as sequential importance resampling (SIR).

3.1. Background

3.1.1. State-Space Model

The state-space model requires two equations: the state equation and the measurement equation.
The state equation models the evolution of the state vector over time. The measurement equation
performs the mapping from state vectors to observation vectors. The two equations are represented
as follows:

xk = f(xk−1) + wk−1, (14)

yk = d(xk) + vk, (15)

where x = [r, zs]T, r is the range, zs is the source depth, and T represents the transpose of matrix x.
The state Equation (14) describes the evolution or transition of xk and assumes that states follow

a first-order Markov process. Function f(·) is the state prediction operator, which models the evolution
of the state vector at step k − 1 to that of step k. In this work, f(·) is taken as the unit matrix I.
The measurement Equation (15) relates measurements yk to state vector xk through function d(·),
where y is the measurement vector. Function d(·) is the nonlinear function that relates the environmental
and source parameters xk to the acoustic measurement vector yk. In this work, when vertical wave

impedance selected as measurement vector, y = [Zz(x, ω1), . . . , Zz (x, ωm), . . . , Zz (x, ωM)]T, and Zz (x,
ωm) is the vertical wave impedance at angular frequencyωm, with m ∈ [1, M]. Furthermore, d(x) = [d1(x),
. . . , dm(x), . . . , dM(x)]T, with

dm(x) = iρ1ωm

∑
n

F2
nm sin β1nmH sin β1nmzsH

(1)
0 (ξnmr)∑

n
F2

nmβ1nm cos β1nmH sin β1nmzsH
(1)
0 (ξnmr)

. (16)

Moreover, wk and vk are the state noise vector and the measurement noise vector, respectively, with

E
{
wkwT

i

}
= Qkδki, E

{
vkvT

i

}
= Rkδki, E

{
wkvT

i

}
= 0,∀i, k, (17)

where δ(·) is the Dirac delta function, and Qk and Rk are the covariance matrices at k for the corresponding
noise terms. The modal/range uncertainty can be lumped as a state process noise term to
represent sound-speed profile errors, errors in the boundary conditions, sea state effects, and ocean
inhomogeneities, whereas the measurement noise can be lumped into an additive noise term to
represent the near-field acoustic noise field, flow noise on the sensors, and electronic noise [15].
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3.1.2. Bayesian Filtering

After giving the state equation and the measurement equation, we briefly discuss the algorithm
for our estimation problem. The basic problem we pursue in this paper can now be defined in terms of
our mathematical models as follows:

GIVEN a set of noisy vertical wave impedances along with the state equation and measurement
equation (Equations (14) and (15)) with unknown parameters (r, zs), FIND the “best” estimated values.

Examining the problem from a Bayesian standpoint [16,17], we are interested in deriving the full
posterior PDF for xk. The initial PDF of the state vector, Pr(x0), is assumed to be known. Let Dk = [y1,
y2, . . . , yk] be the set of data from 1 to k steps. The aim is to estimate Pr(xk|Dk), the posterior PDF of
the state vector at step k.

With the posterior PDF Pr(xk − 1|Dk − 1) available, we can predict Pr(xk|Dk − 1) through the transition

PDF Pr(xk|xk − 1). Due to the first-order Markov chain assumption of xk, Pr(xk|xk − 1) does not depend
on data Dk − 1. Density Pr(xk|Dk − 1) can be written as

Pr(xk|Dk−1) =
∫

Pr(xk|xk−1, Dk−1) × Pr(xk−1|Dk−1)dxk−1
=

∫
Pr(xk|xk−1) × Pr(xk−1|Dk−1)dxk−1

(18)

When a new measurement yk becomes available, the posterior PDF Pr(xk|Dk) can be calculated by
the Bayes theorem.

Pr(xk|Dk) =
Pr( yk|xk)Pr( xk−1|Dk−1)

Pr( yk|Dk−1)

=
Pr( yk|xk)Pr( xk−1|Dk−1)∫

Pr( yk|xk) Pr( xk−1|Dk−1)dxk

(19)

The posterior PDF Pr(xk|Dk) contains all information provided from the data, the measurement
equation, and the noise model about target xk at step k.

3.2. Particle Filter

PFs track the posterior PDF Pr(xk|Dk) using a cloud of particles
{
xi

k

}Np

i = 1
=

{
x1

k , x2
k , · · · , x

Np

k

}
that

evolve with step k. Before presenting the details of the PF, we summarize the basic IS concepts.

3.2.1. Importance Sampling

For a general nonlinear system, it is difficult to obtain an analytical solution of the posterior
probability, and it is difficult to obtain the integral in Equations (18) and (19). In order to solve
the integral problem, we introduce the MC method.

Assume that we want to compute an integral I =
∫

f (x)dx. One way of computing I is assuming x
is a random variable, defining f (x) = g(x)p(x), and rewriting it in the form of an expectation [2].

I = E
{
g(x)

}
=

∫
g(x)p(x)dx, (20)

where g(x) is some function of x with PDF p(x). By drawing Np independent and identically distributed
x samples from p(x), I can be computed numerically via MC integration [2].

{
xi
}Np

i = 1
∼ p(x)→ I ≈

1
Np

Np∑
i = 1

g
(
xi
)
. (21)

However, in many cases, it is too costly or not possible to sample from p(x). To mitigate difficulties
with inability to directly from a posterior distribution, IS is introduced. IS is a method to compute
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expectations with respect to one density using random samples drawn from another. Using a simple
function q(x) as the sampling density, Equation (20) can be rewritten as

I =
∫ [

g(x) p(x)
q(x)

]
q(x)dx = E

{
g(x) p(x)

q(x)

}
{
xi
}Np

i = 1
∼ q(x)

(22)

The estimate is obtained using MC integration,

Î =
1

Np

Np∑
i = 1

g
(
xi
) p

(
xi
)

q(xi)
=

1
Np

Np∑
i = 1

wig
(
xi
)
, (23)

where wi = p
(
xi
)
/q

(
xi
)

represents the importance weights.

3.2.2. Sequential Importance Sampling

Bayesian filtering requires performing successive IS runs at each k. The output of each IS run
is used as the prior for the next one. This process is referred to as SIS. Let Xk = [x1, x2, . . . , xk]; it is
possible to obtain posterior PDF Pr(xk|Dk) from the full posterior density Pr(Xk|Dk).

Pr(xk|Dk) =

∫
δ(xk − xk

′)Pr
(
Xk
′
∣∣∣Dk

)
dXk

′. (24)

Selecting a sampling density q(Xk|Dk) and implementing IS, we can obtain

Pr(xk|Dk) ≈

Np∑
i = 1

Wi
kδ

(
xk − xi

k

)
, (25)

Wi
k ∝

Pr
(
Xi

k

∣∣∣Di
k

)
q
(
Xi

k

∣∣∣Di
k

) . (26)

Expanding the full posterior PDF [10], Pr(Xk|Dk) can be expressed as

Pr(Xk|Dk) =
Pr

(
yk

∣∣∣xk
)
Pr(xk|xk−1)

Pr
(
yk

∣∣∣Dk−1

) Pr(Xk−1|Dk−1). (27)

Selecting q(Xk|Dk) as
q(Xk|Dk) = q(xk|xk−1, Dk)q(Xk−1|Dk−1), (28)

the weight of the ith particle at step k can be represented as

Wi
k ∝

Pr( yk|x
i
k)Pr( xi

k

∣∣∣xi
k−1)

q( xi
k

∣∣∣xi
k−1,Dk)

×
Pr(Xk−1|Dk−1)
q(Xi

k−1

∣∣∣Di
k−1)

∝
Pr( yk|x

i
k)Pr( xi

k

∣∣∣xi
k−1)

q( xi
k

∣∣∣xi
k−1,Dk)

Wi
k−1

(29)

There are a variety of the PF algorithms available, each evolving from a particular choice of
sampling density; however, perhaps the simplest is the bootstrap technique [18], which we apply to
our problem. Here, the sampling density is selected as

q
(
xk

∣∣∣xk−1, Dk
)
= Pr

(
xk

∣∣∣xk−1

)
. (30)
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Thus, Equation (29) is simplified to

Wi
k = Pr

(
yk

∣∣∣xi
k

)
Wi

k−1. (31)

Now, only Pr(yk|xk) at step k is employed in updating weights Wi
k. Pr(yk|xk) is called

the likelihood function.

3.2.3. Sequential Importance Resampling

One of the major problems with SIS is the degeneracy of the particles. After a few iterations of
successive SIS, the process leads to a cloud containing few particles with large weights and numerous
particles with negligible weights. This loss of sample diversity results in poor filter performance.
Thus, there is a need to somehow resolve this degeneracy problem. This requirement leads to the idea
of “resampling” the particles. SIS with an additional resampling step to avoid degeneracy called
SIR [16,17,19], and SIR is the most popular PF implementation.

Resampling is easily performed at the end of each step k; alternatively, resampling is implemented
when the effective number of particles Neff needed to maintain diversity drops below a threshold
Nthresh. An estimate of the effective number of particles is given by

Ne f f =
1

Np∑
i = 1

(
Wi

k

)2
. (32)

When Neff is less than the threshold, resampling is performed.

Ne f f =

{
≤ Nthresh Resample
> Nthresh Accept

. (33)

In summary, the SIR particle filter works as follows: suppose that, at time k – 1, there is a particle

cloud
{
x1

k−1, x2
k−1, · · · , x

Np

k−1

}
of size Np that, with associated weights, samples from the posterior PDF

Pr(xk − 1|Dk − 1). Then, transform cloud
{
x1

k−1, x2
k−1, · · · , x

Np

k−1

}
into

{
x1∗

k , x2∗
k , · · · , x

Np∗

k

}
through the state

equation. Each article in the latter cloud has weight 1/Np. When data yk are available, the normalized

weight of each particle is reevaluated, i.e., Wi
k = Pr

(
yk

∣∣∣xi∗
k

)
/
∑Np

j = 1 Pr
(
yk

∣∣∣x j∗
k

)
, where PDF Pr

(
yk

∣∣∣x j∗
k

)
is defined by the measurement equation and knowledge of the statistical behavior of errors in data
measurements. These weights are used for the estimation of posterior PDF Pr(xk|Dk) [20].

Thus, once the posterior is available, the estimates of important statistics can be inferred. For
instance, the minimum mean-squared error (MMSM) estimate is used in this paper, with

x̂MMSE ≈
1

Np

Np∑
i = 1

Wixi. (34)

4. Simulation

The simulation was performed in a shallow water waveguide with a half-infinite elastic seabed
as shown in Figure 1. The simulation environment parameters are shown in Table 1. The receiver was
placed on the seafloor interface, and the range was 10 km. For convenience, S(ω) was constant.

Firstly, the effects of the particle size and the resampling strategies on the estimation performance
were analyzed by simulation. Here, three widely used resampling algorithms (multinomial resampling,
systematic resampling, and residual resampling) are discussed when the numbers of PF particles
were 150, 300, 600, and 1200. The sound source depth was 20 m, the vertical wave impedance
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was the measured vector, and the frequency domain was selected as 50 Hz–150 Hz. The range
estimation results and source depth estimation results in different resampling algorithms and particle
sizes are shown in Tables 2 and 3, respectively. It should be noted that each of the estimation
values in Tables 2 and 3 is the average of 20 simulation results. It can be seen from Tables 2 and 3
that, as the number of particles increases, the positioning performances of the three resampling
algorithms tend to increase. Following comprehensive comparison of the positioning results of
the three resampling algorithms, the best one was determined as residual resampling. Thus, in all
subsequent simulations and experiments, if not specified, the resampling algorithm selected residual
resampling and the number of particles was chosen to be 1200.

Table 2. Range estimation results in different resampling algorithms and particle sizes.

Particle Size Multinomial Resampling Systematic Resampling Residual Resampling

150 9904.4 m 9869.6 m 9902.5 m
300 9904.0 m 9910.4 m 9894.5 m
600 9957.9 m 9907.1 m 9941.0 m

1200 9938.0 m 9949.1 m 9950.3 m

Table 3. Source depth estimation results in different resampling algorithms and particle sizes.

Particle Size Multinomial Resampling Systematic Resampling Residual Resampling

150 25.6 m 28.8 m 25.4 m
300 25.7 m 25.2 m 26.3 m
600 22.6 m 26.3 m 23.7 m

1200 22.6 m 22.1 m 21.1 m

Next, in the same simulation environment, the effect of Qk (the covariance of state process noise)
on the estimation performance was analyzed by simulation. As the initial value of x will affect the value
of Qk, in two different initial values, the influence of Qk on the positioning performance was analyzed
and the empirical rule for determining Qk was obtained through simulation. The two different initial
values of x were [9500, 25]T and [7500, 25]T.

When the initial value was [9500, 25]T, the different values of Q1/2
k are given in Table 4

and the localization results are shown in Figure 3. Combined with Figure 3 and Table 4, the following
can be determined:

(i) Figure 3a,b show the positioning results when the second values on the diagonal of Q1/2
k

were 0.5, 1, and 4, and the first value on the diagonal remained 100, which corresponds to cases (1a),
(1b), and (1c), respectively. The distance and source depth cannot be correctly estimated in case (1a),
but in cases (1b) and (1c), source position can be correctly estimated. At the same time, the source
depth estimation curve in case 1(b) had a relatively smaller fluctuation around the true value compared
to case 1(c). In all cases of (1a), (1b), and (1c), the positioning performance was best in case (1b);

(ii) Figure 3c,d show the positioning results when the first values on the diagonal of Q1/2
k were 10,

102, and 103, and the second value on the diagonal remained 1, which corresponds to cases (1d),
(1b), and (1e), respectively. The distance and source depth cannot be correctly estimated in case (1d),
but in cases (1b) and (1e), source position can be correctly estimated. Furthermore, the source depth
estimation curve in case 1(e) had a relatively larger fluctuation around the true value compared to
case 1(b). In all cases of (1d), (1b), and (1e), the positioning performance was best in case (1b);

(iii) The value of Qk affects the positioning performance. Covariance matrix Qk should contain
values large enough to accommodate the unexpected changes, but at the same time, the value of
covariance matrix should not be too small which can cause poor positioning performance (such as in
cases (1a) and (1d)). When the absolute difference between the initial value and true value of x was

[500, 5]T, the positioning performance was best when Q1/2
k was

[
102 0
0 1

]
among the five cases.
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When the initial value was [7500, 25]T, the different values of Q1/2
k are also given in Table 4

and the localization results are shown in Figure 4. Although values of Q1/2
k are different from that in

the case of the initial value being [9500, 25]T, the empirical rule of selecting Qk obtained in Figure 4

is similar to that in Figure 3. The value of Qk relates to the absolute difference between the initial
value and the true value of x, and the value of Qk cannot be selected too small, which will lead to
failure in source localization as shown in the curves of (2a) and (2d) in Figure 4. Although the distance
and source depth can be correctly estimated when the value of Qk is large enough, the estimated

curves may have relatively larger fluctuations around the true value, for example, in the case of Q1/2
k

being
[

2 ∗ 103 0
0 1

]
. In all cases of (2a)–(2e), the positioning performance was best when Q1/2

k was[
103 0
0 1

]
, i.e., case (2b). There was no fixed value for the covariance matrix Qk, but in the following

simulations and experiments, the Qk value could be determined according to the empirical rule
obtained from these simulations.

Table 4. Different values of Q1/2
k in different initial values of x.

The Initial Value of x Was [9500, 25]T

No. (1a) (1b) (1c) (1d) (1e)

Q1/2
k

[
102 0
0 0.5

] [
102 0
0 1

] [
102 0
0 4

] [
10 0
0 1

] [
103 0
0 1

]
The Initial Value of x Was [7500, 25]T

No. (2a) (2b) (2c) (2d) (2e)

Q1/2
k

[
103 0
0 0.5

] [
103 0
0 1

] [
103 0
0 4

] [
102 0
0 1

] [
2 ∗ 103 0

0 1

]
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Figure 4. Localization results for PF with different values of Q1/2
k when the initial value of x was

[7500, 25]T. (a) Range estimation results in cases (2a), (2b), and (2c); (b) source depth estimation results
in cases (2a), (2b), and (2c); (c) range estimation results in cases (2d), (2b), and (2e); (d) source depth
estimation results in cases (2d), (2b), and (2e).
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Then, in the same simulation conditions, the estimation performances of EKF and the unscented
Kalman filter (UKF) were compared with PF. The localization results are shown in Figure 5. It can
be seen from Figure 5a that UKF and PF performed better than EKF in terms of range estimation.
However, in terms of source depth estimation, both UKF and EKF estimation curves had larger
fluctuations near the true value (20 m) than the PF estimation curve, as shown in Figure 5b. Figure 5
shows that the positioning performance of PF is superior to both EKF and UKF.
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Figure 5. Localization results for PF, extended Kalman filter (EKF), and unscented Kalman filter (UKF).
(a) Range estimation results for PF, EKF, and UKF; (b) source depth estimation results for PF, EKF,
and UKF.

Then, under different source depths conditions, we discussed the source localization performance
of pressure and vertical wave impedance as the measurement vector.

4.1. Source Depth of 20 m

When the sound source depth was 20 m, the measured vectors were the pressure and vertical
wave impedance. The frequency domain was selected as 25 Hz–100 Hz, and the localization results
are shown in Figure 6. For both pressure and vertical wave impedance, the range estimation results
converged and were in good agreement with the true range of 10 km (Figure 6a,c). As can be seen
from Figures 6b and 6d, both depth iteration curves converged to the true value of 20 m; however,
compared to Figure 6d, the curve in Figure 6b (the pressure as the measurement vector) had large
fluctuation near the true source depth. In Table 5, the mean absolute percentage error (MAPE) values of
localization results are given for comparing the positioning performance between pressure and vertical
wave impedance. MAPE was calculated as the average of the unsigned percentage error, as shown in
the example below.

MAPE =

 1
N

N∑
n = 1

|x̂n − xtrue|

|xtrue|

 ∗ 100, (35)

where N is the number of estimates. Here, the estimate values were selected from iterations 20 to 100.
It can be clearly seen from Table 5 that the pressure was slightly better than the vertical wave impedance
when estimating the distance, but neither MAPE exceeded 0.02%. Conversely, the vertical wave
impedance was better in estimating the source depth than pressure.
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Figure 6. Localization results for the measured vector as the pressure (black line) and the vertical wave
impedance (red line). (a) Range estimation result with pressure as the measured vector; (b) source depth
estimation result with pressure as the measured vector; (c) range estimation result with vertical wave
impedance as the measured vector; (d) source depth estimation result with vertical wave impedance
as the measured vector.

Table 5. Mean absolute percentage error (MAPE) of localization results in the frequency domain
of 25 Hz–100 Hz.

Range Source Depth

Pressure 0.0023% 2.7709%
Vertical wave impedance 0.0107% 0.5129%

Next, different frequency bands (50 Hz–150 Hz) were selected for the simulation,
and the localization results are shown in Figure 7. The MAPE values of localization results are
given in Table 6. At 50 Hz–150 Hz, the positioning performances of pressure and vertical wave
impedance were basically the same as those at 25 Hz–100 Hz except that the MAPE values were slightly
different. Under the simulation conditions, Figures 6 and 7, and Tables 5 and 6 prove that the positioning
performances of pressure and vertical wave impedance were not affected by the frequency band
too much.
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Figure 7. Localization results for the measured vector as the pressure (black line) and the vertical wave
impedance (red line). (a) Range estimation result with pressure as the measured vector; (b) source depth
estimation result with pressure as the measured vector; (c) range estimation result with vertical wave
impedance as the measured vector; (d) source depth estimation result with vertical wave impedance
as the measured.

Table 6. MAPE of localization results in the frequency domain of 50 Hz–150 Hz.

Range Source Depth

Pressure 0.0031% 2.2607%
Vertical wave impedance 0.0117% 0.6860%

4.2. Source Depth of 40 m

When the sound source depth was 40m, the measured vectors were the pressure and vertical wave
impedance. The frequency domain was selected as 75 Hz–95 Hz, and the localization results are shown
in Figure 8. In this case, the performance of vertical wave impedance for localization was still good,
as shown in Figure 8c,d. However, when the pressure was used for distance estimation, the result
was extremely poor, as shown in Figure 8a, where the iteration estimation curve had great fluctuation
at the true value of 10 km. Figure 8b shows that the source depth estimation results converged to the true
value of 40 m, but the curve fluctuated within 35 m–45 m. Upon increasing the number of iterations
and simulating in the same environment, the localization results of the pressure are shown in Figure 9.
Increasing the number of iterations still could not change the ranging capability of the pressure.
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Figure 8. Localization results for the measured vector as the pressure (black line) and the vertical wave
impedance (red line). (a) Range estimation result with pressure as the measured vector; (b) source depth
estimation result with pressure as the measured vector; (c) range estimation result with vertical wave
impedance as the measured vector; (d) source depth estimation result with vertical wave impedance
as the measured vector.
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Figure 9. Localization results for pressure as the measured vector. (a) Range estimation result with
pressure as the measured vector; (b) source depth estimation result with pressure as the measured vector.
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The reason for the appearance of Figure 8 is given from the perspective of sensitivity analysis.
The effect of source localization depends on the sensitivity of parameters. The sensitivity of
parameters refers to the change degree of the objective function caused by the change of the parameter.
The normalized objective function used here is given by

Φ(x) = 1−
1

yHy
‖y−

d(x)Hyd(x)

‖d(x)‖2
‖

2

, (36)

where y is the actual measurement vector. H represents the conjugate transpose. When the pressure
is used as the measurement vector, that is, y = [p(x, ω1), . . . , p(x, ωm), . . . , p(x, ωM)]T, and p(x, ωm)

is the pressure at angular frequency ωm, with m ∈ [1, M]. Furthermore, d(x) = [d1(x), . . . , dm(x),

. . . , dM(x)]T, with dm(x) = 2πiS(ωm)ρ1ω2
m
∑
n

F2
nm sin β1nmH sin β1nmzsH

(1)
0 (ξnmr). When the vertical

wave impedance is used as the measurement vector, that is, y = [Zz(x, ω1), . . . , Zz (x, ωm), . . . , Zz (x,

ωM)]T, and Zz (x, ωm) is the vertical wave impedance. Now, d(x) = [d1(x), . . . , dm(x), . . . , dM(x)]T,

with dm(x) = iρ1ωm

∑
n

F2
nm sin β1nmH sin β1nmzsH(1)

0 (ξnmr)∑
n

F2
nmβ1nm cos β1nmH sin β1nmzsH(1)

0 (ξnmr)
. When the measured vectors were the pressure

and vertical wave impedance in the frequency domain of 75 Hz–95 Hz, the objective functions for
the state vector x are given in Figure 10. When the measured vector was the vertical wave impedance,
the range and source depth were very sensitive to the objective function, and the objective functions
reached the maximum at 10 km and 40 m. When the measured vector was the pressure, the source
depth was sensitive to the objective function. This is why depth estimation could be performed using
pressure. However, the range was not sensitive to the objective function, whereby the objective function
curve is represented by the black line in Figure 10a. The curve peaked at multiple distances, such
as 6 km, 10 km, etc. This multi-peak phenomenon led to instability of ranging performance, as shown
in Figures 8a and 9a.
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Figure 10. Normalized objective function curves. (a) Normalized objective functions for the range
when the measured vector was the pressure (black line) and the vertical wave impedance (red dotted
line); (b) normalized objective functions for source depth when the measured vector was the pressure
(black line) and the vertical wave impedance (red dotted line).

Above all, the source depth will affect the correctness of localization when pressure is used
as the measurement vector, while the use of vertical wave impedance to locate the source is not affected
by the source depth. In addition, there is no need to know the source spectrum information when using
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vertical wave impedance for positioning, which is an advantage for passive ranging. In Section 5,
the vertical wave impedance is used to locate the explosive sources during an experiment based on
the PF.

5. Experimental Results

In 2018, an underwater explosion experiment was conducted in a shallow water waveguide near
Qingdao, China. The experimental ship sailed along the scheduled route, and the explosives were placed
at a fixed point during the voyage. Two vertical arrays were used as receiving devices. Each vertical
array consisted of two hydrophones and one OBS. The navigation trajectory of the experimental ship
and the coordinates of the receiving array were obtained from the global positioning system (GPS)
data, as shown in Figure 11.
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Figure 11. Navigation trajectory of the experimental ship and localization of the receiving arrays.

During the experiment, the temperature was recorded by a temperature and depth logger (TD)
with a tiny change. Due to the little temperature variability and the small depth of the water column,
water sound speed was assumed to be constant. The bottom of the sea could be assumed to be flat,
which was estimated as a semi-infinite uniform elastic seabed.

During the experiment, a total of 19 explosives were detonated at four burst spots, and the third
and fourth burst spots were selected for sound source localization. Seven explosives (No. 9–No. 15) were
selected for source localization. For the seven explosives, the explosive quantity was 50 g. At the third
burst spot, four explosives (No. 9–No. 12) were carried out with a depth of 13 m. At the fourth burst
spot, three explosives (No. 13–No. 15) were carried out with a depth of 17 m.

Because the second vertical array was on the slope and did not conform to the environment model
in this paper, only the data received by the OBS of the first array were used for positioning.

The PF positioning results of experimental data received by the OBS for No. 9–No. 15 explosions
are illustrated in Figure 12. The black solid line denotes the estimated value, and the red dashed
line denotes the actual distance obtained by the GPS data, with the actual distances shown in
Table 7. Moreover, Table 7 also gives the MAPE of localization results for No. 9–No. 15 explosions.
In the process of using the PF for experimental data, the state process noise covariance value was
taken according to the empirical rule obtained in the Section 4. Here, the initial state value was

[21000, 15]T and the Q1/2 was
[

102 0
0 2

]
for No. 9–No. 12 explosions. Additionally, the initial

state value was [29000, 15]T and the Q1/2 was
[

102 0
0 2

]
for No. 13–No. 15 explosions. Figure 12

indicates that the experimental range estimates and source depth estimates both converged, and that
the differences between the convergence values and the true values were small for No. 9–No. 15
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explosions. The MAPEs of range estimation and depth estimation for No. 9–No. 12 did not exceed 1.42%
and 2.86%, respectively, while the MAPEs of range estimation and depth estimation for No. 13–No. 15
did not exceed 0.29% and 3.30%. The experimental results proved the accuracy and practicability of
the method using vertical wave impedance as a measurement vector based on the PF.
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Figure 12. PF positioning results for the No.9–No.15 explosions. (a) Range estimation results for
the No.9–No.12 explosions; the estimated results and the global positioning system (GPS) ranges are
represented by the black line and red dotted line, respectively; (b) source depth estimation results for
the No.9–No.12 explosions; (c) range estimation results for the No.13–No.15 explosions; the estimated
results and the GPS ranges are represented by the black line and red dotted line, respectively; (d) source
depth estimation results for the No.13–No.15 explosions.

Table 7. Distances of the explosives from the first array and the MAPEs of the localization results.

No. 9 10 11 12 13 14 15

Distance (m) 22,801 22,822 22,844 22,882 30,176 30,158 30,122
MAPE (%) for range 1.11 1.42 1.14 1.14 0.11 0.17 0.29

MAPE (%) for source depth 2.55 2.13 2.86 1.92 3.10 3.30 3.21
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6. Conclusions

In this paper, an OBS sensor was used to estimate the position of the broadband sound source in
a Pekeris shallow water waveguide with elastic bottom. In the semi-infinite elastic seabed environment,
the expression of pressure and vertical velocity channels received by the OBS sensor were theoretically
derived. Based on the PF method, the positioning performances of the pressure and vertical wave
impedance as the measurement vector were simulated and analyzed. In the simulation environment,
the results showed that the source depth will affect the ability of pressure to locate. When the measured
vector was the pressure and the source was 40 m, although the source depth was sensitive to the objective
function, the range was not sensitive to the objective function. Moreover, the objective function curve
of range peaked at multiple distances. This multi-peak phenomenon led to instability of ranging
performance. In contrast, when the measured vector was the vertical wave impedance and the source
was 20 m, the range and source depth estimation results converged and were in good agreement with
the true values at different frequency bands. In the case of poor localization performance for pressure,
that is, when the source was 40 m, the vertical wave impedance as the measurement vector could
also exhibit excellent positioning performance. The PF method with the vertical wave impedance
as the measurement vector was not affected by source depth and source spectrum information, making it
more tolerant and more robust than that with pressure in positioning.

The PF method with the vertical wave impedance as the measurement vector was employed
to process the experimental data in the sea near Qingdao. The experimental results showed that
the source parameters (the source depth and the range) were correctly estimated and converged to
the true values using an OBS sensor in different ranges and different explosive source depths.
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Appendix A

In this appendix, the derivation process of potential functions is detailed.
The wave equations in the given case can be written as follows (the time factor was chosen as e−iωt,

but it is omitted in the forthcoming derivations for the sake of convenience):
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∂
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∂ϕ1
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)
+
∂2ϕ1

∂2z
+ k2

1ϕ1 = −4πδ(r, z− zs) 0 ≤ z < H , (A1)
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2ϕ2 = 0 z > H , (A2)

∇×∇×
→

ψ − χ2
→

ψ = 0 z > H , (A3)

where ∇ ·
→

ψ = 0, and ∇ is the Hamiltonian operator.
Potential functions can be written in form of Fourier–Bessel integrals for range r and horizontal

wavenumber ξ.

ϕ1 =

∞∫
0

Z1(z, ξ)J0(ξr)ξdξ,ϕ2 =

∞∫
0

Z2(z, ξ)J0(ξr)ξdξ,ψ =

∞∫
0

G(z, ξ)J1(ξr)ξdξ, (A4)

where J0(.) and J1(.) are zero-order and first-order Bessel functions, respectively.
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By substituting Equation (A4) into wave Equations (A1), (A2), and (A3), the wave equations can
be rewritten as

d2Z1(z, ξ)
dz2 + β2

1Z1(z, ξ) = −2δ(z− zs) 0 ≤ z < H , (A5)

d2Z2(z, ξ)
dz2 + β2

2Z2(z, ξ) = 0 z > H , (A6)

d2G(z, ξ)
dz2 + γ2G(z, ξ) = 0 z > H . (A7)

Taking into consideration pressure release condition, radiation condition at infinity,
and the existence of point source, the expressions of Z1(z, ξ), Z2(z, ξ), and G(z, ξ) become

Z1(z, ξ) =

{
A sin β1z 0 ≤ z < zs

B sin β1z + C cos β1z zs ≤ z < H
, (A8)

Z2(z, ξ) = F1eiβ2z z > H,
G(z, ξ) = F2eiγz z > H.

(A9)

where A, B, C, F1, and F2 are constants to be determined by point source conditions and the boundary
conditions at z = H, i.e., continuity of normal velocity and normal stress at both sides of the boundary,
with tangential stress equal to zero. The values of A, B, C, F1, and F2 can be obtained as follows,
as mentioned in Reference [9]:

A =
2
β1

[
β1 cos β1(H − zs) − ibβ2K sin β1(H − zs)

β1 cos β1H − ibβ2K sin β1H

]
, (A10)

B =
2 sin β1zs

β1

[
β1 sin β1H + ibβ2K cos β1H
β1 cos β1H − ibβ2K sin β1H

]
, (A11)

C =
2 sin β1zs

β1
, (A12)

F1 = −
2ξσK
χ2

2b sin β1zse−iβ2H

β1 cos β1H − ibβ2K sin β1H
, (A13)

F2 =
2iξβ2K
χ2

2b sin β1zse−iγH

β1 cos β1H − ibβ2K sin β1H
. (A14)

By substituting Equations (A10)–(A14) and Equations (A8)–(A9) into Equation (A4), the expression
of ϕ1,ϕ2,ψ can be written as

ϕ1(r, z) =


∞∫
0

2 sin β1z
β1

[
β1 cos β1(H−zs)−ibβ2K sin β1(H−zs)

β1 cos β1H−ibβ2K sin β1H

]
J0(ξr)ξdξ, 0 ≤ z < zs

∞∫
0

2 sin β1zs
β1

[
β1 cos β1(H−z)−ibβ2K sin β1(H−z)

β1 cos β1H−ibβ2K sin β1H

]
J0(ξr)ξdξ, zs ≤ z < H

(A15)

ϕ2 = −

∞∫
0

2ξσK
χ2

2b sin β1zseiβ2(z−H)

β1 cos β1H − ibβ2K sin β1H
J0(ξr)ξdξ z > H (A16)

ψ =

∞∫
0

2iξβ2K
χ2

2b sin β1zseiγ(z−H)

β1 cos β1H − ibβ2K sin β1H
J1(ξr)ξdξ z > H (A17)
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