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Abstract: Physical capability (PC) is conventionally evaluated through performance-based clinical
assessments. We aimed to transform a battery of sensor-based functional tests into a clinically
applicable assessment tool. We used Exploratory Factor Analysis (EFA) to uncover the underlying
latent structure within sensor-based measures obtained in a population-based study. Three hundred
four community-dwelling older adults (163 females, 80.9 + 6.4 years), underwent three functional
tests (Quiet Stand, QS, 7-meter Walk, 7MW and Chair Stand, CST) wearing a smartphone at the
lower back. Instrumented tests provided 73 sensor-based measures, out of which EFA identified
a fifteen-factor model. A priori knowledge and the associations with health-related measures
supported the functional interpretation and construct validity analysis of the factors, and provided
the basis for developing a conceptual model of PC. For example, the “Walking Impairment” domain
obtained from the 7MW test was significantly associated with measures of leg muscle power, gait
speed, and overall lower extremity function. To the best of our knowledge, this is the first time that
a battery of functional tests, instrumented through a smartphone, is used for outlining a sensor-based
conceptual model, which could be suitable for assessing PC in older adults and tracking its changes
over time.

Keywords: physical capability assessment; instrumented functional test; exploratory factor analysis;
older adults

1. Introduction

Physical capability (PC) can be defined as “a person’s ability to do the physical tasks of everyday
living” [1]. It is also defined as one of the domains characterizing the healthy aging phenotype
recommended for the assessment of older adults by the National Institutes of Health (NIH) [2].
Assessment of the PC was previously achieved using questionnaires and clinical rating scales. Such an
assessment is particularly relevant in older adults and is an essential component of comprehensive
geriatric assessment in order to develop an overall plan for prevention, treatment, and long-term
follow-up. A variety of tools has been proposed in the literature for assessing PC, but several might
be sub-optimal for a number of reasons. Some of them suffer from ceiling or floor effect limitations.
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Some may not be responsive enough to measure slight improvement or deterioration in an older
adult’s ability and all self or proxy-reported outcomes may suffer from misreporting. In-lab functional
tests are also commonly used, which are quick, simple to administer and make use of inexpensive
equipment like a stopwatch or a ruler. Conventional outcome measures of these tests are easily
interpretable and therefore widely employed to assess levels of physical function in older adults [3].
Performance on balance tests, gait speed, ability to repeatedly rise from a chair, have been used to
characterize PC and predict subsequent health outcomes in community-dwelling populations [1,4,5].
These tests are often administered together, such as in the Short Physical Performance Battery [6]
which computes a composite score assessing walking speed, standing balance, and sit-to-stand. This
summary score has been demonstrated to have high reliability, validity, and responsiveness [7] and to
be predictive of adverse health-related outcomes in community-dwelling older persons [6,8]. Advances
in body-worn inertial sensor technology favored the proliferation of instrumented functional tests in
which sensor-based measures enrich the outcome of a conventional test. Sensor-based measures are
extracted from inertial sensor signals, i.e., accelerometers and gyroscopes, and can provide a more
comprehensive assessment of a person’s mobility and balance, well beyond the simple time to perform
the test or the distance covered [9].

Instrumented functional tests can qualitatively and quantitatively characterize a wide range of
abilities by introducing unique features such as the stepping variability/regularity or the symmetry and
coordination of steps during gait [10], the smoothness of postural transitions [11], or the complexity of
balance control during postural sway [12].

State of the Art

Recent literature suggests that a battery of instrumented functional tests, including postural sway
assessment, gait analysis, and the assessment of the lower limb strength, may be used to obtain an
objective and more detailed picture of a person’s PC. A recent review showed the importance to
create consensus in the clinical and research community on a recommended set of functional tests
and sensor configurations to standardize the outcome tools and increase comparability between
studies [13]. Godfrey et al. showed that the use of standardized instrumented protocols has practical
implications in large scale interventions and could also be extended to studies involving pathology,
limiting ‘human-error’, and providing the added dimension of novel sensor-based characteristics [9,14].
However, since a single instrumented test produces a large number of sensor-based measures, the
clinical interpretation, and validity of these measures, as well as their association with measures
obtained from other functional tests, must be carefully analyzed. Covariance among sensor-based
measures is high, suggesting redundancy and the need to identify key variables without compromising
selectivity. Methods for feature reduction can be found in the literature [15-17]. However, these
statistical or machine learning methods, address only the issue of reducing the dimension of the
dataset. They might provide better results in terms of prediction error, but they select features that
are specific for the outcome, without considering the underlying conceptual structure of the initial
dataset. A suggested approach to provide a simplified framework is to group the instrumented features
into a small number of independent domains using Exploratory Factor Analysis (EFA) [18]. EFA
is a multivariate statistical approach widely used in the social, health, biological, and, sometimes,
physical sciences, which reduces the number of variables, without imposing a preconceived structure
on the outcome. The advantage of such an approach is to reduce the redundancy across variables,
by examining the relationships between them [19]. EFA attempts to discover the nature of the latent
constructs influencing a set of measured variables [20]. It is based on the common factor model, which
proposes that common underlying factors and unique factors influence each observed variable. Unique
factors are related to measurement error and variation in the data. Variables that are highly correlated
are likely to be influenced by the same factor, while different factors likely influence those that are
relatively uncorrelated. Hence, determining the influence of a latent factor on the measured variables,
it is possible to indirectly measure the latent construct, which is also commonly referred to as a factor,
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underlying construct, or unobserved variable. EFA is also used to generate factor scores, representing
values of the underlying constructs for use in other analyses. Factor scores are composite variables
which provide information about the placement of the person on the factor [21]. Thurstone [22]
computed the regression factor scores using a least squares regression approach to predict the location
of each individual on the factor. One of the goals of EFA is to provide a conceptual interpretation of the
structure, labelling the factors. Each measured variable is assumed to be linearly related to each factor.
The corresponding factor loading represents the strength of this relationship, which can be interpreted
as a standardized regression coefficient.

The so defined latent factors constitute the conceptual model and may be used to transform
datasets containing a high number of correlated sensor-based measures into clinically interpretable
information, described in terms of health-related relevant domains. Such an approach has been
widely adopted to characterize gait of both community-dwelling older adults and people at risk of
falling, or affected by Dementia or Parkinson’s Disease (PD) [23-29]. These studies developed and
validated a conceptual gait model from a set of instrumented temporal gait parameters extracted from
a computerized walkway with embedded pressure sensors (GaitRite™). Although the GaitRite™ is
a standard tool used to capture gait data [30], wearable inertial sensors provide a valid alternative
allowing the extraction of a high number of features in a wide variety of environments and including
movements like turning and postural transitions [31]. Recently, two conceptual gait models obtained
from body-worn monitors and GaitRite™ data have been compared, and these two models have shown
high congruence [32]. However, these conceptual models are based on temporal parameters, and
the omission of measures like step/stride regularity, jerk, and RMS acceleration might lead to a loss
of useful information. Indeed, as an example, a recent study showed that not all information about
impaired PD gait could be captured by measuring spatiotemporal information [33].

Furthermore, these additional measures showed to be related to different health conditions during
dynamic and static balance assessment [34,35]. We have found in the literature only a few models
describing other functional abilities like static and dynamic balance. Horak et al. developed a model
to discover independent domains of balance and gait from instrumented measures extracted through
6 wearable inertial sensors [36]. Our previous works explored and demonstrated the possibility to
define an interpretative model for the assessment of PC making use of an EFA on the features derived
from the smartphone-based Timed Up and Go test [37,38]. TUG and chair stand test have shown to
detect functional status in healthy community-dwelling adults [39]. Furthermore, instrumented chair
stand test has shown to be more strongly associated with participant health status, functional status
and physical activity [40]. However, we found no studies exploring the possibility to describe domains
of this test.

The definition of a sensor-based conceptual model for a comprehensive assessment of the older
adults’ PC is the central aim of this work.

2. Materials and Methods

2.1. Participants

A subsample of 304 community-dwelling older adults (163 females, 80.9 + 6.4 years old, range
65-98) from the INCHIANTI cohort study (ClinicalTrials.gov NCT01331512) [41] was assessed within
the framework of the EU FARSEEING project [42]. Ethical approval was obtained by the Local Ethical
Committee (approval number: 584/2012).

2.2. Health-Related Measures

Health-related measures included the Mini-Mental State Examination (MMSE), number of
medications, Instrumental Activities of Daily Living (IADL), prospective falls (FALL), the number
of falls in the last year (FALL history), Center for Epidemiologic Studies Depression Scale (CES-D),
Physical Activity (PA), the Short Physical Performance Battery (SPPB), Hand-Grip strength test (HAND),
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the lower extremity muscle power measured using the Nottingham leg extensor Power Rig (PWR),
Trail Making Test A (TMTA), and Gait speed (see Table 1).

Table 1. Demographic and functional profiles of each subgroup undertaking the three functional tests.

Total Population Qs MW CST
Sample Size 304 204 201 173
Gender (females) 163 (54%) 97 (48%) 95 (47%) 80 (46%)
AGE, years 80.90 (6.37) 79.46 (6.43) 79.39 (6.44) 79.35 (6.25)
Weight, kg 69.60 (13.30) 70.52 (13.13) 70.35 (13.18) 70.90 (13)
Height, cm 159.72 (9.53) 160.51 (9.21) 160.50 (9.20) 160.79 (8.88)
MMSE, (range 0-30) 27.25(1.77) 27.41 (1.76) 27.41 (1.77) 27.53 (1.72)
Medications >=4 169 (56%) 98 (48%) 95 (47%) 83 (48%)
IADL >=1, (range 0-8) 114 (38%) 49 (24%) 47 (23%) 39 (23%)
FALL >=2 16 (5%) 5(2%) 5 (2%) 3 (2%)
FALL history >=2 19 (6%) 11 (5%) 10 (5%) 7 (4%)
CES-D >= 16, (range 0-60) 106 (35%) 58 (28%) 57 (28%) 49 (28%)
PA, categories, (range 1-7) 2.91(1.01) 3.16 (0.98) 3.15(0.99) 3.24 (1.01)
SPPB, (range 0-12) 8.72 (3.18) 9.80 (1.98) 9.82 (1.98) 9.92 (1.87)
HAND, kg 26.98 (9.26) 28.85 (8.98) 28.81 (9.00) 29.09 (8.97)
PWR, watt 88.69 (51.28) 94.71 (51.28) 95.21 (51.62) 94.96 (48.54)
TMTA, s 78.37 (43.94) 70.51 (36.50) 70.69 (36.59) 69.48 (35.19)
Gait speed, m/s 1.11 (0.26) 1.15 (0.25) 1.15 (0.25) 1.15 (0.24)

Values are presented as mean (SD) or number (%) unless otherwise indicated

ACRONYMS: MMSE: Mini-Mental State Examination; IADL: Instrumental Activities of Daily Living, i.e., the
number of instrumental activities in which the person requires help (e.g., preparing meals, performing housework,
getting to places outside of walking distance, managing medications, etc.) [43]; FALL: Prospective falls, number
of falls occurred in the following year; FALL history: The number of falls in the last year declared during the
assessment; CES-D: Center for Epidemiologic Studies Depression Scale, a questionnaire used to assess depressive
symptoms (32); PA: Physical Activity, assessed through a questionnaire [44]; SPPB: Short Physical Performance
Battery, a measure of mobility function [8]; HAND: The Hand-Grip strength test [45] kg, stronger hand; PWR: The
lower extremity muscle power measured using the Nottingham leg extensor Power Rig [46], watt; TMTA: Trail
Making Test A, a neuropsychological test that assesses various cognitive abilities, including visual-conceptual,
visuospatial, and visual-motor tracking [47], s; Gait speed: obtained from the distance covered (7 meters) and the
total time taken to complete the test, m/s.

2.3. Instrumented Tests

Participants performed three functional tests in a fixed order: the assessment of postural sway in
Quiet Standing (QS), the 7-meters Walk (7MW) and the 5-times Chair Stand Test (CST). Not all the
subjects were able to complete the whole battery of tests: Table 1 reports the demographic and functional
profiles of each subgroup undertaking the tests. The tests were instrumented with a smartphone-based
system developed within the FARSEEING project [23]. The smartphone (Galaxy SII or Galaxy SIII,
Samsung, accelerometer range +2 g) was worn at the lower back (fifth lumbar vertebra, L5), taken as
reference of the body COM [48], by means of an elastic waist belt. A custom Android application was
used for recording tri-axial inertial signals (Anteroposterior, AP, Mediolateral, ML, Vertical, V) from
the embedded sensors [29]. Acceleration vector magnitude, measured at the lumbar region, is within
the range of the accelerometer (+2 g) in the majority of ADLs [30,31]. That would not be true if the
sensor were placed in other positions (chest, head, or limbs). In our study, the only activity that could
saturate the acceleration signal is the sitting phase in the CST test. However, the effect produced by the
impact between the trunk and the chair would be limited to a few samples and would not affect the
assessment of the voluntary stand-to-sit movement. Since Android is not a real-time operating system,
which means that the physical sensor access depends on other software tasks running in parallel,
the sampling rate is usually not constant. We addressed this issue making use of the absolute time
reference in nanoseconds associated with each sample [32]. We verified that on the specific mobile and
Android version the actual sampling rate was on a narrow size distribution centered on 100 Hz and it
was re-sampled offline at exactly 100 Hz before the signal processing.
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The time taken to complete the 7MW and CST tests were also recorded with a stopwatch following
the usual protocol. Task segmentation and task-specific feature extraction, implemented in Matlab
R2017b [49], were based on state-of-the-art methods to characterize postural sway [50], gait [10] and
postural transitions [51]. A set of 73 sensor-based measures were computed [52]. Each test was
performed as described below. The respective sensor-based measures are shortly summarized here
and described in detail in Tables 2—4.

QS: Subjects stand for 30 seconds with their arms at their side, feet hip-width apart, wearing shoes,
with their eyes closed [53]. Twenty-three sensor-based measures are extracted from: i) the acceleration
in ML and AP directions, including measures in the time and frequency domains, and ii) the estimated
displacement of the body center of mass [50], computed in the time domain to quantify the amount
and direction of sway.

7MW: Subjects walk 7 meters at a comfortable and safe pace. The start and stop locations are
marked on the floor [53]. Gait speed is computed as the distance covered divided for the total time
taken to complete the test. Nineteen sensor-based measures are extracted from the acceleration in ML,
AP and V direction to describe temporal gait parameters and measures of smoothness, regularity, and
coordination [10,54].

CST: Subjects start seated on a chair with arms folded across the chest and with their back against
the chair’s backrest. On the command “go”, they stand up and sit down five times as quickly as
they can [53]. We segmented the CST test into its two sub-phases: Sit-to-Stand and Stand-to-Sit
transitions [51]. The AP acceleration and the angular velocity about the ML axis are used to identify
postural transitions. Overall, 31 task-specific sensor-based measures are extracted from acceleration
and angular velocity in AP, ML and V direction to quantify mean values and standard deviations
across repetitions of relevant parameters of the two sub-phases.

Table 2. Sensor-based features extracted from the QS test.

Feature Sensor Description

Centroidal frequency; frequency at which spectral mass is concentrated.
Spectral moments are needed for the estimate:

N N
CF — — TP 1 — 2 psp. cF — |12
AP ML Accelerometer Ho= Z PSD; = TP; iz = Z fi PSDy; CF = E
[ 55,5 6] i=1 i=1
where PSD is the Power Spectral Density of the signal, f is the frequency
vector, and N is the total number of points of the PSD. Frequencies below
0.15 Hz are usually ignored.
The 95% confidence Ellipse Area is the area of the confidence ellipse
EA DISPL Accelerometer, enclosing 95% of the points on the sway trajectory. The accelerometer-based
[55,56] Displacement postural parameter can be defined by analogy with the parameter based on
the displacement.
Median frequency; frequency below which 50% of total signal power (TP) is
present. Starting from the Power Spectral Density (PSD) of the signal:
n
Fs00, &n = Z PSD; ; Fsgo, = fu ,miny : g > 50%TP
AP ML Accelerometer =
[55,56] where the second formula means that Fsgq, is the frequency, f,

corresponding to the nth index which is the smallest index such that g(n) is
>50% of the total power. The total power is equal to g(N) where N is the
total number of points of the PSD. Frequencies below 0.15 Hz are usually
ignored.
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Table 2. Cont.

Feature Sensor Description
Frequency below which 95% of total signal power (TP) is present. Starting
from the Power Spectral Density (PSD) of the signal:
n
Fos9 &n = Z PSD; ; Foso, = fy ,ming : g4 = 95%TP
AP ML Accelerometer i=1
[55,56] . .
where the second formula mean that Fgse, is the frequency, f, corresponding
to the nth index which is the smallest index such that g(n) is >95% of the
total power. The total power is equal to g(N) where N is the total number of
points of the PSD. Frequencies below 0.15 Hz are usually ignored.
Frequency dispersion; unitless measure of the variability of the power
spectral density frequency content (zero for pure sinusoid; increases with
spectral bandwidth to one). Spectral moments are needed for the estimate:
FD N N N 1-p2
AP ML Accelerometer ) = Zpspi =TP; uy =Y fiPSD;; up = Zfiz PSD;; FD = 1
[55,56] i=1 i=1 i=1 Hotia
where PSD is the Power Spectral Density of the signal, f is the frequency
vector, and N is the total number of points of the PSD. Frequencies below
0.15 Hz are usually ignored.
Mean Velocity of the postural sway computed as the median of the absolute
value of the time series obtained integrating the acceleration:
Tend
MV = median f a(t)dt
MV Tstart
DISPL A(?celerometer, where a is the acceleration component m/s?, Tend/Tstart are the end and the
AP ML Displacement . L .
[55,56] beginning of the observation time respectively.
’ An alternative definition can be based upon the Sway Path (SP) of the
displacement:
MV = (L)
Tend - Tsturt
Normalized Jerk Score of the acceleration:
NJS T5 Tend . 2
AP ML Accelerometer NJS = \ 25p2 j;l . (a) dt
[35,54]
where T is the duration (T,;,; — Tstart) of the considered component, 4 is the
acceleration measured in m/s?, and SP is the Sway Path
Range .
AP ML Accelerometer Range of the signal
Root Mean Square (RMS) of the signal, s (it is a measure of dispersion):
T &
RMS RMS = /= (si —m)2
AP ML Accelerometer N ;

where N is the total number of points of the signal s, and m is the mean
value mean(s)
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Table 2. Cont.

Feature Sensor Description
Sway Area (SA) estimated as the sum of the triangles formed by two
consecutive points on the sway trajectory on the horizontal plane (s4p and
syr) and the mean point (m4p and myy ) on the plane:
N-1
SA 1
DISPL Displacement SA= 2 4 '(SAP Ji+1 ~MAp )(SMLr i mML) - (SAP i~ Map )(SML/ +1 7 mML)|
[55,56] =
where s is a generic signal, s4p and sy are the two sway components on the
horizontal plane. N is the total number of points of the signal time series.
The accelerometer-based postural parameter can be defined by analogy
with the parameter based on the displacement.
SE
AP ML Accelerometer Spectral Entropy Power spectrum entropy of acceleration (unitless).
[55,56]
Sway Path, the total length of the sway trajectory, computed as the sum of
the distances between consecutive points in the time series. When
considering a single direction of the sway:
N-1
SP pP= i (sl+1 _sl)
AP ML -
DISPL Accelerometer, ~ When considering the sway path on the horizontal plane:
SP Planar Displacement
DISPL 1= 2 2
[55,56] SP=3 Z(SAP, i+1 = SAP, i) + (SML,i+1 — SML, i)
i=1

where s is a generic signal, s4p and sy, are the two sway components on the
horizontal plane. N is the total number of points of the signal time series.
The accelerometer-based postural parameter can be defined by analogy
with the parameter based on the displacement

ACRONYMS: AP: Antero-Posterior; CF: Centroidal Frequency; EA: Ellipse Area; F5q,: Median Frequency; Foso,:
Frequency below 95% of total signal power; FD: Frequency Dispersion; ML: Medio-Lateral; MV: Mean Velocity; NJS:
Normalized Jerk Score; RMS: Root Mean Square; SA: Sway Area; SE: Spectral Entropy; SP: Sway Path; V: Vertical.

Table 3. Sensor-based features extracted from the 7MW test.

Feature Sensor Description
Duration Accelerometer/ Total duration of the test
[s] Gyroscope
Cadenc.e Accelerometer Cadence in the phase of the gait
[steps/min]
SD Cadence Accelerometer Standard deviation of the Cadence
The Normalized Jerk Score during gait is computed for each step (i.e.,
between two consecutive heel strikes), then normalized to the step
NJS duration, and then averaged across all steps
APMLV Accelerometer 75 (Tend
[m] NIS= = [ @
[35,54] 2 Urstart

where T is the duration (T,;,; — Tstart), a is the acceleration measured

in m/s?.
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Table 3. Cont.

Feature Sensor Description
Phase Coordination Index (PCI). PCI measures gait coordination (i.e.,
the accuracy and consistency of the phase generation).
LN lp;—180°
PCI = PhaseCV + 100 - w
180
PCI [35,57] where PhaseCV is the Coefficient of Variation of the Phase.
L] ! Accelerometer @; is the ith phase, which measures the step time with respect to the
stride time assigning 360° to each stride (gait cycle):
o ]’155 i~ hSL i
; =360 ————
i hspiv1— hsp;
where hsy ;) and hsg(;) denote the time of the ith heel strike of the legs
with the long and short step times, respectively.
Range
APMLV Accelerometer Range of the signal
[my/s?]
Root Mean Square (RMS) of the signal, s (it is a measure of dispersion):
N
RMS [1 2
APMLV Accelerometer RMS = N Z(Si —m)
[my/s?] =
where N is the total number of points of the signal s, and m is the
mean value mean(s)
Step and Stride regularity measured by means of the unbiased
estimate of the autocorrelation function of the signal s:
A 1 N—|n|
unbiased = SiSit+n
Reg [10] N=lnl =
AP ML V [10] Accelerometer

[-]

where N is the total number of points of the signal and 7 is the phase
shift in number of samples.

First dominant period (A;7) of the autocorrelation coefficient is an
expression of the step regularity.

Second dominant period (A;) of the autocorrelation coefficient is an
expression of the Stride regularity

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; NJS: Normalized Jerk Score; PCI: Phase Coordination
Index; Reg: Regularity; RMS: Root Mean Square; SD: Standard Deviation; V: Vertical.

Table 4. Sensor-based features extracted from the CST Test.

Feature Sensor Task Description
SD Accelerometer/ Sit-to-Stand, Standard deviation of the duration of each subtask of
Duration Gyroscope Stand-to-Sit the test.
Duration Accelerometer/  Total, Slt—to—St‘and, Duration of each subtask of the test.
[s] Gyroscope Stand-to-Sit
Normalized Jerk Score of the acceleration (it is
related with the smoothness of the movement):
NJS .
Sit-to-Stand, 5 (Tend
APMLYV Accelerometer Stand-to-Sit NJS = - (a)"dt
[m] Tstart

where T is the duration (Tend-Tstart) of the considered
sub-task and 4 is the acceleration measured in m/s2.
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Table 4. Cont.

Feature Sensor Task Description
Range
APMLYV Accelerometer, Sit-to-Stand, Range of the signal, during the considered sub-task
[m/s?], Gyroscope Stand-to-Sit of the test
[°/s]

Root Mean Square (RMS) of the signal, s, during the
considered sub-task of the test (it is a measure of

RMS dispersion):
AP, ML,V Accelerometer, Sit-to-Stand, 1 N
[m/s?], Gyroscope Stand-to-Sit RMS = 4 / — Z(si - m)2
5] NS

where N is the total number of points of the signal s,
and m is the mean value mean(s)

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; NJS: Normalized Jerk Score; RMS: Root Mean Square; SD:
Standard Deviation; V: Vertical.

2.4. Definition of the Conceptual Model

For each instrumented test one EFA was applied to the related sensor-based measures to reduce
the dimension of the dataset and to discover the underlying relationships between measures. Since the
EFA is based on the assumption of normally distributed data, the jerk scores were log transformed,
and all the sensor-based measures were standardized to zero mean and unit variance before EFA.
Varimax rotation was used to derive orthogonal factor scores. We considered relevant sensor-based
measures with factor loading greater than 0.5 as the absolute value. For each EFA, a scree plot (Parallel
analysis) was used to determine the minimum number of factors to retain. To retain as much of the
original information as possible, we verified that each resulting factor structure explained at least 70%
of the total variance [58]. We hence defined a conceptual model for PC assessment based on the EFA
results: We mapped each factor into a specific conceptual domain. Based on our a priori knowledge,
the sensor-based measures that contribute to each factor were analyzed and functionally interpreted to
identify the corresponding construct. These constructs represent the domains of the conceptual model.
Figure 1 shows the flowchart of the conceptual model development process.

2.5. Statistical Analysis

Once the constructs (domains) of the conceptual model were defined, we analyzed the following
associations: (i) the association between domains in the conceptual model, (ii) the associations between
domains and health-related measures, and (iii) the association between health-related measures. The
first two associations were performed to investigate the construct validity, while the third analysis was
performed to investigate the relationships between health-related measures and whether the covariates
influence them. These associations were investigated by computing linear regression analyses. We
selected a limited number of covariates from the ones that were available (i.e., age, gender, cognitive
status and anthropometric measures) which are known to affect both the heath-related measures
and physical performance. Each linear regression analysis was performed two times: first, without
adjusting for any covariate and then, adjusting for Age, Gender, Height, Weight, MMSE and number
of medications. Finally, the two results were compared to assess the effect of these covariates on
the relationships.

We used Bland-Altman analysis to assess the agreement between the smartphone and the
stopwatch in measuring the time taken to perform the 7MW and CST tests.

EFA and statistical analyses were performed using RStudio (version R 3.4.3) [59].
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Accelerometer |:> :----T;;k----il__g\ Task-specific
] : -,»°| Features
1t=1/
Gyroscope |:> Loegmentation {1 Extraction
Measures Quiet 7-Meter Chair
(N = 73) Stand Walk Stand
mrer (N = 23) | | (M = 19) | | (N = 31)

v

Exploratory Factor Analysis

v Y

i = Chair
Factors Quiet 7-Meter
(N = 15) Stand Walk Stand
wer Nne=4) || (e=5) || (nv=6)
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He;l;i;;zerlssted |:> Construct Validity Analysis

Figure 1. Flowchart of the conceptual model development process. N, is the number of sensor-based
measures extracted from each test, Ny is the number of factors and Ntor is the total number of domains
constituting the conceptual model.

3. Results

Sensor-based measures contributing to each factor obtained from the EFA performed on each test
of the battery, percentage of the explained variance and corresponding domains are shown in Figure 2.
The a priori knowledge and the functional interpretation of the factors were used for labelling the
domains making up the model. As an example, the MV AP DISPL and SP AP DISPL participate to the
fourth factor of the QS conceptual model (QS4, see Table 5). These measures have been related to the
effectiveness of the postural control system [55], and for this reason, the domain was then labelled as
“AP Postural Control Impairment”. Step and stride regularity participate to the second factor of the
7MW model (7TMW?2, see Table 6), which was labelled “Gait Irregularity” [10] and so forth.



Sensors 2019, 19, 2227

11 of 24
SP Planar DISPL
Chair Stand Sts ARange AP P\I?_nlngSPL Quiet Standing
(80%) Sts ARMSAP \I\; ML DISPL W)
EADISPL
Range AAP
st5S ARange AP - RMS A AP CF AP
stS ARMSAP - \ Range AML F95% AP
& RMSAML NJS AP
% \ S & SA DISPL F50% AP
SD Duration stS A \ G‘x ol "y
. \ i @D AT
Duration stS L TA E T \2 o/ 85 & N
SISNJSAP < Be\Z 8/ DY CEML
: = 0 & F95% ML
stSNJS ML A = &S
HSNJSV % N NJSML
> N F50% ML
Fak
pO° qer® o
@ PR
Sts ARMS ML ‘ 3 oY
Sts ARange ML p 7 e
Sts G RMS AP . CONCEPTUAL T Q54 (9%) MV AP DISPL
areML , il MODEL AP Postural Control SPAPDISEL
Sts G Range AP ————0Wbility J S l"a on
stS ARange ML = N=15 ~ Impairment
DOMAINS Range AV
RMSAV
( Range AAP
‘ RMS A AP
Sts NJSV G K & & : Range AML
StsNJSAP SLE & ol 8\ o 7, RMSAML
Sts NJS ML & f & B‘ | e = ‘96/9 %) Cadence
Duration St.s ] < [\ 5 | 3 2 \Z Qﬁ, Total duration
Total Duration & 5.’ i~ =3 \ 2 -;\6 <.;’_
= y y i — . -
SD Duration Sts v & 5 % \ = % % Stride Reg V
~ = = .
Sts G RMS ML & /S 2 | 2 @ Stride Reg AP
Sts G Range ML ~ = Step Reg V
stS G Range ML < | Step Reg AP
stSGRMS ML Stride Reg ML
Sts ARange V NJsV
st5 ARMS V NJSAP —
Sts ARMS V P NJSML 7-Meters Walk
stS ARange V SD Cadence Step Reg ML ‘ (77%)

Figure 2. Sensor-based measures contributing to each factor and corresponding domain of the
conceptual model for each instrumented test (Orange: Quiet Standing, QS, Green: 7-Meters Walk,
7MW, Blue: Chair Stand, CST). ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CF: Centroidal
Frequency; DISPL: displacement; EA: Ellipse Area; FD: Frequency Dispersion; F50%: median frequency,
F95%: frequency bandwidth; G: Gyroscope; M: Mean; ML: Medio-Lateral; MV: Mean Velocity; NJS:
Normalized Jerk Score; PCI: Phase Coordination Index; Reg: Regularity; RMS: Root Mean Square; SA:
Sway Area; SD: Standard Deviation; SE: Spectral Entropy; SP: Sway Path; Sts: Sit to Stand; stS: Stand to
Sit; V: Vertical.

3.1. QS Factor Model

The EFA grouped 19 out of 23 sensor-based measures into 4 factors, accounting for 70% of total

variance (see Table 5). The resulting independent domains were labeled as: “Postural Instability”,
“ AP Postural Reaction Time and Jerkiness”, “

, “ML Postural Reaction Time and Jerkiness”, “AP Postural
Control Impairment”.
3.2. MW Factor Model

The EFA grouped all 19 sensor-based measures into 5 factors, accounting for 77% of total variance
(see Table 6). The resulting independent domains were labeled as: “Walking Impairment”, “Gait

Irregularity”, “Gait Jerkiness”, “ML Gait Instability”, “Gait Variability”.

3.3. CST Factor Model

The EFA grouped 29 out of 31 sensor-based measures into 6 factors, accounting for 80% of total
variance (see Table 7). The resulting independent domains were labeled as: “Dynamic Postural

Impairment”, “Sit-to-Stand Jerkiness”, “ML Dynamic Postural Instability”, “Stand-to-Sit Jerkiness”,
“ AP Stand-to-Sit Weakness”, “ AP Sit-to-Stand Weakness”.
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Table 5. QS factor model: factor loadings of the sensor-based measures, corresponding domains and
Cumulative Variance (CV) (Varimax Rotation).

Domain Postural AP Postural Reaction =~ ML Postural Reaction = AP Postural Control
Instability Time and Jerkiness Time and Jerkiness Impairment
Factor Qs1 QSs2 QS3 QsS4
Range A ML 0.948 -0.107 -0.145 0.066
RMS A ML 0.933 -0.012 —-0.250 0.015
SA DISPL 0.928 0.011 —-0.069 0.129
SP ML DISPL 0.872 -0.142 —-0.096 0.183
MV ML DISPL 0.795 -0.119 —-0.105 0.203
EA DISPL 0.774 0.056 -0.115 —-0.029
SP Planar DISPL 0.764 —-0.056 —-0.082 0.625
Range A AP 0.706 0.185 -0.107 0.432
RMS A AP 0.675 0.288 —0.144 0.296
CF AP -0.126 —0.983 0.113 -0.003
F95 AP -0.103 -0.918 0.141 —0.068
NJS AP 0.121 -0.789 0.106 -0.130
F50 AP -0.129 -0.774 0.102 0.165
CF ML -0.195 —-0.201 0.957 —-0.024
Fose, ML -0.263 -0.153 0.872 —-0.048
NJS ML —-0.051 -0.168 0.849 -0.109
Fsq0, ML —-0.088 -0.207 0.794 —-0.010
MV AP DISPL 0.533 —-0.006 -0.097 0.802
SP AP DISPL 0.626 —-0.004 -0.084 0.765
SE ML -0.169 0.03 0.230 -0.041
SE AP 0.117 -0.312 0.094 -0.073
FD ML —-0.066 0.178 -0.156 -0.112
FD AP 0.016 -0.280 0.032 -0.298
CV% 31 46 61 70

Relevant factor loadings (absolute value > 0.5) are bolded

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CF: Centroidal Frequency; CV: Cumulative Variance; EA:
Ellipse Area; F5q,: Median Frequency; Fose,: Frequency below 95% of total signal power; FD: Frequency Dispersion;
Medio-Lateral; MV: Mean Velocity; NJS: Normalized Jerk Score; RMS: Root Mean Square; SA: Sway Area; SE:
Spectral Entropy; SP: Sway Path; V: Vertical.

Table 6. 7MWT factor model: Factor loadings of the sensor-based measures, corresponding domains
and Cumulative Variance (CV) (Varimax Rotation).

Domains Walking Gait Gait ML Gait Gait
Impairment Irregularity Jerkiness Instability Variability

Factors "MW1 7MW2 7MW3 7MW4 7MW5
Range AV -0.916 -0.030 -0.116 0.035 -0.050
RMS AV —-0.909 -0.279 -0.106 0.046 -0.109
Range A AP —0.882 —0.046 —-0.157 0.113 —-0.102
RMS A AP —0.866 -0.183 -0.119 0.181 —-0.140
Range A ML -0.735 0.227 -0.113 0.521 -0.008
RMS A ML -0.727 0.070 0.044 0.678 —-0.012
Cadence 0.708 0.253 —0.654 0.005 0.047
Total duration 0.663 0.394 0.017 0.014 0.237
Stride Reg V —-0.163 —0.844 —-0.007 —-0.120 —-0.158
Stride Reg AP 0.087 —0.823 -0.008 0.130 —-0.174
Step Reg V -0.279 -0.737 -0.001 -0.145 -0.223
Step Reg AP —-0.151 —-0.658 -0.063 0.072 -0.215
Stride Reg ML —-0.026 —-0.633 0.176 0.445 0.013
NJSV -0.125 0.050 -0.826 -0.007 0.147
NJS AP —-0.404 -0.176 —0.662 0.078 -0.116
NJS ML -0.179 0.064 -0.389 0.669 —-0.012

Step Reg ML —-0.065 -0.387 0.204 0.557 -0.003
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Table 6. Cont.

Domains Walking Gait Gait ML Gait Gait
Impairment Irregularity Jerkiness Instability Variability
Factors 7MW1 7MW2 7MW3 7MW4 7MW5
PCI 0.120 0.269 -0.007 0.001 0.893
SD Cadence 0.234 0.390 -0.123 -0.017 0.836
CV% 30 48 58 68 77

Relevant factor loadings (absolute value > 0.5) are bolded

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; ML: Medio-Lateral; NJS:
Normalized Jerk Score; PCI: Phase Coordination Index; Reg: Regularity; RMS: Root Mean Square; SD: Standard
Deviation; V: Vertical.

Table 7. CST factor model: Factor loadings of the sensor-based measures, corresponding domains and
Cumulative Variance (CV) (Varimax Rotation).

. Dynamic g3 o gtang  MEDYRAMIC g0 t0-Sit AP Stand-to-Sit AP Sit-to-Stand
Domains Postural . Postural .
. Jerkiness o1s Jerkiness Weakness Weakness
Impairment Instability
Factors CST1 CST2 CST3 CST4 CST5 CSTo6
Sts G RMS ML —0.904 —0.008 -0.115 -0.137 —-0.003 —-0.060
Sts G Range ML —0.846 0.031 -0.16 —-0.045 -0.032 -0.292
stSARMSV —0.836 0.118 -0.195 0.259 -0.103 0.101
stS G RMS ML —0.832 -0.203 -0.142 -0.153 —-0.245 —-0.042
Sts A Range V —0.826 0.131 -0.213 0.392 0.004 0.071
Sts ARMS V —0.809 0.128 -0.176 0.393 0.086 0.148
stS A Range V —0.702 0.090 -0.23 0.112 -0.395 -0.087
stS G Range ML —0.659 -0.128 -0.173 -0.094 -0.454 -0.151
StsJSV -0.207 0.909 0.084 0.208 0.118 0.084
Sts JS AP -0.054 0.909 0.071 0.238 -0.102 0.133
Sts JS ML —0.047 0.897 -0.032 0.205 0.15 0.127
Duration Sts 0.027 0.85 0.179 0.286 0.331 0.145
SD Duration Sts 0.154 0.718 0.024 -0.109 0.026 —-0.081
Total Duration —-0.039 0.706 0.173 0.529 0.277 0.243
Sts A RMS ML —0.055 0.019 —0.938 —0.048 -0.131 -0.161
Sts A Range ML -0.118 0.008 -0.918 0.013 -0.129 —-0.245
Sts G RMS AP —0.255 —0.086 —0.651 -0.012 —-0.049 —-0.100
stS A RMS ML -0.126 —0.140 —0.644 -0.111 -0.402 —-0.049
Sts G Range AP -0.394 —0.085 —0.638 0.084 -0.037 -0.106
stS A Range ML -0.116 —0.056 -0.511 -0.075 —-0.504 -0.110
stSJS AP -0.162 0.226 0.043 0.905 0.098 -0.122
stSJS ML —0.106 0.291 -0.234 0.859 0.123 0.218
stSISV —0.348 0.304 0.059 0.836 0.143 0.173
Duration stS —-0.097 0.404 0.161 0.778 0.197 0.338
SD Duration stS 0.210 —0.080 0.151 0.595 -0.125 0.090
stS A Range AP —0.138 —0.164 -0.292 —0.070 —0.859 -0.193
stS A RMS AP —0.208 —0.304 -0.295 -0.136 -0.764 —0.284
Sts A Range AP —0.084 —0.216 -0.304 -0.239 -0.229 —0.842
Sts A RMS AP —0.138 —0.215 -0.315 -0.276 -0.224 -0.786
stS G Range AP —0.320 —0.055 -0.402 —0.056 —0.342 0.068
stS G RMS AP —0.221 —0.134 -0.449 —0.110 -0.317 0.105
CV% 19 35 50 64 73 80

Relevant factor loadings (absolute value > 0.5) are bolded

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; ML: Medio-Lateral;
NJS: Normalized Jerk Score; RMS: Root Mean Square; SD: Standard Deviation; Sts: Sit to Stand; stS: Stand to Sit;
V: Vertical.

3.4. Construct Validity Analysis

The results of the construct validity analysis are reported in Tables 8 and 9. The linear regression
analysis between the health-related measures provided results reported in Table 10. Beta coefficients
with a p-value < 0.05 are bolded.
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Table 8. Construct validity analysis: Linear regression between domains.

Qs1 Qs2 QS3 QsS4 7MWI 7MW2 7MW3 7MW4 7MW5  CST1 CST2 CST3 CST4  CST5 CSTé6

Qsl1 0002  —0.005  0.024 0.160 0116  -0.108  0.127 009  —0.031 0261  -0.103 0382 -0211 0172
Qs2 0.002 -0.001  -0.002 -0.029  0.110 0.043 0045  —0.025  0.083 0.076 0.055 0018  —0.028  0.064
QS3  -0.005 —0.001 0.004 0.056 0.032 0000  -0.124  0.022 0018  -0.020 —0.056 —0.117  —0.043  0.009
QsS4 0.024  —0.002  0.004 0.154 0119  -0.008  0.026  -0.014 —-0.058  0.065 0.004 0.296 0.017 0.149
7MW1 0168  —0.029  0.058 0.160 0016  —0.020 —-0.029  0.002 0.151 0.276 0.166 0.323 0.152 0.324
7MW2  0.132 0.122 0.035 0.135 0.018 -0.016  0.030 0045  —0.020 0247 —0179 0174  —0.141  0.144
TMW3  —0.115  0.044 0000  -0.009 —0.020  —0.015 -0.018  0.011 0047  -0112 0301  -0.112  0.082 0.166
7TMW4 0135 0046  —0.129 0028  —0.030 0029  —0.018 -0.004 -0.097 0050 -0016 0112  -0031 —0.115
7MW5 0106  -0.026 0024  —0.016  0.002 0.044 0011  —0.005 0.126 0.148  —0.024  0.078 0.004 0.178
CST1  -0.024  0.092 0018  -0.047 0130  —0.017  0.048  -0.105  0.124 -0.002 0008  —0.011  0.010 0.002
CST2 0.208 0088  —0.020  0.054 0.231 0204  -0112  0.053 0142  —0.002 0.000 0.011 0.013 0.002
CST3  -0.080 0062  -0.056  0.003 0139  -0.148 0300 -0.017 -0.023  0.008 0.000 -0.004  0.016 0.016
CST4  0.29 0020  -0.117  0.239 0.267 0142  -0.110  0.117 0074  —0011 0011  —0.004 0.009 0.012
CST5  -0.170 —0.033 —0.044  0.014 0131  -0.120 0085  —0.033  0.004 0.011 0.013 0.017 0.009 0.013

CST6 0.136 0.073 0.009 0.123 0.273 0.120 0.166 -0.122 0.172 0.002 0.002 0.016 0.012 0.012
Results adjusted for Age, Gender, Height, Weight, MMSE and NM

QSs1 0.040 -0.009 -0.038 0.045 0.048 -0.072 0.168 0.057 -0.021 0.164 -0.109 0.268 —0.243 0.158
QS2 0.038 -0.003 0.004 0.007 0.146 0.001 0.039 -0.007 0.086 0.100 0.044 0.032 -0.024 0.073
QS3 -0.008 -0.003 -0.007 0.052 0.040 0.007 -0.081 0.009 0.017 -0.009 -0.053 -0.122 -0.049 0.000
QS4 -0.039 0.005 -0.007 0.045 0.052 -0.032 0.037 -0.061 —-0.021 0.016 —-0.099 0.131 —-0.004 0.040
7MW1 0.061 0.010 0.073 0.059 -0.090 -0.123 0.051 -0.065 0.237 0.263 0.064 0.210 0.127 0.174
7MW2 0.056 0.177 0.049 0.059 -0.077 0.049 0.012 -0.006 —-0.001 0.184 —-0.164 0.048 -0.154 0.145
7MW3 -0.101 0.002 0.010 —-0.044 -0.127 0.059 -0.091 0.101 0.047 0.048 0.261 —-0.164 0.071 -0.079
7MW4 0.189 0.045 —-0.095 0.040 0.042 0.012 -0.074 0.037 -0.078 0.103 0.002 0.108 0.002 -0.079
7MW5 0.060 -0.008 0.010 -0.063 —-0.051 -0.006 0.077 0.035 0.140 0.080 0.018 0.007 0.010 0.207
CST1 -0.016 0.100 0.017 -0.015 0.155 -0.001 0.032 -0.078 0.139 -0.012 0.026 0.081 0.005 -0.013
CST2 0.133 0.129 -0.011 0.013 0.179 0.156 0.035 0.107 0.083 -0.013 0.035 —-0.064 0.014 0.018
CST3 -0.086 0.055 -0.059 -0.079 0.044 -0.139 0.188 0.002 0.018 0.028 0.036 -0.063 -0.012 -0.116
CST4 0.249 0.048 -0.161 0.124 0.164 0.047 -0.136 0.129 0.008 0.102 -0.077 -0.073 -0.002 —-0.080
CST5 -0.176 -0.028 -0.050 -0.003 0.079 -0.119 0.047 0.002 0.009 0.005 0.013 -0.011 -0.002 -0.039
CSTé6 0.141 0.104 0.000 0.036 0.133 0.138 —-0.064 -0.091 0.241 -0.016 0.020 -0.13 -0.077 —-0.047

B coefficients with a p-value < 0.05 are bolded
ACRONYMS: MMSE: Mini-Mental State Examination; NM: Number of Medications.
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Table 9. Construct validity analysis: Linear regression between domains and health-related measures.

apL AL cpsp PA SPPB. HAND PWR TMTA Ot
History Speed
QS1 0.226 0.231 0.378 —0.088 -0.721 —0.966 —4.337 8.835 -0.059
QS2 -0.022 —-0.099 1.202 —-0.004 -0.127 0.035 -1.732 —4.713 0.006
Qs3 0.006 -0.074 -0.129 —-0.095 -0.134 -0.402 -1.994 1.431 -0.010
QSs4 0.083 -0.230 0.598 -0.097 —-0.577 -1.373 -7.576 9.340 —0.039
7MW1 0.394 -0.091 1.655 -0.377 -1.317 -3.038 -19.142 14.173 —0.205
7MW?2 0.236 0.431 0.992 -0.283 -0.73 —-0.754 -7.039 8.028 -0.092
7MW3 0.123 -0.079 1.144 -0.175 -0.071 -3.851 -16.295 -0.270 -0.011
7MW4 0.044 0.124 -0.379 0.095 -0.037 -0.508 4473 -1.953 0.021
7MW5 0.068 0.094 0.165 -0.100 —0.495 -0.391 —-3.496 3.815 —0.054
CST1 0.116 0.207 -0.042 0.024 -0.056 -0.334 -2.786 —1.448 —-0.038
CST2 0.17 0.325 0.388 -0.097 -0.914 0.080 —4.985 6.339 —0.088
CST3 —0.001 —-0.027 1.479 —0.108 -0.232 —-2.518 -12.943 -1.101 —-0.025
CST4 0.185 -0.146 0.129 —0.140 —-0.922 -1.550 —-4.761 10.736 —-0.070
CST5 -0.078 —0.064 -0.308 -0.003 —0.290 -1.036 —9.480 -1.641 -0.016
CSTé6 0.170 0.254 2.473 -0.312 -0.728 -3.859 -22.155 4.530 -0.094
Results adjusted for Age, Gender, Height, Weight, MMSE and NM
Qs1 0.125 0.178 0.071 —-0.005 —0.430 —0.764 -0.855 3.654 -0.024
QS2 0.022 —0.046 1.266 -0.019 -0.221 0.232 —2.298 -2.615 —0.006
QS3 0.018 —0.055 —0.265 -0.087 -0.121 -0.213 —0.065 0.893 -0.013
Q5S4 -0.017 -0.241 0.106 0.017 —-0.205 —-0.452 -2.679 4.533 —-0.003
7MW1 0.189 —0.328 0.555 -0.157 —0.836 —-0.636 -6.004 6.110 -0.161
7MW?2 0.159 0.450 1.053 —-0.263 —-0.484 -1.142 -7.652 2.755 -0.071
7MW3 0.064 -0.159 0.011 —-0.046 0.107 -0.407 -3.497 -0.892 0.023
7MW4 0.079 0.157 -0.126 0.045 —0.180 -1.121 —0.908 0.645 0.006
7MW5 0.023 0.096 0.214 —-0.082 —-0.349 -0.673 -3.001 0.017 —-0.039
CST1 0.133 0.158 0.063 -0.010 —-0.140 -0.196 -0.991 —2.428 —0.040
CST2 0.114 0.389 0.680 —0.106 -0.818 —-0.801 —6.630 1.341 -0.072
CST3 —0.065 —-0.028 0.785 0.043 -0.017 -0.774 —-5.934 -2.237 0.003
CST4 0.058 -0.120 -0.707 0.026 —0.625 -0.890 0.845 5.898 —0.037
CST5 -0.112 —0.087 —0.699 0.054 -0.210 —-0.301 -5.255 -3.084 —0.002
CST6 0.031 0.178 1.337 -0.115 —0.460 -0.737 -6.317 -1.596 —0.047

B coefficients with a p-value < 0.05 are bolded

ACRONYMS: CES-D: Center for Epidemiologic Studies Depression Scale; FALL history: declared number of
falls; HAND. Hand-Grip strength test; IADL: Instrumental Activities of Daily Living; MMSE: Mini-Mental State
Examination; NM: Number of Medications; PA: Physical Activity; PWR. lower extremity muscle power; SPPB: Short

Physical Performance Battery; TMTA: Trail Making Test A.

Table 10. Linear regression analysis between health-related measures.

IADL F.ALL CES-D PA SPPB HAND PWR TMTA Gait
History Speed
IADL -0.038 0.714 —0.295 —0.902 -1.900 -11.782 11.805 —0.104
FALL history -0.014 0.432 -0.050 -0.217 -0.618 -2.363 0.222 —0.022
CES-D 0.016 0.024 —0.035 —0.049 —0.421 —2.091 1.004 —0.009
PA -0.377  -0.167  —2.039 0.955 3.654 19.125 -9.962 0.126
SPPB —0.256 —0.160 —0.638 0.212 1.736 10.669 —7.883 0.091
HAND —0.029 -0.024 —0.295 0.043 0.093 3.764 -1.311 0.012
PWR —0.006 -0.003 —0.046 0.007 0.018 0.118 —0.187 0.002
TMTA 0.010 0.000 0.039 —0.006 —0.023 —0.072 —0.328 —0.003
Gait speed -2.013 -1.083 -7.897 1.905 6.198 15.703 98.927 —76.769
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Table 10. Cont.

IADL F.ALL CES-D PA SPPB HAND PWR TMTA Gait
History Speed
Results adjusted for Age, Gender, Height, Weight, MMSE and NM
IADL -0.212 -0.313 -0.133 -0.462 0.056 -1.681 2.992 —0.039
FALL history =~ —0.064 0.269 -0.027 -0.170 —-0.149 0.115 -1.307 -0.010
CES-D —0.006 0.017 -0.010 0.002 —-0.044 -0.321 0.323 —0.003
PA -0.177 -0.121 —-0.668 0.421 0.398 3.257 -0.577 0.061
SPPB -0.165 -0.202 0.043 0.113 0.768 6.378 —2.539 0.070
HAND 0.002 -0.018 —-0.085 0.011 0.080 2.059 -0.815 0.007
PWR —-0.001 0.000 -0.012 0.002 0.013 0.039 0.050 0.001
TMTA 0.003 -0.004 0.017 0.000 -0.007 -0.022 0.072 —0.001
Gait speed -1.049 -0.904 -3.734 1.222 5.199 5.239 52.521 —35.582

B coefficients with a p-value < 0.05 are bolded

ACRONYMS: CES-D: Center for Epidemiologic Studies Depression Scale; FALL history: declared number of
falls; HAND. Hand-Grip strength test; IADL: Instrumental Activities of Daily Living; MMSE: Mini-Mental State
Examination; NM: Number of Medications; PA: Physical Activity; PWR. lower extremity muscle power; SPPB: Short
Physical Performance Battery; TMTA: Trail Making Test A.

3.5. Bland-Altman Analysis

Limits of agreement between the smartphone- and stopwatch-based duration of 7MW and CST
were [—0.58, 3.32] s and [-0.13, 5.98] s, respectively.

4. Discussion

We aimed to assess whether a battery of instrumented tests is suitable for obtaining a sensor-based
conceptual model for the assessment of the older adults” PC. Our goal was to explore the possible
underlying factor structure of the instrumented measures obtained in the tests. For this purpose,
we performed one EFA on each set of sensor-based measures obtained from each instrumented test.
Machine and statistical learning methods could lead to better results in terms of prediction of the
outcome, but these techniques do not take into account the latent structure of the dataset. Therefore,
we included all the features in the model as opposed to identifying specific predictors in the original
dataset (i.e., the subset of features that achieves the best prediction performance). The domains of the
thus obtained conceptual model, which are a linear combination of the original instrumented measures,
could also be used as predictors for an outcome, but through EFA they are built independently of a
specific outcome. However, these techniques could be evaluated in future studies. An alternative
method to EFA, which also reduces the number of features by building linear combinations of the
original set of features, is Principal Component Analysis (PCA). Although PCA and EFA sometimes
might produce similar results, they are in fact two distinct techniques. The goal of PCA is data
reduction, while the goal of EFA is to discover the latent factors that are responsible for a set of
measured variables [60]. Indeed, PCA determines linear combinations of the measured variables
retaining as much information as possible, without differentiating between common and unique
variance. On the contrary, EFA estimates latent constructs that cannot be measured directly (factors).
The potential limitations of using EFA are the following: i) it is an exploratory, data-driven procedure,
which it is not designed to test hypotheses or theories; ii) the computation of the same set of features is
needed for new predictions; iii) if the sample is not representative enough of the general population,
it could produce domains that are sample specific. Despite these limitations, we believe that this is
the best approach to provide a simplified structure of our original dataset, since the factors, which
are obtained independently of a specific outcome, are based on the underlying latent structure. We
used the a priori knowledge on the instrumented measures and the functional meaning of the EFA
results to approach the conceptual interpretation and naming of the factors. This procedure has led to
obtaining the domains constituting the conceptual model finally. Since Varimax rotation was used to
derive the factor scores, we can assume that the obtained factors are independent. Indeed, as expected,
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we found no association between the domains of each functional test (see Table 8). Our work was
exploratory, aiming to expand our knowledge and assess the feasibility of developing a model of PC by
simplifying the structure from a large number of instrumented measures available. For this purpose,
we explored and interpreted the associations between instrumented and standard clinical measures.
Tables 8-10 show that we found several significant associations in both the unadjusted and adjusted
linear regression analyses. The associations that were not explained by the covariates were consistent
and confirmed the functional meaning of the domains

In general, the “Walking Impairment” (7/MW1) and “Gait Irregularity” (7/MW2) domains obtained
from the 7MW test were significantly associated with measures of leg muscle power, usual gait
speed, and overall lower extremity function. After adjusting for the covariates, two domains were
not associated with any health-related measures (see Table 9): the “ML Postural Reaction Time and
Jerkiness” (QS3) of the QS factor model, and the “Gait Jerkiness” (7MW3) of the 7MW factor model. This
could be due either to non-linear associations between domains and measures or to their association
with other health-related measures that were not included in this study. For example, it has been
proposed that the capacities in ML direction may be associated with the risk of falls [61] which may
not be adequately described by the history of falls. Furthermore, the lack of correlation between quiet
standing and fall history could be due to the small number of falls reported by this healthy and fit
population. Indeed, only 6% and 5% of the total population experienced at least 2 falls in the previous
and following year respectively (see Table 1). In summary, higher-functioning (both physical, SPPB,
and cognitive, TMTA) older adults who were more active (PA) and stronger (HAND, PWR) performed
better on the instrumented functional tests. A more detailed discussion of these results follows.

4.1. Gait Speed

Gait speed was significantly related to domains of the 7MW and CST both in the unadjusted
and adjusted model. This is in agreement with other studies in which gait speed was shown to be
a good health indicator for older adults [62]. Conversely, the association between this measure and the
capacities to maintain the static balance were explained by the covariates. This finding suggests that
gait speed may be a useful measure of dynamic balance, but it might not be useful in predicting the
abilities to maintain static balance.

4.2. SPPB

The covariates explained the association between the Short Physical Performance Battery (SPPB)
score and CES-D, TMTA, “AP Postural Control Impairment” (QS4), and “AP Stand-to-Sit Weakness”
(CST5). The SPPB score is a measure of the older adults’ functional capacity and includes tests of
balance, gait speed, and repeated chair stands. The higher the SPPB score, the better the adults’
performance. As we expected, older adults with high SPPB score, had less IADL, less falls in the last
12 months (FALL-history), they were more active (PA), stronger (HG and PWR), they had less “Postural
Instability” (QS1), they showed less difficulties in walking (gait speed, “Walking Impairment”, 7TMW1,
“Gait Irregularity”, 7MW?2, “Gait Variability”, 7MW5) and in performing the CST test (“Sit-to-Stand
Jerkiness”, CST2, “Stand-to-Sit Jerkiness”, CST4, “ AP Sit-to-Stand Weakness”, CST6).

4.3. IADL

The association between IADL and HG, PR, TMTA and the domains of QS (“Postural Instability”,
QS1) and CST (“Sit-to-Stand Jerkiness”, CST2, “Stand-to-Sit Jerkiness”, CST4 and “AP Sit-to-Stand
Weakness”, CST6) factor model were explained by the covariates. These results show that older adults
who had a higher number of instrumental activities in which they required help were also less active
and fit, and they had more difficulties while walking (PA, SPPB, gait speed, “Walking Impairment”,
7MW]1, “Gait Irregularity”, 7MW?2).
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4.4. FALL-History

The associations between the number of falls experienced during the last 12 months (FALL-history)
and SPPB, “Gait Irregularity” (7MW?2) and “Sit-to-Stand Jerkiness” (CST2) were not explained by the
covariates. This implies that older adults who experienced more falls showed poorer performances
in the domains that require strength. Indeed, they were less fit and less smooth during postural
transitions. Gait speed was not related to the history of falls, but older adults who fell more showed
a less regular gait. This finding is in agreement with a recent study, in which senior athletes with
a history of falling demonstrate poorer performance than those who report no falls, and CST was
highly related to fall history, suggesting the need for strength besides the balance in an individual’s
ability to prevent falls [63].

4.5. CES-D

CES-D is a screening test for depression and depressive disorders. The associations between
CES-D and all the health-related measures, the domains of the 7MW (“Walking Impairment”, 7MW1
and “Gait Jerkiness”, 7MW3) and CST (“ML Dynamic Postural Instability”, CST3) factor models,
were explained by the covariates. In summary, after adjusting for the covariates, older adults who
reported depressive symptoms were less reactive and smooth during the QS test (“AP Postural Reaction
Time and Jerkiness”, QS2), and they showed more “Gait Irregularity” (7MW?2) and “AP Sit-to-Stand
Weakness” (CST6). Since postural transitions need high Range of Motion, older adults with depressive
symptoms appear to be less strong and reactive. This result is in agreement with the study by Penninx
et al. [64] in which depressive symptoms were predictive for decline in physical performance.

4.6. PA

The associations between the declared physical activity (PA) and the CES-D, HG, PR, TMTA,
“Gait Jerkiness” (7MW3) and “AP Sit-to-Stand Weakness” (CST6) were explained by the covariates.
As expected, older adults who were less active, had a higher number of instrumental activities in
which they required help (IADL), they were less fit (SPPB), and less able to walk (gait speed, “Walking
Impairment”, 7MW]1, “Gait Irregularity” 7MW2).

4.7. HAND

The association between Hand-Grip strength test (HAND) and IADL, CES-D, PA, TMTA, “AP
Postural Instability” (QS4) and some domains of the 7MW (“Walking Impairment”, 7MW1, “Gait
Jerkiness”, 7MW3) and CST (“ML Dynamic Postural Instability”, CST3, “Stand-to-Sit Jerkiness”, CST4,
“ AP Sit-to-Stand Weakness”, CST6) factor models were explained by the covariates. The performances
in the CST test reflect the strength of the lower limbs. Surprisingly, after adjusting for the covariates, no
significant associations between upper limbs strength (HG) and CST factor model were found. Older
adults with higher HAND were more fit and strong (SPPB and PWR), they had better capacities in
maintaining static balance (“Postural Instability”, QS1), and walking (gait speed, “Gait Irregularity”,
7MW?2 and “ML Gait Instability”, 7MW4). These results are consistent with the findings of a previous
study that highlighted the association between grip-strength and future outcome in aging adults [65].

4.8. PWR

After adjusting for the covariates, only the SPPB score, the HAND and the gait speed were
significantly associated with the lower limbs strength (PWR). No significant associations between PWR
and domains of the QS factor model were found. In our findings, the associations between strength
(both HAND and PWR) and the ability to maintain static balance (“AP Postural Control Impairment”,
QS4) were explained by the covariates. Older adults who had higher lower limbs strength, showed
less difficulties to walk (gait speed, “Walking Impairment”, 7MW1, “Gait Irregularity”, 7MW2) and,
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as expected, performed better in the CST test (“Sit-to-Stand Jerkiness”, CST2, “ML Dynamic Postural
Instability”, CST3, “ AP Stand-to-Sit Weakness”, CST5, “AP Sit-to-Stand Weakness”, CST6).

4.9. TMTA

The Trail Making Test part A (TMTA) assesses psychomotor speed. Attention and executive
function are related to the cognitive control of gait, posture, and balance (6,7). Performance on the
TMTA is a strong, independent predictor of mobility impairment, accelerated decline in lower extremity
function, and mortality in older community-living adults (8). After adjusting for the covariates, only
the association between the TMTA and “AP Postural Control Impairment” (QS4), gait speed, “Walking
Impairment” (7MW1) and “Stand-to-Sit Jerkiness” (CST4) were significant.

All these results suggest that the sensor-based model is consistent with the conventional clinical
measures of PC. The gait speed and SPPB served as a standard clinical outcome measure of older adults’
PC. The coherence of the information obtained from the instrumented measures and the standard
clinical outcome (and other health-related measures) was investigated through the linear regression
analysis. As expected, the SPPB score correlates with all the health-related measures (Table 10) whereas
this measure doesn’t correlate with all the domains of the conceptual model (Table 9). The domains that
were not associated with the health-related measures suggested that they refer to abilities that were
not possible to objectively measure with the standard outcome. The interpretation of the construct
validity analysis results confirmed that inertial sensors embedded in smartphones can detect and
assess the status of different functional domains, adding useful information to the conventional clinical
assessment. To the best of our knowledge, this is the first time that conceptual models are used to
transform datasets obtained from an instrumented battery of sensor-based functional tests into clinically
interpretable information. Such a model can contribute to facilitate the adoption of the sensor-based
assessment in everyday clinical practice. However, further validation studies also involving different
target groups are needed to deeply investigate such interpretative models.

4.10. Case Studies

In this section, a possible scenario in which a clinician could benefit from the additional information
provided by the sensor-based conceptual model is presented. Figure 3 shows three radar plots for
three different case studies, providing a graphical representation of the conceptual model. The black
lines represent the median value, the 25th and 75th percentiles of the scores given to the older adults.
The dark gray area represents extreme values (very high, above the 75th percentile, or very low, below
the 25th percentile). Favorable values of the scores, below the 75th percentile, reflect good performances
in the domain.

Case 1: Based on the clinical assessment of the subject (male, 69 years old) was not at risk of a fall,
but 2 prospective falls occurred. As shown in Figure 3, he showed high instability in ML direction
during the QS, 7MW and postural transitions (QS3, 7MW4 and CST3 were above the 75th percentile).
This may corroborate the idea that ML stability is crucial to prevent falls in community-dwelling older
adults [66,67].

Case 2: The older adult (female, 81 years old) had all the health-related measures within their
reference values, but she had poor strength (low HAND and PWR). The weakness is reflected in poor
ability to maintain the static balance: High “ML Postural Reaction Time and Jerkiness” (QS3) and “AP
Postural Control Impairment” (QS4), confirming the findings reported elsewhere [68]. She showed
also high “Gait Jerkiness” (/MW3) and poor ability to perform the CST test: high “Dynamic Postural
Impairment” (CST1), “Stand-to-Sit Jerkiness” (CST4) and “AP Stand-to-Sit Weakness” (CST5).

Case 3: The older adult (male, 86 years old) had all the health-related measures within their
reference values, except for the gait speed, which was below 1 m/s. This cut-off point has been related
to the risk of adverse health outcomes and disabilities [5,69]. Indeed, the Radar Plots show that his
capacities to maintain static balance are not compromised, but he had difficulties while walking (high
“Walking Impairment”, 7MW1, “ML Gait Instability”, 7MW4, and “Gait Variability”, 7MW5) and
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while performing postural transitions (high “Dynamic Postural Impairment”, CST1 and “Stand-to-Sit
Jerkiness”, CST4, and “AP Stand-to-Sit Weakness”, CST5).

| i i . . ==o== Case ] —&— Median
| g0ut Standlng ‘ AP I’I‘:lj:)l::l?:n(;?l?" ol e Case2 =t 25th Perceut%le
g Case 3  —@— 75th Percentilq
ML Postural Subject 1 2 3
Reaction Time GENDER M F M
and Jerkiness AGE (years) 69 81 86
BMI (kg/m?) 269 30 24
MMSE 26 30 26
IADL 0 0 0
FALL 2 1 1
Postural FALL history 0 0 0
Instability PA 4 3 3
SPPB 12 9 10
AP Postural / ;I\;:.I;Dm(l.c)g) 24106 ;g 133%
Reaction Time and Jerkiness Gait speed (ms) 153 116 098

[ b) 7-Meters Walk J Gait C ir Stand
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Gait
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Figure 3. Three radar plots reporting the Quiet Stand (a), 7-meters Walk (b) and 5-times Chair Stand (c)
domains of three different case studies. The black lines represent the median value, the 25th and 75th
percentiles of the older adults’ factor scores. The dark gray area represents extreme values (very high,
above the 75th percentile, or very low, below the 25th percentile). Favorable values of the scores, below
the 75th percentile, reflected good performances in the domain.

5. Conclusions

To the best of our knowledge, this is the first time that a battery of functional tests, instrumented
through a smartphone, is used for outlining a sensor-based conceptual model (Figure 2), which is
suitable for physical capability assessment of older adults. EFA allowed us to reduce the number
of sensor-based measures taken from instrumented functional tests and find domains with clear
functional meaning. The interpretation of the significant associations suggests that such domains
confirm and expand information obtained with clinical testing and provide quantitative information
about several mobility skills that are usually not captured by conventional outcomes. This exploratory
research shows that instrumented functional testing has the potential to advance the quality of current
mobility assessments; enhance our understanding of an individual’s true physical capabilities; and
disclose subtle changes in physical capabilities that would otherwise remain undetected. Increasing
our understanding and the sensitivity of mobility assessment is of the utmost importance since it
may enable earlier detection of functional decline and identify therapeutic targets for rehabilitation.
Further work is needed to evaluate whether this more detailed information adds to our ability to
predict adverse outcomes, over and above clinical testing like gait speed and SPPB.
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