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Abstract: In this paper, a novel global point cloud descriptor is proposed for reliable object recognition
and pose estimation, which can be effectively applied to robot grasping operation. The viewpoint
feature histogram (VFH) is widely used in three-dimensional (3D) object recognition and pose
estimation in real scene obtained by depth sensor because of its recognition performance and
computational efficiency. However, when the object has a mirrored structure, it is often difficult to
distinguish the mirrored poses relative to the viewpoint using VFH. In order to solve this difficulty,
this study presents an improved feature descriptor named orthogonal viewpoint feature histogram
(OVFH), which contains two components: a surface shape component and an improved viewpoint
direction component. The improved viewpoint component is calculated by the orthogonal vector
of the viewpoint direction, which is obtained based on the reference frame estimated for the entire
point cloud. The evaluation of OVFH using a publicly available data set indicates that it enhances
the ability to distinguish between mirrored poses while ensuring object recognition performance.
The proposed method uses OVFH to recognize and register objects in the database and obtains precise
poses by using the iterative closest point (ICP) algorithm. The experimental results show that the
proposed approach can be effectively applied to guide the robot to grasp objects with mirrored poses.

Keywords: vision-guided robotic grasping; object recognition; pose estimation; global feature
descriptor; iterative closest point

1. Introduction

Three-dimensional (3D) machine vision is a key technology in the field of robotics. Although the
rise of 3D vision technology [1,2] is later than two-dimensional (2D) vision technology [3,4], it presents
some advantages that 2D vision does not have when performing some complex visual tasks in 3D
space. For example, 3D point cloud can provide a wealth of geometric (3D coordinates, curvature
variations, surface normals, depth boundaries) and luminosity (color, color variations, transparency,
reflectance intensity) information, helping to achieve better results in recognizing objects with less
appearance information (e.g., textureless objects) and directly estimating the full 6 degrees of freedom
(DOF) object pose. In addition, under unfavorable lighting conditions, 3D data provided by infrared
laser technology can achieve better results than 2D images. In recent years, low-cost real-time 3D
sensors such as Microsoft Kinect and Asus Xtion have become low-cost consumer devices accessible to
ordinary users. These sensors can be used to generate color 3D point clouds on the surface of a given
scene in real time, which also promotes the research of 3D object recognition and registration.
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For 3D point cloud, there are two kinds of object recognition methods: local feature descriptors [5–7]
and global feature descriptors [8–12]. Global feature descriptors describe the geometry, appearance or
both of the object point cloud, which is more advantageous in object recognition and pose estimation [13].
Moreover, compared with local methods, global methods compute less descriptors and have a simpler
recognition pipeline to speeding up the recognition speed [14], which is very important for applications
designed to run in nearly real time [15]. The viewpoint feature histogram (VFH) [8] is a global feature
descriptor which can be used for object recognition and pose estimation in a 6DOF robot grasping
operation. Previous work has proved the computational efficiency and high recognition ability of
this feature [16,17]. However, it is difficult for VFH to distinguish the mirrored poses of the object
having the mirrored structure with respect to the viewpoint. Paper [18] proposes a modified viewpoint
feature histogram (MVFH), which applies the calculation method of extended FPFH to the calculation
of viewpoint component. Although this work is beneficial, it does not theoretically explain the reasons
for the effect. In order to solve this difficulty, a novel global feature descriptor named orthogonal
viewpoint feature histogram (OVFH) is proposed in this paper. The OVFH uses an extended fast
point feature histogram (FPFH) to describe the surface shape of the object. Its viewpoint component is
calculated by using the orthogonal vector of the viewpoint direction, which is calculated based on the
reference frame of the object point cloud, to obtain the distinguishing ability for the mirrored poses.

The main contributions of this paper are (1) a novel and efficient global feature descriptor for
object recognition and pose estimation; (2) an evaluation of the object recognition rate and the ability
to distinguish the mirrored poses; (3) a visual guidance method for a robotic grasping system.

The rest of the paper is organized as follows: Section 2 introduces the proposed improved global
feature descriptor OVFH. Section 3 describes the object recognition and pose estimation algorithms
for robotic grasping operation. Section 4 details the experimental device and the effectiveness of
the proposed algorithm in publicly available datasets and robotic grasping experiments. Finally,
conclusions and future work are discussed in Section 5.

2. Improved Global Feature Descriptor

In this section, VFH is reviewed and used to derive the proposed OVFH, which is consistent with
our goal of performing well in object recognition and distinguishing mirrored poses. The specific
calculation procedures are detailed in the following subsections.

2.1. Global Feature Descriptor VFH

The object’s global feature descriptor is a high dimensional representation of the object’s 3D
shape and is designed for object recognition and pose retrieval. VFH [8] is an effective point cloud
feature which is used for the applications about object recognition and 6DOF pose estimation. VFH
is a combined histogram containing viewpoint direction features and an extended FPFH [5], which
represents the distributions of the four angles representing the geometric characteristics of the point
cloud. In point cloud P, let pv denote the position of the viewpoint, pc denote the center of gravity of of
all points pi in the point cloud, and nc donate the average normal vector of all normal ni at point pc. pc

and nc are calculated as follows:

pc =
1
n

n∑
i=1

pi, (1)

nc =
1
n

n∑
i=1

ni, (2)

For each pi in the cloud P, a local coordinate system is defined at point pc, as in Equation (3).
u = nc

v =
pi−pc
‖pi−pc‖2

× u

w = u× v
, (3)
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Using the local coordinate system uwv defined above, the relative deviation between the centroid
vector nc and the unit normal vector ni of the point pi can be represented by a set of angles, as shown
in Figure 1.
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The percentages of the values of cosα, cosϕ, θ, d, and cosβ of each point in the point cloud P 
falling in different bins are counted, respectively corresponding to the curves on the abscissa ranges 
[1, 45], [46, 90], [91, 135], [136, 180], [181, 308] of the feature histogram. Since the distance d between 
points gradually increases along the viewpoint direction and the density of the local points will affect 
the feature result, d is often omitted in the 2.5-dimensional data acquired by the robot for better 
robustness. Finally, the VFH descriptor describes the point cloud using a total of 263 bins. Figure 2 
shows an example of the VFH. 

 

Figure 2. Viewpoint feature histogram. 

Figure 1. Relative relationship between points described by a set of angles.

The feature descriptor for each point in the point cloud can be represented by a quintuple (α, φ, θ,
d, β), which is calculated as follows: 

cosα = v · ni

cos β = ni ·
pc−pv
‖pc−pv‖2

cosφ = u · pi−pc
d

θ = arctan w·ni
u·ni

d = ‖pi − pc‖2

, (4)

The percentages of the values of cosα, cosφ, θ, d, and cosβ of each point in the point cloud P falling
in different bins are counted, respectively corresponding to the curves on the abscissa ranges [1, 45],
[46, 90], [91, 135], [136, 180], [181, 308] of the feature histogram. Since the distance d between points
gradually increases along the viewpoint direction and the density of the local points will affect the
feature result, d is often omitted in the 2.5-dimensional data acquired by the robot for better robustness.
Finally, the VFH descriptor describes the point cloud using a total of 263 bins. Figure 2 shows an
example of the VFH.
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Although Rusu et al. [8] have obtained promising results in using VFH as a 3D feature for
object recognition and 6DOF pose estimation, they have encountered limitations of accurate 3D pose
estimation. For example, if the surface of the object has mirror symmetry, it will get similar VFHs in
symmetrical poses, as shown in Figure 3. The vector ni is the normal vector at point pi. Although the
two poses are different poses mirrored with respect to the viewpoint direction, the two VFHs are highly
similar because their surface normals of each point have similar or identical angular deviations from
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the viewpoint direction. In the case shown in the figure, the kind of object can be correctly identified
using VFH, but the mirrored poses are confused.
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2.2. Improved Global Feature Descriptor OVFH

In order to overcome this drawback, it is necessary to modify the existing VFH descriptor.
Chen et al. [18] have did some groundbreaking work in this area and proposed the MVFH descriptor
to improve the viewpoint direction component of VFH. The MVFH gives three components to the
viewpoint direction component using the method similar to estimating the extended FPFH. However,
just as the geometric features characterized by the extended FPFH are very similar in the mirrored
poses, the viewpoint direction component counted by this method still cannot explain theoretically
how to distinguish the mirrored poses.

The core idea of solving this problem is to change the way to calculate the viewpoint direction
component so that statistical angle values are different in the mirrored poses. According to this idea,
an OVFH descriptor is proposed, which is described in detail as follows.

First, the reference frame of the point cloud needs to be estimated using the principal component
analysis (PCA) method, which will help to compute the orthogonal vector of the viewpoint direction.
All the points pi belonging to the point cloud are given to represent the view of the object, where i
∈ {1,..., n}. Their centroid pc are calculated according to Equation (1) and used as the origin of object
reference frame. After that, the covariance matrix C of all points is calculated by pi and pc as the
following equation:

C =
1
n

n∑
i=1

(pi − pc)(pi − pc)
T, (5)

Then, the eigenvalue λj of C and its corresponding eigenvector vj that satisfy Cvj = λjvj, where j
∈ {1, 2, 3}, are computed. The eigenvector vmin which is corresponding to the minimum eigenvalue
λmin is taken as the z-axis of the reference frame. In order to eliminate the ambiguity in the z-axis
direction, if the angle between vmin and the observation direction is in the range of [−90◦, 90◦], the
opposite vector of vmin is taken. This ensures it points to the observer all the time. The eigenvector
vmax which is corresponding to the maximum eigenvalue λmax is taken as the x-axis of the reference
frame. After that, the y-axis is computed by y = vmin × vmax. The reference frame estimated for a given
partial view is shown in Figure 4.
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The z-axis pointing to the observer is obtained after determining the reference frame representing
the overall point cloud of the partial view. The cross product of the z-axis and the viewpoint direction
is calculated by Equation (6) to obtain an orthogonal vector of the viewpoint direction:

vo = z× (pc − pv), (6)

Different from VFH [8], OVFH calculates the viewpoint component by counting a histogram,
which is a statistic of the angles between the orthogonal vector of the viewpoint direction and each
normal, so that the viewpoint direction component of the mirrored poses are different from each other,
as shown in Figure 5. The angular deviation cosβO between the orthogonal viewpoint vector and each
normal ni is calculated by Equation (7):

cos βO = ni ·
vo

‖vo‖2
, (7)
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Figure 5. The different viewpoint features of orthogonal viewpoint feature histograms (OVFHs) in
mirrored poses.

Using the speed and discriminative power of the FPFH to ensure the strong recognition result of
the OVFH, the FPFH is extended to estimate the entire object point cloud. The difference between the
normal ni of each point pi and the central normal nc can be represented by cosαO, cosφO, and θO, which
represent relative pan, tilt, and yaw angles, respectively. They are given by the following equations:

cosαO = v · ni

cosφO = u · pi−pc
‖pi−pc‖2

θO = arctan w·ni
u·ni

, (8)

In summary, the proposed OVFH descriptor contains two components: one is the surface shape
component constituted of the extended FPFH, and the other is the viewpoint component improved
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by the orthogonal vector of the viewpoint direction. The OVFH uses 45 bins for each value of the
extended FPFH by default, and another 128 bins for the improved view component, thus, the OVFH
descriptor has 263 dimensions. Figure 6 shows the principle and result of OVFH. Figure 7 shows the
calculation results of VFH and OVFH in the cases that the object faces the viewpoint and deviates from
the viewpoint direction by +60◦ and –60◦ yaw angle, respectively. As shown in the figure, although
both VFH and OVFH assign 128 bins to encode the viewpoint direction component, the viewpoint
direction information of VFH is only distributed in 64 bins. This is because the normals of the point
cloud always point to the sensor, and their dot product with the central viewpoint direction must be in
the range [0, 1]. The dot product of the point cloud normals and the orthogonal vector of the central
viewpoint direction is in the range of [−1, 1]; thus, the viewpoint component of OVFH is distributed
in all 128 bins and reserves more viewpoint information than VFH. The VFHs of mirrored poses are
very similar, which may cause their corresponding poses are misidentified because of the similar
match scores in the template matching phase. The OVFH descriptors of mirrored poses have distinctly
different viewpoint direction components in the mirrored poses, so that the false mirrored pose can be
avoided in the template matching phase.
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3. Visual Guidance Algorithm for the Robotic Grasping System

The robotic visual grasping algorithm includes two phases, offline and online, as shown in Figure 8.
In the offline phase, a database that has complete poses of experimental objects is created by changing
the sensor viewpoint. The object poses under each viewpoint are combined with the available grasping
poses to teach the robot how to grasp the object in different poses. After that, all relevant information
is stored in the database, including point clouds, feature descriptors, classification information, and
grasping poses for each viewpoint. In the online phase, the scene point cloud is captured using a depth
camera. After filtering and segmenting the scene point cloud, the global feature descriptor of the object
is calculated to match the database. And the recognition result is the sample that has the most similar
feature histogram with the object. Finally, the iterative closest point (ICP) algorithm [19] is used to
calculate the precise pose to generate the trajectory and pose for robotic grasping operation.
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3.1. Creation of the Database

The database mainly consists of two parts: a multi-view point cloud database and a grasping
pose database.



Sensors 2019, 19, 2225 8 of 15

A multi-view point cloud database is created to contain all the poses of the object to be grabbed.
Point cloud data from different perspectives can be captured by building a rotating platform such
as [8], but creating a training database for a reasonable number of objects using a real device can be
a cumbersome task, and even difficult if one wants to have all the different views and poses of an
object. Alternatively, as described in [9], if the object has an available 3D computer aided design (CAD)
model, a virtual camera can be placed directly around the object in the rendering system and all desired
viewpoints can be obtained without calibrating the system and a time-consuming capture process.
This is a database creation method which is low-cost and easy to extend object set; therefore, this paper
uses this method to create a database.

Taking CAD model as the center of the sphere, the bounding sphere with radius r is established.
A virtual depth camera [20] is set up on the viewpoints uniformly selected on the spherical surface to
capture the object point clouds. As shown in Figure 9a, first, to ensure the coverage and uniformity
of viewpoint selection, viewpoints are selected on the bounding sphere at every 15◦ yaw angle and
pitch angle, denoted as (ϕ,ψ). Then, the virtual depth camera is set up at each viewpoint to capture
the corresponding object point cloud, and record the pose data of the object model in the camera
coordinate system. Finally, the point cloud data is processed offline. The OVFH descriptors of the
point clouds under each viewpoint are calculated and the feature files are saved in the database.
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Figure 9. Database creation: (a) multi-view point cloud database; (b) grasping pose database.

Objects usually have multiple stable poses. It is impossible for the robot to grip the object in the
same grasping pose in any cases because of the limitation of the environment and robot’s working
space. Therefore, it is necessary to teach the robot how to grab objects in different poses. A plurality of
stable robot grasping poses relative to the object are recorded in the database, and the robot grasping
poses in different object poses can be obtained by rotating and transforming the object poses under
different viewpoints in the multi-view point cloud database. Figure 9b shows the database that records
the grasping poses.

3.2. Object Recognition and Pose Estimation

A 640 × 480 pixels RGB-D image captured by the Kinect v1 sensor is processed with the PCL
library and converted into a point cloud containing 307,200 points (see Figure 10a). It requires initial
filtering before the segmentation process. First, invalid points (NaN) that are useless for 3D processing
without depth information due to factors such as specular surface, occlusion or transparency are
removed. Then, a passthrough filter is used to remove all the points located outside the defined range.
Experiments have shown that it is impossible to identify small objects reliably outside the range of
0.4–1.5 m away from the sensor. Therefore, the cut-off distance of the passthrough filter along the
Z-axis is set as this range. The appropriate X and Y axis ranges are set to confine the isolated region of
interest (ROI) to the graspable workspace of the robotic arm (see Figure 10b). Then, the random sample
consensus (RANSAC) algorithm is used to detect the principal plane of the remaining point cloud and
remove the inlier points of the plane, that is, to remove the ground points. Finally, the cluster of the
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target object is obtained by Euclidean cluster segmentation, and the noise clusters are eliminated by
setting an appropriate threshold of the number of the cluster points (see Figure 10c).
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Figure 10. Point cloud pre-processing: (a) scene point cloud; (b) passthrough filter; (c)
object segmentation.

The OVFH feature of the target point cloud is calculated after the target point cloud in the scene
is obtained through the above preprocessing. The obtained OVFH descriptor is compared with the
multi-view point cloud database by the k-nearest neighbor search based on K dimension (K-D) tree,
and the winning result is selected as the object recognition result with rough pose estimation. Then, the
point cloud of winning pose is translated to the centroid of the target object and iteratively optimized
by ICP algorithm. This algorithm iteratively modifies the rigid transformation matrix between two
point clouds to minimize their distance until the iteration error is less than the threshold or the current
iteration number is greater than the maximum number. Figure 11 shows the registration effect of the
template point cloud and the target point cloud. Finally, the robotic manipulator grasps the object
based on the object refined pose after using ICP.
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(ICP).

4. Experimental Results

4.1. Experimental Results on the Data Set

The hardware used in the evaluation experiment was a computer with Intel Core i5-7500 CPU
@ 3.40 GHz processor and 16 GB RAM. In order to prove that the proposed descriptor OVFH is
improved in pose retrieval compared with VFH, a publicly available dataset [21] was used for test
experiments. Each object in the data set has 600 point clouds which are captured from five polar angles
and 120 turntable positions, with an azimuth equidistance of 3◦. The 12 objects shown in Figure 12
were selected from the BIGBIRD data set for a comparative experiment of pose retrieval using VFH
and OVFH. A complete pose database (12 ∗ 5 ∗ 24 = 1440 in total) was created by selecting poses
at 24 equally spaced 15◦ azimuths from each polar angle of each object. In order to verify the pose
identification ability of OVFH and VFH, 24 point clouds with mirrored poses of each object were
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selected as the test set. Figure 13 shows the object recognition accuracy using two kinds of feature
descriptors. As far as the test was concerned, OVFH had similar accuracy to VFH in object recognition.
The average recognition rates of OVFH and VFH were both 94.44% for all 12 objects. Figure 14 shows
the mirrored pose distinction accuracy using two kinds of feature descriptors. For mirrored poses,
the average distinction rate of OVFH (95.49%) was significantly higher than that of VFH (82.6%).
Table 1 presents the computation time for each procedure when using two kinds of descriptors to test.
Although OVFH descriptor required an additional step of reference frame estimation, OVFH could
avoid false pose recognition and provide a better initial pose for ICP, which greatly reduced the time
consuming of refining pose. Table 1 shows that the average computation time was 856.866 ms when
object recognition and rough pose estimation were performed using VFH and the pose was further
refined using ICP. OVFH reduced the average computation time to 546.212 ms because reducing the
number of ICP iterations. The distance root mean squared error (RMSE) of corresponding point pairs
in the point cloud registration process is used to describe the error of the pose estimation. It can be seen
from the Table 1 that OVFH can obtain higher average precision of pose estimation by providing better
initial values for ICP. From Figures 13 and 14 and Table 1, OVFH enhances the distinction capability of
the mirrored pose while preserving the identification capability of VFH, and is more computationally
efficient and precise in the accurate pose estimation combined with the ICP. Experimental results show
that the proposed feature (OVFH) can be used to improve the performance of pose retrieval.
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Table 1. Computation time for processing a single object instance.

Method Procedure Average Time (ms) Average RMSE (m)

VFH + ICP
Description 1.694

3.219 × 10−5
Pose refinement 855.172

OVFH + ICP
Reference frame estimation 10.767

1.391 × 10−5Description 1.832
Pose refinement 533.613

4.2. Robotic Grasping Experiment

Figure 15 shows the hardware setup of the robotic grasping experiment. A KUKA Youbot robot
was used to grasp objects, and Microsoft Kinect v1 was mounted on the robot’s stand to capture point
clouds for robotic vision. The computer used for object recognition and pose estimation was equipped
with an Intel i5 CPU and 16 GB RAM. Eight objects used for the grasping experiment are shown in
Figure 16, where objects A-E have mirrored structure. A multi-view point cloud database was built
by the CAD models of all experimental objects, and the robot was taught how to capture objects of
different poses.
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Experiments were performed on eight objects, each of which was set to 10 initial poses in the
robot’s workspace. Figure 17 shows the results of object recognition and pose estimation. As shown
in the figure, the point cloud collected online was precisely registered with the recognition result in
database. To test the effectiveness of the proposed OVFH descriptor, the first nine matching scores were
used to determine the distinction capability of the mirrored poses, as shown in Figure 18. Figure 18a,b,
respectively, show the results of object recognition using the VFH and OVFH descriptor, when the
object A was placed in a pose of −60◦ relative to the viewpoint. The result in the lower left corner was
the best match. When using VFH, the true pose and its mirrored poses were alternately arranged, and
a false positive was generated for the mirrored pose. When using OVFH, the true pose was correctly
identified, and the matching scores of the mirror poses and the true pose were quite different, which
would avoid the false positive effectively. The experimental results of eight objects are recorded in
Table 2. For objects F-H without mirrored structure, VFH and OVFH exhibited similar performance.
For objects A-E with mirrored structure, VFH could not distinguish its mirror poses. Identifying the
wrong initial pose would increase the registration time of ICP and the pose estimation error, and even
lead to registration failure. Since OVFH avoided false pose Identification, the convergence was faster
when using ICP to refine the pose, and the average computation time was reduced to 0.523 s. At the
same time, correct pose recognition made the model point cloud and the target point cloud better fit,
thus obtaining higher pose estimation accuracy. After object recognition and registration, the refined
pose was used to guide the robot to grasp the object. Figure 19 shows the grasping experiment results
of an object with mirrored poses.
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Table 2. Experimental results of eight objects.

Object

VFH + ICP OVFH + ICP

Pose Distinction
Rate (%)

Average
Time (s)

Average
RMSE (m)

Pose Distinction
Rate (%)

Average
Time (s)

Average
RMSE (m)

A 60 0.878 3.388 × 10−5 100 0.428 1.543 × 10−5

B 70 0.973 6.895 × 10−5 100 0.574 2.258 × 10−6

C 90 0.676 1.674 × 10−5 100 0.471 2.852 × 10−6

D 70 0.747 1.044 × 10−5 90 0.338 2.994 × 10−6

E 80 1.079 6.611 × 10−5 100 0.775 2.415 × 10−6

F 100 0.501 4.317 × 10−6 100 0.494 4.062 × 10−6

G 100 0.672 6.213 × 10−6 100 0.647 6.429 × 10−6

H 100 0.446 5.379 × 10−6 100 0.457 5.240 × 10−6

Average Value 83.75 0.747 2.650 × 10−5 98.75 0.523 5.210 × 10−6
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5. Conclusions and Future Work 
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For future work, the proposed feature descriptor can be extended by color description to obtain 
the ability to recognize objects with the same geometries and different patterns. It will also be studied 
to combine the proposed idea of calculating orthogonal viewpoint direction with other feature 
descriptors to obtain better results. 
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5. Conclusions and Future Work

In order to correctly distinguish the mirrored poses relative to the viewpoint, an effective global
feature descriptor OVFH is proposed in this paper, which was successfully applied to object recognition
and pose estimation. The proposed method computes an orthogonal vector of the viewpoint direction
by using a reference frame estimated for the entire point cloud. This orthogonal vector is used to
improve the viewpoint component of the feature descriptor. Experimental results in public data set
show that OVFH descriptor can characterize object poses well and enhance the ability to distinguish
mirrored poses. Based on OVFH descriptor, an object recognition and pose estimation method for
vision-guided robotic grasping system is designed. The experimental results show that the proposed
vision-guided robotic grasping method can effectively distinguish the mirrored poses and guide the
robot to grasp different objects.

For future work, the proposed feature descriptor can be extended by color description to obtain
the ability to recognize objects with the same geometries and different patterns. It will also be studied to
combine the proposed idea of calculating orthogonal viewpoint direction with other feature descriptors
to obtain better results.
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