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Abstract: In this paper, a new electro-optical switch modulator based on the surface plasmon
polaritons of graphene is proposed. An air–graphene-substrate–dielectric structure is adopted in the
modulator. In this structure, the graphene is considered as a film of metal whose thickness tends to
be infinitesimal. By changing the external voltage, the boundary conditions can be changed to decide
whether the surface plasmon polariton waves can be excited in mid-infrared band. Because of this
effect, the structure can be used as an electro–optical switch modulator, whose modulation depth is
about 100% in theory. Finally, the 3 dB bandwidth (~34 GHz) and the energy loss (36.47 fJ/bit)
of the electro–optical switch modulator are given, whose low energy loss is very suitable for
engineering applications.
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1. Introduction

Surface plasmon polaritons (SPPs) [1–5] refer to the surface transmission mode of the
electromagnetic field, which is produced by the collective movement of electrons in metals when
the incident light is irradiated to the metal surface. When they have an equal frequency resonance,
the transversal magnetic field and transversal electric field (TM and TE) polarized state can be excited
to transmit along metal and media boundary surface [6,7]. Based on the transmission characteristic,
the surface plasmon waveguide can bind the light field within the range of subwavelength magnitude.
Therefore, it is possible to make micro-nano optoelectronic devices by using the properties of the
surface polarization wave, which is conducive to the realization in miniaturization of optoelectronic
integrated devices. In recent decades, the research on surface plasmon polaritons relies on precious
metal materials represented by gold and silver. Using these precious metal materials, researchers have
proposed a large number of waveguide [8–12] structures that can bind the light field at the nanometer
level. These excellent waveguide structures can be applied to integrating photoelectric modulator and
so on.

Graphene [13–16], a new type of two-dimensional material, has attracted much attention from
many researchers for its various good properties. In graphene’s crystal structure, carbon atoms are
arranged periodically in a two-dimensional plane in a hexagonal honeycomb, and three valence
electrons can form SP2 bonds. For this crystal structure, graphene has excellent electrical and optical
properties. Specifically, in a wide spectral range, the optical absorption rate of graphene with intrinsic
monolayer thickness is 2.3%, which is 50 times the same thickness as gallium arsenide. Based on the
strong absorption effect of graphene on light, the light absorption can be adjusted by changing the
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voltage [17] and create an electro–optical modulator with graphene. In addition, graphene can be used
to change the boundary conditions of the medium interface, which transforms the excitation of the
surface plasmon polaritons waves in the whole structure. Basing on this theory, a new electro–optical
switch modulator is realized.

An electro–optical switch [18–21] modulator [22–25] refers to the transmission and cutoff of mode
light in the devices through the change of external voltage. This mode of light propagation can be
regarded as a switch in essence.

The mid-infrared band is a vital band, which has important application in different fields.
For example, it can be used in sensing, environmental monitoring, and other places. Optoelectronic
devices have many advantages, which include the greater plasma dispersion effects and the ease of
manufacture in current technology.

Many researchers have used the tunability of graphene to achieve electro–optical modulators,
but the large volume and low modulation depth become the common problem for these modulators.
To solve these problems, an air–graphene-substrate–dielectric structure is proposed. It makes use of the
tunability of graphene and realizes the transmission or cutoff of the medium exciter wave in the whole
structure. Theoretically, this modulator can achieve the modulation depth of 100%, which cannot be
obtained by the traditional electro–optical modulator. Finally, the 3 dB bandwidth of the electro–optical
switch modulator and energy loss of the switch state are also given. The modulator proposed here is
very suitable for engineering application because of the low energy loss.

2. Structure Design

The new electro–optical switch modulator is composed of an air–graphene-substrate–dielectric
structure. Concretely speaking, it uses graphene-substrate as the thin film metals between the interface
of air and dielectric (the substrate and dielectric use the same materials). And for the electrode Au, it is
placed in the position shown in Figure 1.
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Figure 1. The stereograph and sectional view of this modulator: (a) 3D layout waveguide structure, 

(b) cross-section structure. 

Figure 1. The stereograph and sectional view of this modulator: (a) 3D layout waveguide structure,
(b) cross-section structure.
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This design can change the electrical conductivity of graphene by changing the voltage, to regulate
the transmission and cutoff of surface plasmon polaritons waves. Finally, the aim of electro–optical
modulation is achieved.

3. Methodology and Models

The principle involved in this paper is mainly divided into two parts. One part is the change of
the relationship between voltage and the graphene photoconductivity. Another part is the excitation of
the graphene material to the dielectric interface surface plasmon polaritons waves.

The relationship between voltage and graphene photoconductivity can be obtained by using the
relationship between the chemical potential (Fermi level) and the cooper equation obtained from the
plate model.

For the graphene, it’s carrier concentration n0 can be given by Equation (1).

n0 =
Q

S·e (1)

where Q is the charge of the capacitor, e indicates the amount of electron charge and the size is
1.6 × 10−19 C. S represents the area of the plate capacitor. And the Q can be given by Equation (2).

Q = C(V + V0) (2)

where V refers to the voltage applied externally. V0 is related to the Fermi level of graphene when it is
not applied to voltage, which is usually to take 0 V.

Figure 2 shows the relationship between voltage and chemical potential (Fermi level). According
to the Equations (1) and (2), the relation between them can be given by Equation (3).

µ = }v f
√

π·n0 = }v f

√
π

ε0εr

d·e (V + V0) (3)
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Figure 2. The image of chemical potential as a function of voltage (The µ represents the chemical potential).

Among them, h̄ represents the reduced Planck’s constant whose size is about 1.055 × 10−34 J·s.
The Vf indicates the Fermi velocity of graphene, which is 1.1 × 106 m/s. ε0 refers to the dielectric
constant in free space, and εr is the relative dielectric constant of the substrate material. d represents
the thickness of graphene and substrate.

Figure 3 shows the relation between graphene chemical potential and electrical conductivity, and
the relation between them can be obtained by Equation (4).

σintra = σ0
4µ

π

1
}τ1 − i}w
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σ′inter = σ0(1 +
1
π

arctan
}w− 2µ

}τ2
− 1

π
arctan

}w + 2µ

}τ2
)

σ
′′
inter = −σ0

1
2π

ln
(2µ + }w)2 + }2τ2

2

(2µ− }w)2 + }2τ2
2

σ = σintra + σ′inter + σ
′′
inter (4)
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Figure 3. The image of conductivity as a function of chemical potential.

Among them, w refers to the angle frequency of incident light. τ1 and τ2 indicate the intra-band
and inter-band lag time of graphene. Here it is taken 10 fs and 1.2 ps respectively. In addition, the σ0 is
equal to πe2/2h.

By this way, the relationship voltage and the conductivity of graphene can be obtained.
The boundary conditions of Maxwell equations are given in Equation (5).

Dn2 − Dn1 = ρ

Et2 − Et1 = 0

Bn2 − Bn1 = 0

Ht2 − Ht1 = Js (5)

In Equation (5), ρ represents the volume charge of the medium interface, and Js indicates the
surface current size of the medium interface.

The graphene can be seen as a layer current. So, combining the Maxwell equations, the surface
plasmon dispersion relation in TM mode can be seen in Equation (6).

ε1

k1
+

ε2

k2
+

iσ
wε0

= 0 (6)

Among them, k1 and k2 represent the longitudinal wave vectors of light up and below the interface.
σ refers to the conductivity of graphene. According to the knowledge of surface plasmon wave, the
real part of k1 and k2 must be greater than 0 (otherwise the surface plasmon waves do not exist), to
ensure that the surface plasmon waves decrease from the interface to the medium internal. For the
conductivity of graphene, the positive or negative values of the imaginary part in it will affect the
positive and negative values of k1 and k2. Through this change, the excitation and cutoff of the surface
plasmon waves in the TM mode can be controlled very easily.

In the same way, the dispersion relationship of the graphene in TE mode can be obtained by
Equation (7).

k1 + k2 = iwσ (7)
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From the Equation (7), the state of surface plasmon polariton waves can be controlled by changing
the conductivity of graphene.

To sum up these two parts, the changing of external voltage can directly influence the transmission
or cutoff about surface plasmon polariton waves in this new structure. In this way, a new type of
electro–optical switch modulator is proposed.

4. Results and Discussion

Figure 4 shows the relationship between the incident wavelengths and the graphene conductivity
in different voltages at the boron nitride substrate thickness of 10 nm. It corresponds to the voltage in
0.5 V, 1 V, 1.5 V, and 2 V.
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Figure 4. The image of conductivity as a function of incident wavelength in different voltage. (a) 0.5 V;
(b) 1 V; (c) 1.5 V; (d) 2 V.

According to Figure 4, it is obvious that changing conductivity of graphene can be obtained by
transforming the voltages. Comparing these pictures, the imaginary parts of graphene conductivity
become larger as the voltage increases. In the voltages of 0.5 V and 1 V, the imaginary of graphene
conductivity has both positive value and negative value. In the voltages of 1.5 V and 2 V, the imaginary
of conductive all become positive values. It is illustrated that some incident wave bands cannot be
transmitted in TM mode. On the contrary, it can be all transmitted in the 1.5 V and 2 V.

This phenomenon is the opposite in TE mode. In the voltages of 0.5 V and 1 V, some incident
wave bands can be spread in TE mode. But for the voltages in 1.5 V or 2 V, TE mode cannot be spread
in the mid-infrared band (2500 nm~25,000 nm).
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Figure 5 shows the relationship between the incident wavelengths and the graphene conductivity
in 1 V at the boron nitride substrate. The corresponding thickness is respective 5 nm, 10 nm, 15 nm,
and 20 nm.
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thicknesses. (a) 5 nm; (b)10 nm; (c) 15 nm; (d) 20 nm.

It can be observed from Figure 5 that the substrate thickness has a significant influence on the
conductivity of graphene. The imaginary of conductivity is completely greater than 0 µS in 5 nm,
which is different in 10 nm, 15 nm, and 20 nm. It illustrates that the incident light waves cannot
propagate the TE mode in 5 nm. For the other substrate thickness, the incident lights can be transmitted
in some incident bands.

For the TM mode, all incident waves in Mid-infrared band can spread in 5 nm, which cannot be
achieved in 10 nm, 15 nm, and 20 nm.

Figure 6 shows the relationship between the incident wavelengths and the graphene conductivity
in 1 V at the different substrates in 10 nm thickness. It corresponds to the different substrates in SiO2,
BN, and Si.
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According to Figure 6, the changing of substrate material has a strong influence on the conductivity
of graphene. For the material Si, all imaginary for graphene conductivity is greater than 0 µS,
which could not be seen in the other material. It shows that the material Si cannot spread the incident
waves in TE mode. But some incident waves could be propagated in BN and Si.

On the contrary, any Mid-infrared band waves can be spread in TM mode with Si. But the other
materials only spread the incent waves in some mid-infrared bands.

The two situations (1 V and 1.5 V) in Figure 4 can be used for an electro–optical modulator to
achieve the modulation function. For the 2500 nm incident wavelength, the imaginary of graphene
conductivity is about −50 µS in 1 V and 1 µS in 1.5 V.

According to Equation (7), when the external voltage is 1 V, the incident waves can spread in TE
mode. It cannot spread in 1.5 V for the same mode. Therefore, it can be used as an electro–optical
switch modulator.

According to Equation (8), the bandwidth of the electro–optical modulator can be given as:

f3dB =
1

2πRC
(8)

Among them, R represents the resistance of the whole structure. C refers to the capacitance of the
whole structure. After the calculation, the 3 dB bandwidth is about 34 GHz in this structure.

According to Equation (9), the energy loss of the electro–optical modulator can be given as:

E =
1
4

CV2
P (9)

where Vp represents the peak value of the external voltage. Using the 1 V and 1.5 V as the two switch
voltages of this modulator, the energy loss is about 36.47 fJ/bit during one cycle.
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5. Conclusions

In this paper, a new electro–optical switch modulator based on surface plasmon polaritons of
graphene was proposed. It used the tunable of graphene and the properties about surface plasmon
polaritons to achieve the control of external voltage to the transmission of incident waves. This control
way can be applied to design for an electro–optical switch modulator, which has 100% modulation
depth, in theory. It cannot be obtained by traditional electro–optical modulator. In addition, it has very
low energy loss (~36.47 fJ/bit), which is very adapt to products in engineering.
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