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Abstract: This paper presents a depth upsampling method that produces a high-fidelity dense depth
map using a high-resolution RGB image and LiDAR sensor data. Our proposed method explicitly
handles depth outliers and computes a depth upsampling with confidence information. Our key idea
is the self-learning framework, which automatically learns to estimate the reliability of the upsampled
depth map without human-labeled annotation. Thereby, our proposed method can produce a clear
and high-fidelity dense depth map that preserves the shape of object structures well, which can be
favored by subsequent algorithms for follow-up tasks. We qualitatively and quantitatively evaluate
our proposed method by comparing other competing methods on the well-known Middlebury 2014
and KITTIbenchmark datasets. We demonstrate that our method generates accurate depth maps
with smaller errors favorable against other methods while preserving a larger number of valid
points, as we also show that our approach can be seamlessly applied to improve the quality of depth
maps from other depth generation algorithms such as stereo matching and further discuss potential
applications and limitations. Compared to previous work, our proposed method has similar depth
errors on average, while retaining at least 3% more valid depth points.
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1. Introduction

In recent research, the advance of the depth sensor has opened a new horizon in the computer
vision and robotics field, e.g., scene understanding [1] and object recognition [2], by virtue of the
capability of capturing rich 3D information of a scene in real time. Most representative mechanisms of
such sensors are categorized into stereo-based range sensors, 3D time-of-flight (3D-ToF), active pattern
cameras (e.g., Microsoft Kinect), and light detection and ranging sensors (LiDAR). Among them,
the image-based depth sensors, such as stereo vision [3], 3D-ToF [4], and active pattern cameras [5],
provide dense depth information, but their performance varies according to the changes of the
environmental lighting condition [6], as well as having a limitation of the sensing range [7]. On the
other hand, LiDAR sensors [8] have a longer measurable range, are also robust to the effects of
environmental lighting, and provide accurate depth sensing. Therefore, they are considered as the
most reliable sensors in practical outdoor application scenarios, but the depth data from LiDAR
sensors form unorganized sparse point clouds, which often hinder obtaining detailed structural scene
understanding due to the scarce resolution compared to any image-based depth sensor.
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To overcome the resolution scarcity of LiDAR sensors, applying depth upsampling would
be a workaround, which propagates sparse depth points along the guidance of side-information,
e.g., a corresponding RGB image of the same scene, and results in a high-quality dense depth map.
Given low-resolution depth measurements obtained from low-resolution depth sensors including
LiDAR, prior studies [9–11] have successfully achieved a high-quality and high-resolution depth map
estimation with the additional guidance of a high-resolution RGB image taken from a separate camera
sensor under some ideal conditions. In these techniques, a notable condition is that they essentially
assume that the depth map and image pair is perfectly-aligned and has negligible alignment errors.
This assumption is often not appropriate for robotic visual sensor systems, which commonly have
a wide baseline between sensors due to constraints on hardware platform design. It introduces a
substantial parallax effect in visual data taken from multiple views, which is a major source of unreliable
depth estimation near depth discontinuous regions, and yields flipping points and depth dis-occlusion.

In this paper, we present a new depth upsampling method to obtain a high-resolution and
highly reliable depth map guided by an RGB image. This work is the extension of our previous
work [12], where a simple heuristic threshold mask was used to filter out unreliable depth after
depth propagation by multi-lateral information aggregation. Our key idea of this work is to improve
the capability of unreliable depth rejection using a self-learning framework. We train a machine
learning model to filter out automatically and adaptively unreliable depth estimates even without
exhaustive human annotations. This self-learning framework allows the model to spontaneously
adapt to each scene in an online update manner. Furthermore, our high-fidelity rejection framework
manages the final dense depth estimation to be tolerant to outlier factors induced by alignment errors
of sensors, such as mismeasured depth points (we will denote the mismeasured depth points due to
degenerated configurations of the relationship between the object surface and sensors (e.g., extremely
slanted surface w.r.t. depth sensor position) as outlier points [13]), flipping points, and dis-occlusion.
Our contributions are summarized as follows:

• We propose an RGB image-guided high-quality depth upsampling method robust against specific
depth outliers introduced by a depth sensor, e.g., outlier points, flipping points, and dis-occlusion.
We design the systematic method consisting of depth outlier handling, RGB image-guided depth
upsampling, confidence map estimation, and the self-learning framework to predict high-fidelity
depth regions.

• We train our proposed depth map rejection in a self-learning way, which does not require
human-annotated supervision labels, but collects training data autonomously.

• Through extensive experiments, we qualitatively and quantitatively validate the effectiveness
of our proposed depth upsampling framework. We also demonstrate that our method performs
favorably even on the stereo matching scenario.

Related Work

We review representative robotic sensor systems and depth processing algorithms that exploit
depth sensors and RGB cameras.

• Visual sensor system: By virtue of the robustness of the LiDAR sensors, many robotic systems
mainly rely on LiDARs along with cameras. For instance, mobility platforms including
autonomous vehicles typically use a combined system constituted by the stereo camera and
LiDAR sensors [14], and field robots mainly use rotating axial LiDAR and multiple cameras,
e.g., Tartan Rescue [15], Atlas [16], and DRC-HUBO+ [17]. On the other hand, instead of expensive
LiDARs, robots for indoor activities deploy 3D-ToF or active pattern cameras. These sensors
are rarely chosen for outdoor robots because they are often vulnerable to the changes of the
environmental lighting condition, e.g., direct sunlight often overwhelms the spectrum range of
the light patterns of the active imaging sensors [18]. Thus, improving the LiDAR system by our
upsampling method can broaden overall successful application regimes of subsequent algorithms
that use the estimated depth information as input.
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• Guided depth upsampling: Given a pair of a depth and a high-resolution color image,
depth upsampling approaches estimate a high-resolution dense depth map that follows crisp edge
information of the color image. Joint bilateral upsampling (JBU) [9] applies a spatially-varying filter
to the sparse samples while considering local color affinity and radial distance. Chan et al. [19]
accelerated the JBU using a GPU and introduced a depth noise-aware kernel. Dolson et al. [20]
presented a flexible high-dimensional filtering method for increased spatial and temporal depth
resolution. Park et al. [21] used a least-squares cost function that combines several weighting
factors with a non-local structure. Ferstl et al. [10] designed a smoothness term as a second-order
total generalized variation and propagated sparse seed points using an anisotropic diffusion
tensor obtained from a high-resolution image. In terms of degenerated depth measurements
occurred due to dis-occlusion or a distant element of a scene (e.g., sky), all these approaches
propagate erroneous observations to a large area if the size of depth hole regions exceeds the
algorithmic limit that can be dealt with, e.g., the kernel size limit for the filtering approaches.
In our work, we explicitly deal with such erroneous propagation by the initial outlier filtering
step and the self-learning-based post-filtering step. This enables us to obtain high-fidelity depth
upsampling results.

• Depth outliers’ handling: In practice, sparse seed points used for depth upsampling could often
contain outliers. Most typical types of outliers that require separate handling would be flipping
points and depth dis-occlusion that occur due to unreliable projection with parallax. Furthermore,
there are outlier points, which indicate floating points with intermediate depth values between
foreground and background depths occurring around object boundaries. To overcome these
issues, Kang et al. [22] detected the flipping points based on the distribution of depth values
within a color image segment. Park et al. [21] measured depth variation of the local regions for
detecting depth discontinuity and proposed a heuristic approach that identifies flipped depth
orders after depth projection. However, their work evaluated the performance of their algorithm
on exactly-aligned depth-color image pairs. To a broader extent, ToF depth camera and stereo
color camera fusion [23,24] was also introduced. Gandhi et al. [24] investigated specific local
regions that had mixed foreground and background depth samples. Georgios et al. [23] grew
seeds using a smoothness term that was conditionally defined by an occlusion label obtained
from depth discontinuity analysis.

We introduce depth outliers’ handling and depth map upsampling with the self-learning
framework. Our depth outliers’ rejection method is not dependent on edge information of the image;
therefore, it keeps reliable depth points even in ambiguous image edges. Our filter-based approach
can generate a high-fidelity and outlier-free depth map that is not only able to improve the quality of
the depth map, but also may increase the success rate of potential subsequent post-task algorithms.
Furthermore, our confidence map and self-learning framework can explicitly disregard large holes in a
depth map and leave reliable depth regions.

2. Materials and Methods

The first step for depth upsampling is to align a depth and image pair. If we have pre-computed
calibration parameters, a depth and image pair can be aligned [12,25]. Figure 1 shows an example of
the depth and image alignment with depth errors. Figure 1b shows several erroneous depth points,
and (c) depicts the causes of the errors. The outlier points are caused by the measurement noise of the
depth sensor and usually occur near the object boundary. The flipping points appear because of the
different viewpoints among sensors. The flipping points are regular depth points on the background
in the LiDAR coordinate. However, when they are projected on the image, the points are on an object
that occludes the background. Therefore, the camera cannot see the corresponding depth points due to
occlusion, i.e., no-visibility in the projected viewpoint. The dis-occlusion region is the opposite case of
the flipping points. There is no real depth measurement in the dis-occlusion region. These alignment



Sensors 2019, 19, 81 4 of 18

problems can be amplified due to system calibration errors and measurement noise of the depth
sensor. For the image-guided depth upsampling algorithms, this unreliability of the alignment severely
degrades the performance of depth upsampling, as will be discussed in Section 3.

Flipping points

Dis-occlusion region:
hole region in depth map Outlier points

LiDARCamera

Dis-occlusion region:
hole region in depth map

Flipping points

Outlier points

OBJECT
Correct points

(a) (b) (c)

Figure 1. Images showing parallax effects. (a) shows a target region; (b) depicts registered 3D points to
the camera coordinate PC, and (c) shows why outlier points and flipping points, as well as dis-occlusion
problems occur in depth and image alignment.

In this regard, we have to handle these unreliable factors explicitly before performing depth
upsampling. We remove outlier points when two adjacent points along a LiDAR scan-line have a
considerable distance between them, and we then apply a 2D filter to eliminate isolated sparse points
from the image domain. We also remove flipping points by checking the depth information among
nearby points. After removing the suspicious points, we run our depth upsampling and generate
a confidence map concurrently. Then, we use our proposed self-learning framework to distinguish
low-reliability regions including dis-occlusion. We describe this in the following sections.

2.1. Early Outlier Rejection

• Outlier points’ rejection: LiDAR sensors could potentially cause depth measurement failure when
measuring a light emitted from the sensor that is not adequately reflected due to degenerated
surface conditions, such as the extreme edge case of the angle between the light ray and surface
normal (edge of an object or a cracked object surface), specific materials with high reflectivity, and
so on. These outlier points yield incoherent depth measurements with other close-by correct depth
points, i.e., appear as a fractional floating point. Thus, we may eliminate most of these isolated
outlier points with a simple 1D or 2D filter. In this paper, we use a simple 1D filter as follows:

Pf = {x|max(d(xl
t, xl

t−1), d(xl
t, xl

t+1)) > Tf }, (1)

where Pf is a set of outlier points, d(·) is the Euclidean distance between two points, and xl
t is

the tth point in the lth scan-line. Tf is a predefined threshold. This filter is applied along every
horizontal scan line-by-line. The scan-line stands for a trace of a ray of the LiDAR sensor, the
direction of which is congruent with the direction of the rotating axis of the mirror in the LiDAR.
In this work, we assume that the horizontal direction of the image is roughly similar to the
scan-line direction of the LiDAR, i.e., horizontal scan-line. After that, we use morphological
operations in the image to remove isolated sparse points. In some cases, desirable depth points
near the object boundaries could be also removed in this process, but we show that it is easily
recoverable during the subsequent depth upsampling process.

• Flipping points’ rejection: Most depth upsampling methods assume that a sparse depth and
high-resolution color image pair is well aligned, and they do not seriously treat the effect of
flipping points, which causes a severe problem in depth upsampling. In this paper, we detect the
flipping points by the geometric difference between two sensors and remove them in order to be
free from the bad influence of the flipping points.
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Figure 2 shows the process for eliminating flipping points. We first generate a grid map by
connecting four nearby points (4-connected grid map) from depth measurements in the LiDAR
coordinate. Then, we move the structure of the grid map to the camera coordinate and find points that
invade another grid cell, as shown in the center image. Among the points, we reject a point if its depth
is more distant than the depth of each corner point of the invaded grid cell. Note that the grid map
is for finding the invading points in a grid cell. Because LiDAR provides depth data sequentially, it
is easy to construct data indexing for connecting near points at the data-capturing stage and easy to
generate a grid map quickly. While we used a four-connected grid map for a simple implementation,
one can also use other methods such as Delaunay triangulation [26] to build the grid map.

Flipping point

Grid corners
Convert 

coordinate

Points in LiDAR coordinate Points in camera coordinate

Raw range data

Points without flipping points in camera coordinate

Figure 2. Pipeline for eliminating flipping points using a 4-connected grid map. The outlier and sparse
points are removed in advance, which is described in Section 2.1.

2.2. Depth Map Upsampling and Confidence Map Estimation

In this section, we describe our depth upsampling method and explain how to compute a
confidence map of the upsampled depth map.

2.2.1. Depth Map Upsampling

Our depth upsampling algorithm is based on a rolling guidance filter suggested by Zhang et al. [27].
The rolling guidance filter is an iterative joint filter method that can achieve scale-aware local operations;
therefore, it is especially useful for removing small-scale structures such as noise while performing
edge-preserving upsampling. In our upsampling algorithm, we extend the JBU [9] with an additional
depth guidance term to prevent the texture copying problem and use the extended JBU as a joint filter
in the rolling guidance filter. Specifically, our upsampling algorithm is formulated as follows:

Dt+1
p = 1

Np ∑q∈Ω(p) exp(Gp,q + Kp,q + Hp,q)Rq, where Gp,q = −‖p− q‖2/2σ2
s ,

Kp,q = −‖Ip − Iq‖2/2σ2
i ,

Hp,q = −‖Dt
p − Rq‖2/2σ2

d ,

Np = ∑q∈Ω(p) exp(Gp,q + Kp,q + Hp,q),

(2)

I, R, and Dt denote a guidance image, an aligned sparse depth map, and an upsampled dense depth
map after the tth iteration, respectively. Here, p is a query point, and Ω(p) is a set of neighboring
points in the sparse depth map, R, within a filter range. σs, σi, and σd denote the standard deviations to
control the influence of the spatial similarity term G, the intensity similarity term K, and the depth
similarity term H on the filter weights, and Np is a normalization factor of the weights. For an initial
upsampled depth map D0, we use the JBU [9] where H is set to zero. Equation (2) iteratively estimates
a dense depth map, Dt. The depth-guiding term H has an important role, which suppresses error
propagation and texture copying problems. Furthermore, it gives vital information in computing the
confidence of an estimated depth map.

Figure 3 shows the intermediate results of our upsampling method. In the figure, our result after
five iterations in (d) has sharper and more accurate depth boundaries than the initial upsampled depth
map in (b), while the result without the H term in (c) has noisy depth boundaries due to overfitting to
intensity information.
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(a) I (b) D0 (c) D5 w/o H (d) D5 (e) C (f) D5∗M

Figure 3. Intermediate results of our depth upsampling method. (a) Input image; (b) initial depth map
D0; (c) depth upsampling result without the H term; (d) depth upsampling result after five iterations
D5; (e) confidence map; (f) depth upsampling result after masking low reliability regions in white.

2.2.2. Confidence Map Estimation

Because of missing depth measurements in the hole regions on the depth map as shown in
Figure 1c, the upsampled depth results in those regions are uncertain. It is difficult to calculate the
correct depth in this ambiguity by just the upsampling process alone. In this regard, we propose to use
a confidence map to deal with this incorrect depth estimate. Our confidence map estimation is closely
related to the statistics of measurements, where the small variance of local supporting measurements
provides a measure inversely proportional to the confidence of the depth map. Therefore, we define
the confidence map C as follows:

Cp =
1

max(C)

n

∑
t=0

( ∑
q∈Ω(p)

exp(Gp,q + Hp,q)), (3)

where Cp denotes a confidence value on the location p and n is the number of iterations, and the other
notations are equal to Equation (2). This confidence map can be simultaneously computed during the
upsampling processing. The notion behind this measure is that a pixel has low confidence if few or
unstable depth measurements support the estimated depth. We can mask an estimated depth point
out as an unreliable result if its confidence value is lower than a specific threshold value.

Figure 3e shows an example of the confidence map, and (f) is the upsampling result without
confidence values lower than 0.35. The confidence mask effectively removes the unreliable depth
regions and retains important depth information with clean and sharp depth boundaries. However,
a single threshold does not adaptively filter low confidence points. To handle this problem, we adopt
the self-learning technique [28] with deep learning architectures [29–31]. The details of this issue are
presented in Section 2.3.

2.2.3. Parameter Selection

We have several parameters to use our depth upsampling. First, σs is a spatial smoothness
parameter, which is adaptively determined through empirical cross-validation since the proportion
of measured depth points to the guidance image pixels may vary according to the sensor systems.
The left plot of Figure 4 shows the parameter we used according to the proportion. For example, if the
measured points occupy 5% of a guided image area, σs is set to 15. Through experiments, we found
that our proposed method requires the depth measurements occupy at least 2% of the image area.
Next, σd is a depth similarity parameter to suppress depth measurement noise. σd can be determined
based on the error between initial depth D0 and depth measurement by a depth sensor. For example,
we can determine σd according to the specification of a depth sensor. In the case of UTM 30LX-EW,
σd is set to 30 because the maximum repeated accuracy of the LiDAR sensor is less than ±30 mm.
We have empirically set the intensity similarity parameter σi to 20 by referring to Zhang et al. [27].

We also need to determine the number of iterations in the rolling guidance scheme. The right plot
of Figure 4 shows the average depth variations at each iteration step. The depth map rapidly converges
to the final result within 3∼5 iterations.



Sensors 2019, 19, 81 7 of 18

Observed points occupancy (%)
0 1 2 3 4 5 6 7 8 9 10 11 12

5
10
15
20
25

𝜎𝜎𝑠𝑠

1 2 3 4 5 60
5

10
15
20
25

Per-pixel Depth Difference

Number of iterations

Figure 4. Parameter selection. (left) The parameter used for σs according to the occupancy rate of depth
points across an entire image, i.e., sparsity; (right) the depth variation changes according to the number
of iterations, which shows that our rolling guidance scheme converges within only a few iterations.

2.3. Self-Learning Framework to Predict High-Fidelity Depth

In our previous work [12], we computed the confidence mask by applying a single threshold
value to the entire confidence map (see Figure 3e,f). However, a single threshold value might not be
generalizable to diverse environments in order to retain highly reliable depth points. Figure 5 shows
our depth upsampling results and their corresponding error maps according to different threshold
values. The smaller threshold value keeps a large number of depth points with the relatively large
errors especially at the object boundary (a), and the larger threshold value keeps a small number of
depth points with relatively small errors (f). This raises a trade-off issue to find desirable thresholds
that allow us to obtain a large number of highly reliable depth points with small error.
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(a) D5∗M(0.14) (b) D5∗M(0.29) (c) D5∗M(0.43)
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(d) D5∗M(0.57) (e) D5∗M(0.71) (f) D5∗M(0.86)

Figure 5. Our upsampled depth maps and their corresponding error maps according to different
thresholds M. (a) M = 0.14; (b) M = 0.29; (c) M = 0.43; (d) M = 0.57; (e) M = 0.71; (f) M = 0.86.
The error maps indicate a relative depth error ranging from 0–3% of the maximum depth. Please see
them in the original resolutions to compare all the details.

We transform this threshold decision problem into a pixel-wise binary classification problem with
the self-learning framework. The construction of supervised learning systems is time consuming and
difficult because a large number of training samples has to be collected and the samples should be
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manually labeled. To reduce the effort to prepare the training set, semi-supervised learning has been
researched, which trains a classifier with both a small number of labeled data and additional unlabeled
data [32]. Self-learning is one of the semi-supervised learning approaches. It starts by training a
classifier using the small-sized labeled data; then the classifier predicts the unlabeled data. The several
positive examples of the estimated data are added to the training set, and the classifier is retrained [33].

In the following sections, we describe the details of our self-learning framework to obtain
a high-fidelity depth map. Firstly, we present how to use the confidence map to gather training
data autonomously in Section 2.3.1, how to convert this training data into features for learning in
Section 2.3.2, and classifiers and online usage of the self-learning framework in Section 2.3.3.

2.3.1. Training Data

Using the reliability information of the confidence map, we split the depth map into two part:
true positive and true negative sets. The true positive set is extracted from a very high confidence
region in the confidence map. On the contrary, the negative set is extracted from a very low confidence
region. Figure 6 shows examples of the true positive and true negative sets.
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Figure 6. Examples of the extracted training data. The top row shows images and their corresponding
confidence maps. The middle and bottom rows show the example of the extracted training points in
the high confidence and the low confidence region, respectively. The blue dots depict the positive and
negative sets.

In our training process, we equally extract the data ratio of the positive and negative sets. In the
case of the negative set, the top 20% worst confidence points are used for learning, and we extract the
same number of positive samples as follows:

Dpos = [i1, ..., im], Dneg = [i1, ..., in], (4)

where m and n are the number of true positive and true negative samples (we set m = n in this work)
and i denotes the indexes of the extracted samples.

2.3.2. Input Features

We design handcrafted local features considering the color difference, spatial distance, and depth
difference between a query point p and its neighboring LiDAR measurement points q, which are used
to compute the upsampling process Equation (2). The seed depth points in q are unstructured 3D
points’ projection to the 2D image plane (already mentioned in Sections 1 and 2); thus, those points do
not lie on a regular grid structure, but are totally unstructured. In this regard, the off-the-shelf CNN
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for feature extraction cannot be directly used in our input setup, because CNN requires the input to be
a strict regular structured input shape.

Taking this into account, we devise to leverage the statistically-pooled feature (mean and
standard deviation with their lower and upper confidences), so that we can capture the distribution
characteristics of features, as well as manage to have a fixed structure of the input.

Fp = [ f r, f g, f b, f d, f s], where f α = [µα, σα, µα
l , µα

u, σα
l , σα

u ]
>, α ∈ {r, g, b, d, s}, (5)

Fp is a 2D feature matrix of pth training data. For the sake of notational simplicity, we omit the index of
a pixel p. The feature matrix includes feature vectors f α, which consist of statistics information between
the p point and its neighboring points, q ∈ Ω(p), in various feature domains (see Equation (2)). µ and
σ are the estimated mean and standard deviation values of the normal distribution fitting given data,
which are calculated by the absolute difference between the p point and a set of q points in each feature
domain α. The other parameters in the feature vector are 95% confidence intervals for the parameter
estimates on the mean and standard deviation. µl and µu indicate the lower and upper bounds of
the confidence intervals for µ. σl and σu indicate the bound parameters of σ. We exploit color (r, g, b),
depth (d), and spatial information (s) as the feature domain. This feature matrix will be vectorized
before feeding into a classifier. Figure 7a depicts the unstructured statistics features.

Feature encoding layers

Unstructured 
statistics  features 

(6x5)

𝜇𝜇𝑅𝑅 ,𝜎𝜎𝑅𝑅 , 𝜇𝜇𝑅𝑅𝑢𝑢, 𝜇𝜇𝑅𝑅𝑙𝑙 ,𝜎𝜎𝑅𝑅𝑢𝑢,𝜎𝜎𝑅𝑅𝑙𝑙

𝜇𝜇𝐺𝐺 ,𝜎𝜎𝐺𝐺 , 𝜇𝜇𝐺𝐺𝑢𝑢, 𝜇𝜇𝐺𝐺𝑙𝑙 ,𝜎𝜎𝐺𝐺𝑢𝑢,𝜎𝜎𝐺𝐺𝑙𝑙

𝜇𝜇𝐵𝐵 ,𝜎𝜎𝐵𝐵 , 𝜇𝜇𝐵𝐵𝑢𝑢, 𝜇𝜇𝐵𝐵𝑙𝑙 ,𝜎𝜎𝐵𝐵𝑢𝑢,𝜎𝜎𝐵𝐵𝑙𝑙

𝜇𝜇𝐷𝐷 ,𝜎𝜎𝐷𝐷 , 𝜇𝜇𝐷𝐷𝑢𝑢 , 𝜇𝜇𝐷𝐷𝑙𝑙 ,𝜎𝜎𝐷𝐷𝑢𝑢,𝜎𝜎𝐷𝐷𝑙𝑙

𝜇𝜇𝑆𝑆,𝜎𝜎𝑆𝑆 , 𝜇𝜇𝑆𝑆𝑢𝑢, 𝜇𝜇𝑆𝑆𝑙𝑙 ,𝜎𝜎𝑆𝑆𝑢𝑢,𝜎𝜎𝑆𝑆𝑙𝑙

Fl
at

te
n

𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
𝒙𝒙𝟑𝟑

𝒙𝒙𝟑𝟑𝟑𝟑
𝒃𝒃𝒙𝒙

…
Input layer
(30 units)

𝒉𝒉𝟏𝟏
(𝟏𝟏)

𝒉𝒉𝟐𝟐
(𝟏𝟏)

𝒉𝒉𝟐𝟐𝟐𝟐
(𝟏𝟏)

…

1st Hidden 
layer

𝒉𝒉𝟏𝟏
(𝟐𝟐)

𝒉𝒉𝟐𝟐
(𝟐𝟐)

𝒉𝒉𝟏𝟏𝟏𝟏
(𝟐𝟐)

…

𝒃𝒃𝒉𝒉
(𝟏𝟏)

2nd Hidden 
layer

𝒃𝒃𝟏𝟏𝟏𝟏
(𝟐𝟐)

Positive

Negative

Output layer
(softmax)

classifier

Input data

𝒚𝒚𝟏𝟏

𝒚𝒚𝟐𝟐

softm
ax

5.491 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5.491 %

Te
st

 c
la

ss
ifi

ca
tio

n 
er

ro
r (

%
)

The number of nodes per layer

5

6

7

8

9

1 2 34 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

5

6

7

8

9

5.563 %

T
es

t 
cl

as
si

fi
ca

ti
o
n
 e

rr
o
r 

(%
)

The number of nodes per layer

(a) (b) (c)

Figure 7. Network model for the adaptive threshold prediction. (a) Illustration of the network
architecture we use with two hidden layers, which consists of the feature encoding part and the
classifier part; (b,c) ablation study of the mean and variances of the classification errors according to the
number of nodes per layer for a network with two hidden layers (b) and with three hidden layers (c).
Each layer of the network is trained with unsupervised pre-training.

2.3.3. Classifier with the Online Self-Learning Framework

Figure 8 depicts the whole process of the self-learning framework. Our proposed self-learning
framework continuously collects training data (Dpos and Dneg) every sequence. In the very first phase,
the self-learning framework is learned by only a small number of training data. Due to the lack of data,
the performance of classifiers may be somewhat lower at first. However, the performance will grow
according to increasing accumulated training data. We show the performance change according to the
number of data accumulation seen in the following.

The classifier is utilized to predict the highly reliable depth and filters out low reliability depth by
pixel-wise binary classification. We evaluate the performance of some classifiers with the self-learning
framework including support vector machine (SVM [34]), decision tree (DT [35]), and fully-connected
networks (FC networks [30]). Figure 9 shows the performance comparisons of the classifiers using
precision, recall, accuracy, specification, and the F-measure according to the number of data seen in
the training set. In the case of precision, the SVM shows better performance than the others, but the
recall value is low. This gap between precision and recall means that SVM overestimates depth points
to be positive. Among the tested classifier, the FC network with two hidden layers shows the best
performance in accuracy, specification, and the F-measure. Figure 9a shows the number of collected
data to train. Note that even if the number of stacked training data is increased, the performance of the
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classifiers is saturated at a specific point. Thus, we manage the training data memory using the queue
structure to fix the memory size (∼120,000).

Positive set

Negative set

Vision 
System

image

raw depth outlier-free 
raw depth

Confidence 
map

Up-depth True confidence mask

Trained 
Network

Inserting

Training
Data 

(Queue)Inserting

Network
Training

High resolution 
depth

Test-set

Upsampled depth

Figure 8. The overall scheme of the self-learning framework. This framework stacks the training
data every time when the vision system produces an upsampled depth map and a confidence map.
The trained network predicts the true confidence mask for the test-set data.
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Figure 9. Performance comparison with baseline classifiers according to the number of training data
used. (a) shows the number of training data, which grows over time, and (b–f) show the performance
of the tested classifiers by the online self-learning framework according to the variations of the number
of training data: precision (b), recall (c), accuracy (d), specification (e), and F-measure (f).

The architecture of the network is depicted in Figure 7a. For simplicity, we omit the nonlinearity
activation function, ReLU [36], in the figure, but which is applied to every FC layer. The network
contains two FC layers, and the output of the last FC layer is fed to a softmax layer, which provides
probability values for binary classification. To determine proper numbers of nodes per layer and the
number of layers, we perform the ablation study according to various conditions. Figure 7b,c shows
the classification errors according to different numbers of nodes and layers. In these experiments,
the network having two hidden layers shows the best performance, which has 30 nodes for the first
and 10 nodes for the second hidden layer, and the second best network has three hidden layers,
which has 40 nodes for the first, 30 nodes for the second, and 40 nodes for the third layer. We compare
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the performance of two respective network models with two hidden layers and three hidden layers in
Figure 9b–f.

To initialize the FC network, we construct the network by stacking the unsupervised pre-trained
autoencoder [31,33] in which the output of each layer is connected to the input of the successive
layer. The stacked autoencoder is typically used as a way to pre-train layers in a deep neural network
for classification, avoiding the difficulty in the training scheme for such a network as a whole from
scratch by performing the greedy layer-wise training method [31,37–39]. Each part of the autoencoder
is pre-trained in an unsupervised fashion in turn, and then, the overall network is fine-tuned using
labeled training data. Through the unsupervised pre-training phase, the network is robust with
respect to random initialization, decreasing the probability of finding poor apparent local minima and
supporting finding a better solution from training data. According to Erhan et al. [31], the networks
with two or three hidden layers with greedy layer-wise pre-training show stable performance for
classification tasks.

3. Results and Discussion

To validate the performance of our proposed method, we performed experiments on benchmark
datasets and compared our method to state-of-the-art methods, such as joint bilateral filter (JBU) [9],
nonlocal means (nonlocal) [40], and total generalized variation (TGV) [10]. In Section 3.1, we evaluate
and analyze the improved depth accuracy of our proposed method on the Middlebury 2014 dataset [41].
In Section 3.2, we demonstrate that our self-learning framework is seamlessly applicable to the depth
obtained from the stereo matching algorithms on the KITTI dataset [42].

In our experiments, we construct the grid map for flipping point rejection using four-connected
points. The parameters σs and σi are determined as described in Section 2.2.3. Because σd determines
the range of influence of the depth similarity term H, σd is determined based on the error between
initial depth D0 and depth measurement by a depth sensor. In Section 3.1, we used the Middlebury
stereo datasets [41] to create data pairs of a high-resolution image and sparse depth data with accurate
ground truth, where σd was set to 30 mm under the assumption of additive Gaussian noise. Each of
the data in the Middlebury consists of high-resolution stereo images and their corresponding highly
accurate dense depth maps estimated by a structured lighting system with calibration parameters.
To simulate our data setup (a pair of high-resolution images and a sparse depth), we sampled 2% depth
points from the dense depth maps and added additive Gaussian noise (σ = 10 mm). Then, the sampled
depth was projected onto the other image pair. More details for the dataset generation were described
in our previous works [12]. In the case of refining the stereo depth experiment (Section 3.2 KITTI), σd
was set to 0.5 m in consideration of stereo matching error. The predefined threshold Tf , for the outlier
point, was set to two times σd. For the fixed threshold case, the threshold value of the confidence map
was 0.35. We used five iterations for our depth upsampling processing.

For the implementation, we used a 3.6-GHz quad-core CPU and 16 GB RAM. Our CPU-based
implementation took about one second to generate a dense depth map of 640× 480 resolution in pixels
with five iterations of joint filtering.

3.1. Quantitative Evaluation: Middlebury

For the evaluation, we used a robust accuracy measure as a metric of quantitative comparison,
“A〈#N〉” as used in [43]; “A〈#N〉” denotes the depth error at the Nth percentile after the errors are
sorted from low to high. We show noisy depth synthetic examples according to different “A〈#N〉”
values in Figure 10. For example, if the depth error was 5.0 mm when A95, 95% of the total depth
points had errors of less than 5.0 mm. The results of global methods [10,40] had large errors at the
dis-occlusion regions, while for the local methods, JBU [9] and ours, we excluded the mask regions
that could not compute results with local filters due to large holes or low confidence.



Sensors 2019, 19, 81 12 of 18

0 50 100 150 200
0

50

100

0 50 100 150 200
0

50

100

0 50 100 150 200
0

50

100

0 50 100 150 200
0

50

100

0 50 100 150 200
0

50

100

0 50 100 150 200
0

50

100

(a) Ground Truth (b) A95: 39.90 (c) A95: 19.82 (d) A95: 9.49 (e) A95: 4.27 (f) A95: 2.45

Figure 10. 1D use cases for a metric of quantitative comparison, “A〈#N〉”: (a) depicts the ground truth
signal; (b–f) show the noise added signals and their A95 errors. The smaller the error, the better the
structure is preserved.

The major benefit of our approach is a novel depth outlier rejection scheme that gives clear seed
depth points. Besides, our scale-aware depth upsampling provided more tolerance on the noisy depth
measurements under homogeneous surfaces. Our self-learning framework effectively rejected the
remaining ambiguous depth pixels adhering to the boundary region of a large structure without a
hand-tuning threshold by a user. The examples of upsampling results and error maps are also shown
in Figure 11. Compared to our methods (Ours-TH and Ours-SL), the other methods had a large error
and suffered from severe artifacts at the depth boundary regions, which are clearly shown by the 3D
view in the figure.
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Figure 11. Examples of upsampling results described in Section 3.1. “Ours w/o C” denotes our
upsampling method without the confidence map. The error maps depict a relative depth error ranging
from 0–3% of the maximum depth. The white pixels in the error maps were excluded when the results
in Table 1 were computed. We used σs = 20 pixels, σi = 20 pixels, and σd =30 mm for the experiment.
total generalized variation (TGV) [10], Nonlocal [40], joint bilateral upsampling (JBU) [9], Ours w/o
C [12], Ours-TH [12].
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Table 1 shows the quantitative comparison results. Our methods (Ours-TH and Ours-SL) worked
consistently well for both A80 and A95, while the performance of the other methods was significantly
degraded for A95. While Ours-TH performed slightly better than Ours-SL in terms of the accuracy
metric, as shown in Figures 12 and 13, Ours-TH overly discarded depth points, i.e., it resulted in a low
recall performance. In the majority of cases, Ours-TH was simple and worked well with a user-defined
threshold value. However, it was infeasible to determine a desirable threshold value for all cases.
Furthermore, Ours-TH occasionally discarded too many depth points including well-generated regions.
Figure 13a,b shows such cases of Ours-TH. In the 3D views of the figure, we can see that Ours-TH
truncated many depth points that were well generated with small errors. The depth map and 3D view
of Ours-SL at the bottom of Figure 13a,b retained relatively many depth points with similar errors due
to adaptively filtering out the low reliability depth.

Table 1. Quantitative comparison on Middlebury 2014 dataset [41] with added Gaussian noise using
σ = 10 mm. We use σs = 20 pixels, σi = 20 pixels, and σd = 30mm. The best results for each dataset
are highlighted in bold, and the second best results are underlined. The unit of value for “A〈#N〉” is
millimeter (mm).

Error
Metric A80 TGV Non-

Local
Bilat-
Eral

Ours-
Conf

Ours-
TH

Ours-
SL

Adirondack 19.6 9.7 4.7 4.0 3.3 3.7
Bicycle1 14.5 9.1 4.4 3.6 4.5 3.3
Classroom1 40.2 6.3 4.4 3.6 3.2 3.4
Flowers 64.5 125.5 7.5 3.7 3.3 3.3
Motorcycle 32.0 29.7 7.5 5.7 5.0 5.0
Storage 44.9 86.1 4.9 3.9 3.6 3.6
Umbrella 32.9 8.2 4.6 3.6 3.5 3.5
Vintage 40.3 8.9 4.3 4.6 4.4 4.3
Backpack 16.7 7.6 4.5 3.9 3.5 3.5
Cable 14.8 6.6 4.3 4.1 4.0 4.0
Couch 119.2 40.3 6.9 5.2 4.2 4.5
Jadeplant 96.5 91.8 62.3 6.3 4.6 4.9
Mask 34.6 14.8 4.7 4.4 4.0 4.0
Piano 18.8 8.6 4.7 4.6 4.2 4.1
Pipe 156.0 238.3 40.0 8.7 6.7 6.9
Playtable 32.1 24.1 5.8 5.5 4.6 4.9
Recycle 22.6 15.9 5.8 3.6 3.4 3.4
Shelves 14.6 6.6 4.1 3.5 3.4 3.3
Shopvac 16.9 8.8 4.5 3.8 3.3 3.6
Sticks 39.6 6.8 4.1 4.8 3.5 4.4
Sword1 13.3 6.3 4.4 4.2 4.2 3.7
Sword2 22.4 9.4 4.9 4.0 3.6 3.8
Playroom 21.2 8.7 4.6 5.4 3.7 4.6

Error
Metric A95 TGV Non-

Local
Bilat-
Eral

Ours-
Conf

Ours-
TH

Ours-
SL

Adirondack 152.3 285.9 160.5 8.4 7.0 7.4
Bicycle1 86.8 183.7 116.0 8.0 6.4 6.5
Classroom1 364.3 99.0 21.0 9.0 6.3 7.7
Flowers 1028.0 682.2 575.6 7.6 5.7 6.1
Motorcycle 388.9 471.8 379.0 15.5 9.9 10.6
Storage 723.2 1084.8 448.4 10.4 7.9 9.0
Umbrella 259.5 229.4 89.8 7.4 6.4 6.8
Vintage 403.8 84.5 17.1 8.1 7.5 7.9
Backpack 112.7 126.9 54.3 9.5 6.0 6.1
Cable 69.5 83.2 57.2 6.9 6.3 6.3
Couch 820.6 502.6 435.2 15.0 8.6 10.2
Jadeplant 540.0 334.0 336.4 96.4 8.9 10.5
Mask 294.4 251.6 103.8 9.5 7.0 7.2
Piano 98.7 94.7 38.3 10.3 8.4 8.3
Pipe 1268.8 1347.2 1194.7 38.2 12.6 13.5
Playtable 340.7 264.8 142.5 12.7 9.1 9.8
Recycle 225.2 171.1 153.1 7.4 6.8 6.9
Shelves 75.7 101.1 41.1 7.6 6.7 6.8
Shopvac 97.2 99.9 40.3 9.7 6.6 7.6
Sticks 120.3 45.8 10.3 10.0 7.1 7.3
Sword1 56.7 26.7 18.9 11.8 6.8 7.3
Sword2 181.1 151.1 106.5 8.3 7.1 6.2
Playroom 170.1 146.0 124.5 13.8 6.0 9.3
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Figure 12. Comparison of valid depth points of Ours-TH and Ours-SL. The percent of remaining depth
points after thresholding (blue: Ours-TH, red: Ours-SL).
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Figure 13. Examples of the qualitative results of the upsampled depth map for comparison between
Ours-TH and Ours-SL. The first row depicts the depth maps and 3D point cloud images from
Ours-TH [12] and the second row the results of Ours-SL. (a) Classroom1 [41]; (b) DRC dataset [44].

3.2. Quantitative Evaluation: KITTI

In this experiment, we show the applicability of our proposed method to improve the accuracy of
stereo depth and evaluate the variations of depth accuracy through the KITTI dataset. The initial depth,
D0, was computed by MC-CNN stereo matching algorithms [45] instead of our upsampling method.
Figure 14 shows a qualitative comparison of the depth from Ours-TH and Ours-SL. Even if the depth
map of stereo is dense and looks good, it involves large quantities of depth errors at the boundaries of
objects and homogeneous texture regions. Compared to the stereo depth in the third row of the figure,
Ours-TH preserved the shape of the object structures such as pedestrians and vehicles. However,
Ours-TH removed too many reliable depth points that had low confidence values because the single
threshold mask did not properly handle the confidence map under various conditions. On the other
hand, Ours-SL retained more reliable depth points than Ours-TH while preserving object structures.
The depth maps and point cloud images of the fourth and fifth rows show the results of Ours-TH and
Ours-SL, respectively.

Table 2 shows the quantitative comparisons. We used different percentages of robust accuracy
measure “A〈#N〉” at each dataset to check the stereo depth error at the point of percentage of D1-all.
D1-all indicates the median of the percentage of stereo disparity outliers in the overall frames. In terms
of D1-all and the robust accuracy, Ours-TH and Ours-SL reduced D1-all and depth errors up to around
seven- and four-times, respectively, and Ours-TH had similar or better performance than Ours-SL.
However, Ours-TH overly discarded 12 ∼ 15% more depth points than Ours-SL. Unlike Middlebury,
since the KITTI dataset provides sparse depth information of 3D LiDAR by ground truth, we cannot
measure the depth error in all image regions. We can still qualitatively see that many strong depth
points were lost, as shown in Figures 13 and 14. We also provide additional results in the supplementary
video clip on our web-page: https://sites.google.com/site/iwshimcv/home.

Table 2. Quantitative comparison on the KITTI dataset [42]. We used σs = 20 pixels, σi = 20 pixels,
and σd = 0.5 m. pts(%) stands for the percentage of the remaining depth points relative to the total
number of stereo depth points in an image. The unit of value for “A〈#N〉” is meters (m).

Dataset 0002 0038 0091 0093

Error Metric D1-all A92 A95 pts(%) D1-all A86 A90 pts(%) D1-all A87 A90 pts(%) D1-all A84 A90 pts(%)
MC-CNN [45] 8.8% 2.27 4.02 100% 13.9% 1.36 2.09 100% 12.6% 1.56 2.24 100% 16.3% 0.85 1.90 100%
Ours-TH [12] 1.4% 0.22 0.32 49.3% 3.8% 0.28 0.47 48.4% 3.4% 0.22 0.35 49.7% 2.5% 0.20 0.32 50.3%
Ours-SL 4.4% 0.29 0.52 61.5% 9.7% 0.44 1.10 63.0% 9.3% 0.34 1.03 64.2% 8.6% 0.26 0.56 62.7%

https://sites.google.com/site/iwshimcv/home
https://sites.google.com/site/iwshimcv/home
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Figure 14. Examples of qualitative results for comparison between Ours-TH and Ours-SL. The two
images of the top row show the rectified left and right images, and the images of the second row depict
their corresponding LiDAR depth and confidence map, respectively. The images of the third, fourth,
and fifth rows present depth maps and their corresponding 3D point cloud. We recommend the readers
zoom-in to see the details clearly. Stereo depth [45]; Ours-TH [12].

4. Conclusions

In this paper, we presented a novel depth upsampling method with the self-learning framework
that is designed specifically for filtering out low reliability depth points automatically. In our
experiments, we observed that the conventional depth upsampling methods, which do not consider
the reliability of upsampled depth points, often produce large depth errors at the object boundaries,
which can have an adverse effect on subsequent algorithms that use depth information as input,
e.g., depth-based object pose estimation. To deal with this problem, we proposed the self-learning
framework, which can automatically predict highly reliable depth points using depth confidence.
We showed the effectiveness of our method through two benchmark datasets and also showed that our
proposed method can be seamlessly applicable to refine a depth map obtained from stereo matching
with favorable performance. Our proposed method has many potential applications by virtue of its
robustness, but also has some potential directions that can improve the method further. We leave the
discussion as follows:

Figure 14. Examples of qualitative results for comparison between Ours-TH and Ours-SL. The two
images of the top row show the rectified left and right images, and the images of the second row depict
their corresponding LiDAR depth and confidence map, respectively. The images of the third, fourth,
and fifth rows present depth maps and their corresponding 3D point cloud. We recommend the readers
zoom-in to see the details clearly. Stereo depth [45]; Ours-TH [12].

4. Conclusions

In this paper, we presented a novel depth upsampling method with the self-learning framework
that is designed specifically for filtering out low reliability depth points automatically. In our
experiments, we observed that the conventional depth upsampling methods, which do not consider
the reliability of upsampled depth points, often produce large depth errors at the object boundaries,
which can have an adverse effect on subsequent algorithms that use depth information as input,
e.g., depth-based object pose estimation. To deal with this problem, we proposed the self-learning
framework, which can automatically predict highly reliable depth points using depth confidence.
We showed the effectiveness of our method through two benchmark datasets and also showed that our
proposed method can be seamlessly applicable to refine a depth map obtained from stereo matching
with favorable performance. Our proposed method has many potential applications by virtue of its
robustness, but also has some potential directions that can improve the method further. We leave the
discussion as follows:

• Possible applications: According to Qi, C.R. et al. [46], the performance of 3D object detection is
highly related to the density of depth. Because our proposed method provides structure-aware
dense depth with confidence information, we may expect to improve the performance when
applied to 3D object detection.
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Our method will be also helpful for 6D object pose estimation, which is essential to robot-world
interaction such as grasping an object. The recent Amazon Picking Challenge [47] showed that
a dense depth map and object pose estimation are key components in practical applications.
In our previous work [12], we already showed the effectiveness of the high-fidelity depth map on
robot-world interaction tasks.

• Discussion and limitations: Filter-based upsampling approaches including our proposed method
require some density of measurement points within a local kernel window size to have reliable
depth estimation. Thus, depending on the sparsity and the gap among nearest neighbors of
seed points, we may need to tune the kernel region-related parameter σs accordingly. Under
our sensor configuration, we have shown that our parameter setup is fairly generalizable across
many different scenes, but we do not provide other parameter setups for other configurations
with different LiDAR models, which may require a different proximity parameter. It would be
useful to learn adaptive parameter prediction according to the scene and hardware configuration,
which we leave as a future direction.

Another issue is the computational cost for practical real-world applications. The computation
time highly depends on the image resolution and the number of upsampling iterations. In this
work, the overall processing time of the proposed method spends about one second to process a
640 × 480 resolution image with five iterations. Some applications that do not require real-time
capabilities such as the DARPA Robotics Challenge, https://en.wikipedia.org/wiki/DARPA_
Robotics_Challenge, and exploration robots, can utilize our proposed method without significant
changes. However, in the case of time-critical applications such as autonomous driving, they may
require strict real-time performance. Because most computation is conducted through the greedy
convolutional filter operation, it can be parallelized by leveraging modern GPUs.
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