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Abstract: Under the strong noise environment, the composite fault signal of gearbox is weak,
which makes it difficult to extract fault features. For this problem, based on noise-assisted
method, we propose a novel method called Modified Singular Spectrum Decomposition (MSSD).
Singular Spectrum Decomposition (SSD) has many advantages such as high decomposition precision
and strong ability to restrain mode mixing, etc. However, the ability of SSD to extract a weak signal
is not ideal, the decomposition results usually contain a lot of redundant noise and mode mixing
caused by intermittency, which is also a troubling problem. In order to improve the decomposition
efficiency and make up for the defects of SSD, the new method MSSD adds an adaptive and particular
noise in every SSD decomposition stage for each trial, and in addition, whenever the input signal
is decomposed to obtain an intrinsic module function (IMF), a unique residual is obtained. After
multiple decomposition, the average value of the residual is used as input to the next stage, until the
residual cannot continue to decompose, which means that the residual component has, at most, one
extreme value. Finally, analyzing simulated signals to explain the advantages of MSSD compared to
ensemble empirical mode decomposition (EEMD) and complete ensemble local mean decomposition
with adaptive noise (CEEMDAN). In order to further prove the effectiveness of MSSD, this new
method, MSSD, is applied to the fault diagnosis of an engineering gearbox test stand in an actual
engineer project case. The final results show that MSSD can extract more fault feature information,
and mode mixing has been improved and suffers less interference compared to SSD.

Keywords: Gearbox composite fault; algorithm; fault diagnosis; modified singular spectrum
decomposition

1. Introduction

In recent years, gearbox composite fault diagnosis has attracted wide attention [1,2]. When the
internal parts of the gearbox fail, it will cause the performance of the complete mechanical equipment
to decline, and further affects the working status of the whole production system [3]. Thus, it is of great
significance to take effective measures for fault diagnosis at gearbox [4–7]. Due to the high relativity
between vibration signal and operating status of gearbox, the vibration analysis based on this method
of processing signal is used in fault diagnosis widely and is important [8–10].

In recent years, there are many methods of fault extraction, such as spectrum analysis, artificial
intelligence-based diagnosis [11–16], model-based identification [17], wavelet analysis [18,19], and
higher order spectra analysis [20–23]. In 1998, N. E. Huang [24] proposed the empirical mode
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decomposition method (EMD), it can decompose any composite signal into a set of intrinsic module
function (IMF). However, it will occur in the mode mixing when the distribution of extreme points in
the signal is uneven, which will affect the results of EMD decomposition. Wu and Huang proposed the
ensemble empirical mode decomposition (EEMD) in 2009. EEMD is based on EMD method, and EEMD
uses the uniform distribution of Gaussian white noise to mix white noise into the input signal, and
makes the original signal has continuous at different time scales, so that mode mixing phenomenon
can be alleviated [25]. EEMD can decompose composite signals into a series of IMF, make different
frequency distribute into different IMFs, so it can improve the results of the decomposition and reduce
noise. While EEMD alleviates the mode-mixing problem to some extent, there are still two difficulties to
overcome. The first is that the results of EEMD decomposition contains redundant noise components,
which require a lot of experiments to eliminate redundant noise components, but this process is
time consuming. The second, adding the Gaussian white noise into the original signal, because the
randomness of Gaussian white noise, different experiments may produce a different number of signal
components, which makes it difficult to take the ensemble mean in the final result. In 2010, N. E.
Huang proposed the Complementary ensemble empirical mode decomposition (CEEMD) [26], the
principle of this method is to add pairs of complementary white noise to the input signal, which
effectively eliminates residual noise due to the characteristics of white noise. Compared to EEMD,
CEEMD uses fewer ensemble trials, but the problem is that it is difficult to take the ensemble mean,
which remains unsolved. In the recent years, Torres [27] proposed the complete ensemble local mean
decomposition with adaptive noise (CEEMDAN), which is based on the EEMD method and solves the
problem of EEMD. In 2014, Colominas [28] continued to modify CEEMDAN method, and it solves
some of the problems that redundant IMFs may occur in the earlier stage of decomposition. Due to
the advantage of CEEMDAN, in 2017, Lei and others [29,30] used it to diagnose various mechanical
faults and achieved satisfactory results, but CEEMDAN still has some problems that need to be solved.
For example, the decomposition results still exist in mode-mixing and increase the number of iterations
of the algorithm in order to reduce mode-mixing, and the computation time will be too long.

In 2014, P. Bonizzi [31] proposed a novel fault signal decomposition method, called singular
spectrum decomposition (SSD). This is a new iteration time series decomposition method and it is
created on the basis of singular spectrum analysis (SSA) [32–34]. SSD has already been successfully
applied in signal processing, for example, P. Bonizzi makes SSD applicable in tide and seaquake
data processing analysis and has achieved satisfactory results. In the SSD method, its principle is to
reconstruct a single component signal from high frequency to low frequency adaptively, SSD provides
a new method for fault diagnosis and signal processing. Similar to EMD, SSD decomposition is based
on extracting signal components associated with various intrinsic time scales. Compared to EMD,
mode mixing of SSD has been alleviated in a way, and SSD can separate the intermittent components
at the transition point accurately. However, there are still some problems in SSD decomposition, such
as redundant components and mode mixing is generated. Under strong noise, the fault information is
easily submerged and fault feature frequency is difficult to extract.

Inspired by the previous studies, we propose a new method to solve the existing problems of
SSD. An IMF of adaptive amplitude Gaussian white noise pre-processed by the SSD is added at each
decomposition stage for each trial. In addition, when an IMF is separated, we also get a unique
residual, the pre-processed white noise plus the obtained residual is then used to form a new signal
as a new input signal for the next stage. Therefore, this new method has modes with better spectral
separation and the decomposition results have less residual noise, the number of sifting iterations is
also less than other methods.

The article is arranged as follows. In the Section 2, we introduce the basic principles of SSD
and MSSD briefly. The Section 3 provide the comparative and research of the EEMD, SSD, and
MSSD methods through decomposing simple simulate signal. Section 4 compares CEEMDAN, SSD,
and MSSD through the decomposition result of composite simulate signal, and analyzes the result.
In Section 5, the MSSD method is used to deal with the fault of gearbox in an actual engineer project
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case, and analyzes the result. Finally, Section 6 summarizes the whole research and gives a prospect
for the future.

2. Principles of the Algorithm

2.1. The Principle of SSD

The principle of the SSD algorithm is to extract the signal components one by one by an iterative
method, and to decompose the original signal into meaningful signal components. The specific
algorithm of SSD is as follows:

Step 1: Building a time series x(n), and the length of this time series is N. Then, given an
embedding dimension M, a (M × N) matrix X is created, we can get the i-th row as: Xi =

(x(i), · · · x(N), x(1), · · · x(i − 1)), where i = 1, · · · , M, and therefore, X = [xT
1 , xT

2 , . . . , xT
M]

T . For
example, building a time series x(n) = {1, 2, 3, 4, 5}, and selecting an embedding dimension M = 3,
the corresponding trajectory matrix is as follows:

X =

 1 2 3
2 3 4
3 4 5

∣∣∣∣∣∣∣
4 5
5 1
1 2

 (1)

The left side of the matrix corresponds to the matrix X used in the standard SSA algorithm. In
order to enhance the oscillation component in the original signal and to make the energy of the residual
component after iteration show a decreasing law, the three elements in the lower right corner of the
matrix must be appended to the upper right-hand corner of the left block. The new matrix constructed
is as follows:

X =


1

1 2
1 2 3
2 3 4
3 4 5

∣∣∣∣∣∣∣∣∣∣∣
4 5
5 ∗
∗ ∗

 (2)

Step 2: Selecting the embedding dimension in the j-th iteration. The power spectral density (PSD)
is calculated, where PSD is derived from the residual components vj in the j-th iteration:

vj(n) = x(n)−
j−1

∑
k=1

vk(n) (v0(n) = x(n)) (3)

Estimating the frequency fmax in its PSD related to the dominant peak. If the normalized frequency
fmax/Fs (with Fs being the sampling frequency) is in the first iteration, it is less than a given threshold
(set to 0.01 in the experiment), then given M is N/3. Otherwise, and for iterations j > 1, the embedding
dimension is: M = 1.2 FS

FMAX
.

Step 3: In the first iteration, reconstructed the j-th component series, if a considerable trend is
found, using only the first left eigenvectors and the right eigenvectors to obtain g(1)(n), in this case,
X1 = σ1u1v1

T , and g(1)(n) is obtained from diagonal averaging of X1. Otherwise, when the iterations j
> 1, a subset Ij

(
Ij =

{
i1, . . . , ip

})
is created by selecting a feature vector group whose left eigenvector

[ fmax − δ f , fmax + δ f ] has the largest dominant frequency in the spectral range. Then, through the
diagonal averaging of the matrix XI j = Xi1 + . . . + Xip, it is possible to reconstruct the corresponding
component sequence. Where δ f represents half of the main peak width in the PSD sequence and needs
to be estimated from the PSD of vj(n).

Step 4: Establish stopping criterion, calculate a new residual when g̃(j)(n) is estimated:

v(j+1)(n) = v(j)(n)− g̃(j)(n) (4)
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where v(j+1)(n) is the input for the next iteration, g̃(j)(n) is a new component series. Then, calculate
the normalized mean squared error (NMSE) between the original signal and the residual:

NMSE(j) =
∑N

i=1 (v
(j+1)(i))

2

∑N
i=1 (x(i))2 (5)

When a given threshold (default th = 1%) is more than the NMSE, the decomposition process is
stopped. The final result is as follows:

x(n) =
m

∑
k=1

g̃(k)(n) + v(m+1)(n) (6)

In the above formula, m is the number of component series.

2.2. Principle of MSSD

Gaussian white noise has the characteristic of uniform distribution in the frequency domain and
normal distribution in the time domain. In the experiment, adding Gaussian white noise to the signal
can provide a uniformly distributed proportional reference for the signal. The MSSD defines the true
modes as the differences between the current input signal and the average of residual components.
For each decomposition stage, an IMF of white noise pre-processed by the SSD method with adaptive
amplitude is added to the input signal. Then, the input signal with noise is decomposed into an IMF
and a residual component. After multiple decomposition, the average of the residual components
are taken as the input signal for the next decomposition stage until the stop condition is satisfied
(the residual component can not continue to be decomposed, this means that there is at most one
extreme value of the residual component). The specific steps of the MSSD algorithm are as follows.

Step 1: Adding white noise to the original signal S(t) to obtain a new signal s(t) + a0ni(t), and
operating M-times SSD decomposition on the new signal separately to obtain M IMF components of
first stage im f i

1(t):
s(t) + a0ni(t) = im f i

1(t) + ri
1(t) (7)

where ni(t) is the white noise added to the original signal in the i-th SSD decomposition, i = 1, 2, · · · , M,
where M is the total number of white noise added to the original signal, a0 is the amplitude of the
white noise, where a0 = ε0std(s)/std(ni(t)), ε0 is the standard deviation, and ri

1(t) is the first residual
component. Average M components to get im f1(t):

im f1(t) =
1
M

M

∑
i=1

im f i
1(t) = s(t)− 1

M

M

∑
i=1

ri
1(t) (8)

It can be seen from Equations (7) and (8) that, due to the influence of white noise, the noise inside
im f1(t) has been greatly reduced. Then, the first residual component is obtained from Equations (7)
and (8):

r1(t) = s(t)− im f1(t) =
1
M

M

∑
i=1

ri
1(t) (9)

Step 2: The first IMF of white noise by the SSD is added to r1(t) to obtain a new signal r1(t) +
a1E1(ni(t)), and operating M-times SSD decomposition on the new signal separately to obtain M IMF
components of the second stage im f i

2(t):

r1(t) + a1E1(ni(t)) = im f i
2(t) + ri

2(t) (10)
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Average M components to get im f2(t):

im f2(t) =
1
M

M

∑
i=1

im f i
2(t) = r1(t)−

1
M

M

∑
i=1

ri
2(t) (11)

Then, we can get the second residual component:

r2(t) = r1(t)− im f2(t) =
1
M

M

∑
i=1

ri
2(t) (12)

Step 3: The k-th (k = 2, 3,· · · ) IMF of white noise by the SSD is added to rk(t) to obtain a new
signal rk(t) + akEk(ni(t)), and operating M-times SSD decomposition on the new signal separately to
obtain M IMF components im f i

k+1(t):

rk(t) + akEk(ni(t)) = im f i
k+1(t) + ri

k+1(t) (13)

where ak = ε0std(rk)/std(Ekni(t)), average M components to get im fk+1(t):

im fk+1(t) =
1
M

M

∑
i=1

im f i
k+1(t) = rk(t)−

1
M

M

∑
i=1

ri
k+1(t) (14)

Then, we can get the residual component:

rk+1(t) = rk(t)− im fk+1(t) =
1
M

M

∑
i=1

ri
k+1(t) (15)

It can be seen from Equations (14) and (15) that, due to the influence of white noise, the noise
inside im fk+1(t) has been greatly reduced.

Step 4: Repeat step 3 until the residual component rk(t) satisfies the stopping condition (the
residual component can not continue to be decomposed, that is, the residual component has at most
one extreme value). Finally, k IMF components are obtained, and the MSSD obtains the residual
component R(t), where k is the total number of IMFs:

R(t) = s(t)−
K

∑
k=1

im fk(t) (16)

Proof of completeness:
In the decomposition step of MSSD, the left and right sides of Equations (9), (12), (15) and (16)

are added, respectively, and the same items on both sides of the equal sign are offset, finally get the
following formula:

s(t) =
K

∑
k=1

im fk(t) + R(t) (17)

The above equation can be considered that the original signal s(t) is composed of a series of
IMF and residual components, that is to say, the CESSDAN method is complete, and the error of
reconstructing the original signal is zero theoretically.

The advantages of MSSD over SSD are as follows. Firstly, the new method adds Gaussian
white noise, which pre-processed by SSD in each decomposition period, adding white noise of
particular frequency at each decomposition period will help SSD establish a global scale reference
and reduce the screening iteration times in each period. Then, SSD decomposes the input signal
with noise into one IMF and one residual component. In theory, most of the added white noise and
components of the signal with an approximate proportion are extracted into the IMF, so the residual
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signal components contain very little additional noise. Compared with SSD, IMF extracted by MSSD
has a more appropriate proportion and contains less residual noise.

A flow chart of MSSD is as follows Figure 1:Sensors 2018, 18, x FOR PEER REVIEW  8 of 20 
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3. Simulation Signal Analysis

3.1. Construction of Simulation Signal

First, construct a simulation signal consisting of sinusoidal signals of low, medium, and high
frequencies. At the same time, in order to simulate the strong noise environment in engineering
practice, noise with amplitude of 1.5 is added to the simulation signal. The simulation signal is as
shown in Equation (18):

x(t) = x1(t) + x2(t) + x3(t) + 1.5× randn(t),


x1(t) = 2 sin(2π f1t)
x2(t) = 1.5 sin(2π f2t)
x3(t) = sin(2π f3t)

(18)

where f1 = 25 Hz, f2 = 100 Hz, f3 = 280 Hz, set the number of sampling points to N = 1000 and the
sampling frequency FS = 1000 Hz. The time domain waveform of the signals x1(t), x2(t), x3(t), and
the simulated signal x(t), are shown in Figure 2 below:
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3.2. Comparison of EEMD, SSD and MSSD

In order to achieve horizontal comparison of the decomposition results of the same simulation
signal by different methods. The simulation signal x(t) will be decomposed by using three signal
decomposition methods, EEMD, SSD, and MSSD. In EEMD, the number of cycles N takes 100.
The sampling frequency in SSD and MSSD is 1000, and the threshold is chosen to be 0.01. The time
domain waveform and spectrum of the decomposition results of the three algorithms are shown in
Figures 3–5:
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As shown in Figure 3, when EEMD processes the simulation signal, it decomposes to obtain
10 layers of modal function, but by observing the spectrogram, only the first few layers are meaningful.
We select the first five layers for observation. It can be seen that IMF1 and IMF5 extracted the signals
with frequency of 280 Hz and 30 Hz successfully, but mode-mixing still occurs in IMF2 and IMF3.
Compared with the MSSD decomposition method, the decomposition results of traditional EEMD has
a lot of pseudo components, and the mode mixing is serious.

As shown in Figure 4, when SSD is used to process the simulated signal, the seven layer IMF
is decomposed. Since the 7th and 8th layers are all meaningless noise signals, we select the first five
layers for observation. It can be seen from the above figure that IMF1 and IMF5 extracted 280 Hz
and 30 Hz signals successfully, but mode-mixing occurred in IMF2 and IMF3. The traditional SSD
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decomposition results still have serious mode mixing phenomenon, and although the ability of restrain
pseudo component is improved compared to EEMD, it is still more.

As shown in Figure 5, the MSSD method decomposes and obtains three layers of IMF, and the
frequency components of each component signal are successfully extracted. It is obvious that the mode
mixing of the signal components extracted by MSSD has been greatly alleviated. The comparison
results show that MSSD is better than the traditional SSD method and EEMD method in extracting
fault features with noise.

4. Gearbox Composite Fault Simulation Signal Analysis

4.1. Construction of Simulation Signals

When the gearbox has composite faults, the vibration signals is often coexisting with multiple
modulation sources. For this reason, in order to make the simulation analysis closer to the actual
project, it is necessary to make the simulation signal more connected to the actual gearbox fault signal.
In the construction of composite fault simulation signals, this article uses the simulation signals of
common fault types of gearbox and rolling bearing faults for simulation analysis. The composition of
the simulated signal x(t) is as follows:

x(t) = x1(t) + x2(t) + x3(t) + 2.5× randn(t) (19)

In the above formula, x1(t) = 2 sin(2π f1t) is a sine signal, and
x2(t)= (1 + cos(2π fn1t) + cos(2π fn2t)) sin(2π fzt) is a gear fault simulation signal, fn1 and
fn2 are the modulation frequencies of the modulation source, fz is the meshing frequency of the
gears, and x3(t) = Am × exp(− g

Tm
) sin(2π fct) is a periodic impact signal, where Am represents the

amplitude of the impact, g is the damping coefficient, Tm is the cycle of shock, and fc is the rotation
frequency of the bearing. The parameters are shown in the following Table 1:

Table 1. The parameters of the simulation signal.

Parameter f1 fn1 fn2 fz Am g Tm fc

Numerical values 30 Hz 12 Hz 20 Hz 150 Hz 2 0.1 0.1 280 Hz

Given the sampling points N to 3000 and the sampling frequency FS to 1500 Hz. The waveform of
the signals x1(t), x2(t), and x3(t) and the time domain simulation signal x(t) are shown in Figure 6:
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4.2. Comparison of Decomposition Results by Different Methods

In order to achieve the comparison of the decomposition results of different algorithms for the
same simulation signal, this section will use the CEEMDAN, SSD, and MSSD methods to decompose
the above-mentioned gearbox composite fault simulation signals. The decomposition results are shown
in Figures 7–9:
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As shown in Figure 7, firstly, we choose the CEEMDAN decomposition method. For the result
of CEEMDAN decomposition, we can observe from the above figure that there is a large amount of
components. While the signals of frequency 280 Hz and 150 Hz are extracted in IMF1, IMF2, and IMF3
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respectively, the spectral features of the signal are not obvious. The signal with a frequency of 30 Hz is
decomposed into IMF4 and IMF5, it can be seen that mode mixing phenomenon is serious.

As shown in Figure 8, for the decomposition result of SSD, it can be found that a large amount
of noise components occur in the IMF1 by observing the time spectrum, and mode-mixing also
occurs in IMF1, IMF2, and IM3. Thus, in the components decomposed by the two decomposition
methods CEEMDAN and SSD, a large amount of redundant noises are mixed, and the mode-mixing
phenomenon is serious.

As shown in Figure 9, on the contrary, for the new method, by observing the time-frequency
spectrum of the IMF obtained by MSSD, we can find that, in IMF3, the low-frequency component of
30 Hz in the original signal is successfully extracted, and its spectral features are very obvious, in IMF2,
the 150 Hz center frequency of the amplitude modulation signal and the two modulation frequencies
are also successfully extracted from the original signal, and in IMF1, it can be seen that the center
frequency of 280 Hz and the 10 Hz sidebands distributed on both sides evenly are also very obvious.

Finally, we increase the noise amplitude by 0.5 on the original basis. Additionally, we compare the
results of SSD and MSSD decomposition. The decomposition results are shown in Figures 10 and 11:
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As can be seen from the above figure, after increasing the amplitude of the noise, the MSSD
still clearly decomposes the fault features that need to be extracted. Therefore, by comparing the
decomposition results of several algorithms, it can be seen that in a noise environment, MSSD can not
only effectively eliminate the mode-mixing phenomenon, but can also obtain the frequency features.

5. Gearbox Measured Signal Analysis

5.1. Gearbox Test Bench Design

In order to verify the effectiveness and feasibility of MSSD in engineering practice, this article
conducted related tests on the closed power flow gearbox test bench. The composite fault vibration
signals of the gearbox under normal, spalling failure of gear and bearing outer ring faults were
measured. Then, we use the MSSD method to process these composite fault signals, and get a
good effect.

The experiment is a closed power flow test bench. The layout of the test bench is shown in
Figure 12, in which the function of the torsion bar is to generate a load torque, thereby realizing the
loading of the gearbox output shaft. The function of the speed regulating motor is to adjust the speed
of the gearbox, and the speed range is 120–1200 r/min.
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Some experimental parameters of this experiment are shown in Table 2.

Table 2. Experimental parameters.

Parameter Numerical values

transmission ratio 1:1

engagement system Half-tooth meshing

frequency of samplingFs 8000 Hz

Sampling point N 2000

load troque T 1000 N·m
Gear tooth number z 18

rotational speed n 1200 rpm

Rotor frequency fn 20 Hz

Bearing outer ring fault frequency 160 Hz

Gear meshing frequency 360 Hz
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The type of fault includes spalling failure of gear, as shown in Figure 13a, and the outer ring fault
obtained by EDM, as shown in Figure 13b.Sensors 2018, 18, x FOR PEER REVIEW  16 of 20 
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5.2. Experimental Signal Analysis

When the gearbox generates a fault signal, in the experiment, the generated signal is first
transmitted to the shaft, then transmitted to the bearing through the shaft, the sensor will fainlly
receive the signal. The installation principle of acceleration sensor is that the position of the sensor and
the signal source should be as close as possible. In this case, the signal features will be complete during
the transfer, so the optimal position of the measuring point is the base of bearing. This experiment
provides two acceleration sensors to measure the vibration signal. The signal in the experiment is
derived from the acceleration sensor 1.

It can be seen from Figures 14–16, because of the noise, the waveform of the fault signal becomes
disordered and irregular, Therefore, we use SSD and MSSD to decompose the above-mentioned
gearbox composite fault signal, and extract the required fault frequency components for observation in
the decomposition result, as shown in Figures 17–19:

Sensors 2018, 18, x FOR PEER REVIEW  16 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

(a) Spalling failure of gear (b) Implantation of outer ring fault by EDM 

Figure 13. Figure of gear and bearing outer ring fault. 

5.2. Experimental Signal Analysis 

When the gearbox generates a fault signal, in the experiment, the generated signal is first 
transmitted to the shaft, then transmitted to the bearing through the shaft, the sensor will fainlly receive 
the signal. The installation principle of acceleration sensor is that the position of the sensor and the 
signal source should be as close as possible. In this case, the signal features will be complete during the 
transfer, so the optimal position of the measuring point is the base of bearing. This experiment provides 
two acceleration sensors to measure the vibration signal. The signal in the experiment is derived from 
the acceleration sensor 1. 

It can be seen from Figures 14, 15 and 16, because of the noise, the waveform of the fault signal 
becomes disordered and irregular, Therefore, we use SSD and MSSD to decompose the 
above-mentioned gearbox composite fault signal, and extract the required fault frequency components 
for observation in the decomposition result, as shown in Figures 17, 18 and 19: 

 

Figure 14. Time domain waveform of the fault signal. 

  

Figure 14. Time domain waveform of the fault signal.
Sensors 2018, 18, x FOR PEER REVIEW  17 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

Figure 15. Frequency domain waveform of the fault signal. 

 

Figure 16. Amplified spectrum of Figure 15. 

  
Figure 17. The spectrum of IMFs after SSD decomposition and its corresponding spectrum. 

Figure 15. Frequency domain waveform of the fault signal.



Sensors 2019, 19, 62 14 of 17

Sensors 2018, 18, x FOR PEER REVIEW  17 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

Figure 15. Frequency domain waveform of the fault signal. 

 

Figure 16. Amplified spectrum of Figure 15. 

  
Figure 17. The spectrum of IMFs after SSD decomposition and its corresponding spectrum. 

Figure 16. Amplified spectrum of Figure 15.

Sensors 2018, 18, x FOR PEER REVIEW  17 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

Figure 15. Frequency domain waveform of the fault signal. 

 

Figure 16. Amplified spectrum of Figure 15. 

  
Figure 17. The spectrum of IMFs after SSD decomposition and its corresponding spectrum. 

Figure 17. The spectrum of IMFs after SSD decomposition and its corresponding spectrum.

Sensors 2018, 18, x FOR PEER REVIEW  18 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

Figure 18. The spectrum of IMFs after MSSD decomposition and its corresponding spectrum. 

  

Figure 19. Fault features frequency of Figure 18. 

For the decomposition result of MSSD, by observing the spectrogram, it can be seen that in the 
gearbox fault signal, the fault frequency of the outer ring 160 Hz and the fault feature frequency of the 
gear 360 Hz are extracted, and the spectral features are very obvious. Subsequently, gears and balls 
were found to be slightly damaged when inspecting the gearbox, consistent with the analysis results. 
Overall, this method improves the SSD decomposition, and the decomposition results are significantly 
better than the SSD decomposition method in fault diagnosis. 
  

Figure 18. The spectrum of IMFs after MSSD decomposition and its corresponding spectrum.



Sensors 2019, 19, 62 15 of 17

Sensors 2018, 18, x FOR PEER REVIEW  18 of 20 

Sensors 2018, 18, x; doi: FOR PEER REVIEW         www.mdpi.com/journal/sensors 
  

  

Figure 18. The spectrum of IMFs after MSSD decomposition and its corresponding spectrum. 

  

Figure 19. Fault features frequency of Figure 18. 

For the decomposition result of MSSD, by observing the spectrogram, it can be seen that in the 
gearbox fault signal, the fault frequency of the outer ring 160 Hz and the fault feature frequency of the 
gear 360 Hz are extracted, and the spectral features are very obvious. Subsequently, gears and balls 
were found to be slightly damaged when inspecting the gearbox, consistent with the analysis results. 
Overall, this method improves the SSD decomposition, and the decomposition results are significantly 
better than the SSD decomposition method in fault diagnosis. 
  

Figure 19. Fault features frequency of Figure 18.

For the decomposition result of MSSD, by observing the spectrogram, it can be seen that in the
gearbox fault signal, the fault frequency of the outer ring 160 Hz and the fault feature frequency of the
gear 360 Hz are extracted, and the spectral features are very obvious. Subsequently, gears and balls
were found to be slightly damaged when inspecting the gearbox, consistent with the analysis results.
Overall, this method improves the SSD decomposition, and the decomposition results are significantly
better than the SSD decomposition method in fault diagnosis.

6. Conclusions

In order to solve the problem that SSD is difficult to extract fault information of gearbox under
strong noise and improve the efficiency of SSD decomposition, a new method, MSSD, is proposed to
analyze composite signals.

The advantage of MSSD is verified by decomposition of simulation signals. In addition,
through experiments, it is found that MSSD method is suitable for the diagnosis of gearbox faults in
experimental cases and practical engineering cases. The results show that MSSD can extract more fault
information and reduce the interference of noise on fault diagnosis.

In future research, we will focus on the impact of various parameters on the final decomposition
results and the optimization of the decomposition results of engineering measured signals.
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