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Abstract: Turbine tip clearance of aero-engine is important to engine performance. Proper control of
rotor tip clearance contributes to engine efficiency improvement and fuel consumption reduction.
Therefore, accurate tip clearance measurement is essential. The inductive measurement method
is one of the non-contact distance measurement methods, which has the characteristics of high
sensitivity, fast response speed and strong anti-interference ability. Based on the principle of
inductive sensor measuring tip clearance, the ambient temperature change will cause the material
electromagnetic performance change for the conductivity and permeability varies with temperature.
The calibration experiment was conducted to obtain the sensor resolution and sensing range.
The effect of temperature on sensor parameters was extracted from high temperature experiment data.
Results show the resolution of planar coil made of platinum wire can be 10 µm and the maximum
sensing range can reach 5 mm. At temperature from 500 °C to 1100 °C, coil inductance almost does
not change with temperature while coil resistance varies exponentially with temperature, that means
the coil inductance variation can reflect the tip clearance change and resistance can indicate the
measuring temperature.
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1. Introduction

The blade tip clearance of gas turbine is significant for its performance and efficiency. Therefore,
precise measurement of tip clearance is the premise of accurate design and optimization the tip
clearance [1–3]. The study of sensor with high precision and high resolution for tip clearance is
necessary and crucial. Numerous non-contact measurement technologies are developed, including
microwave, optical, capacitive, and inductive.

Mark R.W. et al. [4–6] from NASA Glenn Research Center started effort on microwave method
applying to tip clearance measurement since 2003. The microwave sensor probe is able to operate at
extremely high temperature and is unaffected by contaminants in turbine engines. While the sensing
range is limited by the frequency and the probe can only operate at 900 ◦C without cooling. As early
as 1982, NASA and GE published their cooperative research results of an optical sensor for measuring
tip clearance, including test results on the compressor disk [7]. Since 2013, García I. and Zubia J. et al.
from University of the Basque Country had been continuously published the results of optical method
application in tip clearance measurement [8–12]. While, the study of Andreas K. et.al. [13] proved
the optical sensor still have some problems to be solved such as optical fiber heat-resistance, lens
cleanness, and the Doppler effect. Capacitive method is the most mature technology so far. Early
as 1953, Mossop I.A. et al. [14] published a set of capacitive measurement system for turbine tip

Sensors 2019, 19, 61; doi:10.3390/s19010061 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5239-3323
http://www.mdpi.com/1424-8220/19/1/61?type=check_update&version=1
http://dx.doi.org/10.3390/s19010061
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 61 2 of 13

clearance. Muller D. et al. [15] conducted the dynamic tip clearance measurement experiment on the
compressor and turbine and validated the system uncertainty and stabilization. While the sensor may
be influenced by permittivity change of medium and has zero drift problems. Sridhar V. and Chana
K.S. et al. [16–19] used an eddy current probe on the gas turbine engine to obtain tip clearance values
in the high pressure turbine stage. The results showed the sensor was able to perform at these extreme
environments without losing accuracy. Du L. and Zhu X.L. et al. [20,21] verified the eddy current
method in laboratory with 3000 rpm revolution and 1300 K temperature.

Based on above, eddy current method is a potential way to monitor the dynamic blade tip clearance in
turbine. Unfortunately, the measurement signal of inductive sensor is inevitably affected by temperature
variation due to its working principle and unavoidable temperature drift problems. Lyu Y.T. et al. [22]
used temperature-compensation circuit to eliminate temperature drift of inductive sensor from 20 ◦C to
500 ◦C. Wang H.B. et al. [23] reported their experimental finding that resistance has a larger coefficient
with temperature change compared to that of inductance, and resistance variation compensates for the
influence of temperature on inductance variation. This self-temperature compensation method for ECS is
simple and low cost, and has competitive advantages in most applications.

Hence, this paper focused on validating the high-resolution inductive sensor performance and
aimed at finding the temperature influence law and using it in the actual turbine measurement at
extremely high temperature such as 1000 ◦C. Furthermore, instead of the complex signal processing
circuits [23], a simpler voltage division circuit was used to calculate the coil resistance and coil
inductance based on the phasor analysis. The sensor resolution and range were verified by calibration
and then the sensor heat-resistance was tested on thermal test bench. Finally, the influence law of
temperature on sensor parameters was explored experimentally.

2. Method and Sensor

2.1. Inductive Tip Clearance Measurement

The working principle of inductive sensor is based on Faraday’s law of electromagnetic induction
and Lenz’s law. The main component of the sensor is an inductive coil, which can be three dimensional
spiral coil or two dimensional planar coil. The coil generates a magnetic field when excited by a high
frequency AC signal, and then eddy current is induced in the metallic target when it passing through
the magnetic field and thus a reverse magnetic flux caused by eddy current declines the inductance of
sensor coil. Figure 1 shows the working principle of the inductive sensor (encapsulated planar coil).
Figure 2 is the measurement equivalent circuit.
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The relation between equivalent circuit parameters and output signal can be derived from the
Kirchhoff Voltage Law (Equations (1) and (2)).

Rc I1 + j·ωLc I1 − j·ωMI2 = Vout (1)

Rt I2 + j·ωLt I2 − j·ωMI1 = 0 (2)

The equivalent resistance R, inductance L and impedance Z of sensor coil can be derived from
Equations (1) and (2), as in Equation (3)–(5):

R = Rc +
ω2M2

Rt2 + (ωLt)
2 Rt = Rc + Re (3)

L = Lc −
ω2M2

Rt2 + (ωLt)
2 Lt = Lc − Le (4)

Z = R + jωL = [Rc + Re] + jω[Lc − Le] (5)

Therefore, the equivalent impedance of coil Z is related to the target and the distance between
target and sensor coil under the certain excitation signal. The change of equivalent impedance is
caused by equivalent resistance R and equivalent inductance L variation while R and L are determined
by the clearance between coil and target (M), exciting voltage frequency (f, f = 2πω), coil inductance
(Lc), and coil resistance (Rc) as Equations (3) and (4) show. Rt is the equivalent resistance of induced
eddy current and Lt is equivalent inductance of induced eddy current. Under the certain condition, f,
Lc and Rc are constants so the equivalent impedance becomes the univalent function of distance (d).

2.2. Sensor Structure and Manufacture

The magnetic field intensity of circular coil is higher than that of square coil. The magnetic field
intensity B generated by circular coil is calculated by Equation (6). When the material permeability µ

is determined by material property and current I is determined by exciting circuit, it can be seen that
coil turns (N) and coil thickness (h) can both influence the magnetic field intensity.

B = µ
N ∗ I

h
(6)

Harold Wheeler [24] had published the research results of eddy current coil in 1928 and Equation (7)
is the planar coil inductance formula. It indicates the coil inductance also has positive correlation with
coil turns (N), radial dimension (r), and inverse correlation with thickness (h).

L(µH) =
r2 × N2

(8r + 279.4h)
(7)
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From the above, the magnetic field intensity and coil inductance are proportional to N and
inversely proportional to h when the sensor coil is connected to a certain circuit. That is to say the
coil with more turns and thinner thickness can generate higher magnetic field intensity, thus coil has
higher sensitivity and wider measuring range.

The study result of Du L. et al. [20] indicated the planar coil had simple geometry, intensive
magnetic field and fast response speed, its sensitivity and range satisfied the turbine tip clearance
measurement requirement. Thus, the sensor in this paper is also planar coil without iron core, that is
to say the minimum h equals to the wire diameter and the compact method is adopted to wrap coils to
permit more turns for the given coil size and generate higher magnetic flux density.

The sensor probe in this paper was designed as Figure 3 shows, mainly included a planar coil
and its sealed ceramic package. According to the study results in [25,26], the planar coil was made
of 0.2 mm platinum wire which melting point is over 2000 K. First, drilled 1mm diameter holes in
the center of two separate 3 cm × 4 cm acrylic plates and fixed them in parallel and kept the distance
slightly over 0.2 mm. Then, a 0.8 mm diameter tube was inserted through the holes and held. The wire
was wrapped around the tube between the two plates to form the planar hollow coil. When the planar
coil was formed, carefully removed the central tube and the upper plate, and then thin coil was glued
off the bottom plate by adhesive tape. Finally, a high temperature ceramic adhesive gel was used to
seal the coil to avoid it being corroded at corrosive environment. The sensor used in the paper was an
encapsulated 10-turns coil as Figure 4 shows.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 14 

 

                 𝐿(𝜇𝐻) = ௥మ×ேమ(଼௥ାଶ଻ଽ.ସ௛)                                                                  (7) 

From the above, the magnetic field intensity and coil inductance are proportional to N and 
inversely proportional to h when the sensor coil is connected to a certain circuit. That is to say the 
coil with more turns and thinner thickness can generate higher magnetic field intensity, thus coil 
has higher sensitivity and wider measuring range. 

The study result of Du L. et al [20] indicated the planar coil had simple geometry, intensive 
magnetic field and fast response speed, its sensitivity and range satisfied the turbine tip clearance 
measurement requirement. Thus, the sensor in this paper is also planar coil without iron core, that 
is to say the minimum h equals to the wire diameter and the compact method is adopted to wrap 
coils to permit more turns for the given coil size and generate higher magnetic flux density. 

The sensor probe in this paper was designed as Figure 3 shows, mainly included a planar coil 
and its sealed ceramic package. According to the study results in [25,26], the planar coil was made 
of 0.2 mm platinum wire which melting point is over 2000 K. First, drilled 1mm diameter holes in 
the center of two separate 3 cm×4 cm acrylic plates and fixed them in parallel and kept the distance 
slightly over 0.2 mm. Then, a 0.8 mm diameter tube was inserted through the holes and held. The 
wire was wrapped around the tube between the two plates to form the planar hollow coil. When 
the planar coil was formed, carefully removed the central tube and the upper plate, and then thin 
coil was glued off the bottom plate by adhesive tape. Finally, a high temperature ceramic adhesive 
gel was used to seal the coil to avoid it being corroded at corrosive environment. The sensor used in 
the paper was an encapsulated 10-turns coil as Figure 4 shows. 

        
Figure 3. Design sketch of sensor, wherein 1 is leading line, 2 is sealing package, 3 is platinum coil 

  

(a)  (b)  

Figure 4. (a) Sensor coil before encapsulation; (b) sensor after 
encapsulation. 

 

1     

2   

3

Figure 3. Design sketch of sensor, wherein 1 is leading line, 2 is sealing package, 3 is platinum coil.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 14 

 

                 𝐿(𝜇𝐻) = ௥మ×ேమ(଼௥ାଶ଻ଽ.ସ௛)                                                                  (7) 

From the above, the magnetic field intensity and coil inductance are proportional to N and 
inversely proportional to h when the sensor coil is connected to a certain circuit. That is to say the 
coil with more turns and thinner thickness can generate higher magnetic field intensity, thus coil 
has higher sensitivity and wider measuring range. 

The study result of Du L. et al [20] indicated the planar coil had simple geometry, intensive 
magnetic field and fast response speed, its sensitivity and range satisfied the turbine tip clearance 
measurement requirement. Thus, the sensor in this paper is also planar coil without iron core, that 
is to say the minimum h equals to the wire diameter and the compact method is adopted to wrap 
coils to permit more turns for the given coil size and generate higher magnetic flux density. 

The sensor probe in this paper was designed as Figure 3 shows, mainly included a planar coil 
and its sealed ceramic package. According to the study results in [25,26], the planar coil was made 
of 0.2 mm platinum wire which melting point is over 2000 K. First, drilled 1mm diameter holes in 
the center of two separate 3 cm×4 cm acrylic plates and fixed them in parallel and kept the distance 
slightly over 0.2 mm. Then, a 0.8 mm diameter tube was inserted through the holes and held. The 
wire was wrapped around the tube between the two plates to form the planar hollow coil. When 
the planar coil was formed, carefully removed the central tube and the upper plate, and then thin 
coil was glued off the bottom plate by adhesive tape. Finally, a high temperature ceramic adhesive 
gel was used to seal the coil to avoid it being corroded at corrosive environment. The sensor used in 
the paper was an encapsulated 10-turns coil as Figure 4 shows. 

        
Figure 3. Design sketch of sensor, wherein 1 is leading line, 2 is sealing package, 3 is platinum coil 

  

(a)  (b)  

Figure 4. (a) Sensor coil before encapsulation; (b) sensor after 
encapsulation. 

 

1     

2   

3

Figure 4. (a) Sensor coil before encapsulation; (b) sensor after encapsulation.



Sensors 2019, 19, 61 5 of 13

In order to evaluate the coil quality, quality factor (Q) is used to indicate the quality of inductive
elements. The higher Q value means the coil is more inductive and effective in the non-contact
measuring. The Q is calculated by Equation (8):

Q =
ω ∗ Lc

Rc
= tan(phaseangle) (8)

where ω is the excitation signal angular frequency and ω = 2∗pi∗f, Lc is the coil equivalent inductance
and Rc is the coil equivalent resistance.

The parameters of coil (Lc, Rc) adopted in the research were measured by LCR meter (HIOKI
IM3536). The inductance Lc and resistance Rc are 0.6399 µH and 1.1262 Ω under 4MHz excitation
signal. Then the coil Q value is calculated as 14.27 and phase angle is 86.2◦ (the phase angles of
inductance elements are usually 45◦~90◦) which means the coil is a good inductance element.

3. Sensor Performance

3.1. Characteristics Calibration

In order to verify the sensitivity and measuring range of designed platinum coil, the calibration
experiment was conducted at room temperature to obtain the sensor characteristic curve. The characteristic
curve of the tip clearance sensor refers to the relationship curve of sensor characteristic parameter and the
clearance. The relative variation of voltage was used as measuring quantity in the study. Data processing
process is shown in Figure 5. The signal was collected by DAQ (Data Acquisition) and then input into
Matlab. In order to increase the signal-to-noise ratio (SNR), FFT method was used to remove the high
frequency noise and stationary wavelet decomposition (SWD) method was used to smooth the voltage
signal. Figure 6 is the comparison of the signal sequence in time domain before and after SWD. It is
proved that SWD can efficiently suppress high frequency noise and increase the SNR of voltage signal.
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The calibration system includes sensor probe, calibration target, position controller, function
generator, and DAQ system. The calibration target is a 10 mm width and 1.5 mm thickness plate, and
the target material is Inconel 718 which is one of the turbine blade materials. The precision of position
controller is 1 µm and its control range is 13 mm. The excitation signal in the calibration experiment
was 4 MHz and 3 Vpp sinusoidal AC signal generated by Agilent Keysight 33600A (Agilent Technologies
Inc., Santa Clara, CA, USA).
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After connecting the measuring circuit (function generator, sensor probe and DAQ card) and
fixing the target position, collected the voltage V0 on the sensor coil. Then, adjusted the distance
between sensor surface and target surface from 0mm to 5 mm with 50 µm step, and collected voltage
signals on the sensor coil at each position. Voltage variation dV was denoted as sensor characteristic
parameter and calculated in Matlab.

The calibration result is shown in Figure 7. Equation (9) is five order fitting formula and its fitting
degree R2 is 0.9992. The signal data near 5mm is listed in Table 1.

dV/V0 = a5 × d5 + a4×d4 + a3×d3 + a2×d2 + a1 × d + a0 (9)

wherein, a0 = 10.1, a1 = 10.7, a2 = −5.86, a3 = 1.73, a4 = −0.259, a5 = 0.0155.
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Table 1. Calibration data at near full range area.

Clearance(mm) dV/V0 (−%)

4.95 0.465
4.96 0.457
4.97 0.450
4.98 0.442
4.99 0.434
5.00 0.427
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According to the calibration curve in Figure 7, the sensor has good sensitivity (4%/mm) within
2 mm. The sensitivity and the resolution of the sensor decrease with the distance as Figure 7 shows
and the data precision of measurement system is 0.001%, data listed in Table 1 proves the measuring
range of the sensor is over 5 mm and the resolution reaches 10 µm for the data still has 0.07% variation
at 5 mm.

In order to verify the accuracy of calibration results, the repeatability of measuring signal of
11 position points within 0–5 mm range was calculated with 95.56% confidence interval. Ten sets of
data were collected at each position point and the measurement results in the whole range are plotted
in Figure 8. The relative standard deviation can be calculated by Equation (10):

RSD =
2 ∗ SX

X
× 100% (10)

where SX is standard deviation based on the sample population, X is arithmetic mean of the sample.
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From the data in Table 2, the measuring repeatability at different positions is almost within 0.05%
which means the coil had good repeatability within measuring range.

Table 2. Repeatability measurement data.

Clearance (mm) Voltage (V) Repeatibility (%)

0.0 0.41332 0.0327
0.5 0.43260 0.0300
1.0 0.44202 0.0171
1.5 0.44786 0.0288
2.0 0.45032 0.0179
2.5 0.45314 0.0055
3.0 0.45352 0.0311
3.5 0.45458 0.0593
4.0 0.45614 0.0483
4.5 0.45706 0.0378
5.0 0.45781 0.0327

3.2. Heat Resistance Test

The purpose of heat resistance test is validating the sensor can withstand the actual operating
environment temperature over 1000 ◦C. The heat resistance of the sensor was verified according to
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the stability and repeatability of the output signal during the multiple thermal cycles. The thermal
cycling test was conducted on the static test rig as Figure 9 shows, it is actually a tubular heater with
an accurate temperature controller, which control precision is ±1 ◦C Figure 10 shows the test rig at
1100 ◦C.
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Figure 10. Test rig at 1100 ◦C; (a) sensor position; (b) inside the heater.

In the process of thermal cycle, temperature increased from 300 ◦C to 1100 ◦C (~1373K) after
60 min and maintained at 1100 ◦C for 2 h, then cooled down to 300 ◦C after 40 min, and repeated this
cycle for five times as the operating condition curve shown in Figure 11.
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The measuring result of voltage on sensor is demonstrated in Figure 12. The result indicates the
sensor voltage remained stable in high temperature duration which proves the sensor can keep reliable
at least 2 h in 1100 ◦C environment and the sensor voltage changed with temperature similarly during
the heating and cooling processes.
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4. Thermal Effect on Sensor

Based on the principle of eddy current sensing, temperature change will leads to the coil
parameters like permeability and conductivity change. Then the measuring results will be influenced.
In order to know how the inductive sensor can be affected by high temperature, experiment method
was used to get the influence of temperature on sensor.

4.1. EXperiment Method

The research adopted the equipment as Figures 9 and 10 show to create the adjustable temperature
environment and measure coil parameters (L, R) without target under test at different temperature.
The experiment temperature increased from 500 ◦C to 1100 ◦C. The equivalent measurement circuit of
LR is shown as Figure 13. The sensor coil is equivalent to a series resistor R and a pure inductor L.
The divider resistor Rs was 7.5 Ω and the excitation signal was 4 MHz 3 Vpp AC voltage (U0). When
the environment temperature changes, coil inductance L and coil resistance R may both vary.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Figure 13. Equivalent measurement circuit of measure coil parameters (L, R).

The measurement circuit parameters are represented by phasor as Figure 14 shows. V1 is divide
voltage on the Rs and coil while V2 is divide voltage on the coil. According to Figures 13 and 14,
formulas for calculating sensor resistance and inductance were derived as Equation (11)–(15) show.
The measured original data (V1, V2) was processed in MATLAB to be filtered through FFT method
and then coil inductance L and resistance R were calculated under different temperature. Then the
variation law of coil parameters with temperature is obtained.

I1 =
V1−V2

Rs
, (11)
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α1 = arcsin
V2·sinϕ

I1Rs
, (12)

α2 = α1 + ϕ, (13)

R =
|V2|·cosα2

|I1|
, (14)

L =
|V2|·sinα2

ω·|I1|
(15)

where I1 is the current in the LR circuit, ϕ is the phase difference between V1 and V2, α1 and α2 are the
phase angle of V1 and V2 respectively.
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4.2. Experiment Results

The relationship of sensor voltage and temperature is plotted in Figure 15. It can be observed
that the sensor voltage and temperature has quadratic relationship so the voltage can be expressed by
quadratic polynomial fitting expression as Equation (16) shown and the R2 equals to 0.9999, under the
condition that the temperature range is 500 ◦C to 1100 ◦C.

V(T) = 0.15791 − 1.8905 × 10−6 × T + 3.3333 × 10−9 × T2 (16)

Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 

 

The relationship of sensor voltage and temperature is plotted in Figure 15. It can be observed 
that the sensor voltage and temperature has quadratic relationship so the voltage can be expressed 
by quadratic polynomial fitting expression as Equation (16) shown and the R2 equals to 0.9999, 
under the condition that the temperature range is 500 ℃ to 1100 ℃. 

V(T) = 0.15791 − 1.8905e – 6 × T + 3.3333e – 9 × T2                      (16) 

  
Figure 15. Coil voltage curve with temperature. 

The coil resistance and inductance at different temperatures are compared in Figure 16. It is 
clearly that the coil resistance increases with temperature especially between 700 ℃ to 1100 ℃, the 
resistance increment is up to 11.4% from 500 ℃ to 1100 ℃. 

The coil inductance is almost unchanged when temperature increased from 500 ℃ to 1100 ℃. 
The inductance remained stably about 0.1223 μH and the maximum inductance fluctuation is 
0.343%. 

 
Figure 16. Comparison of L and R under different temperature. 

Figure 17 (a) and (b) illustrate the variation of resistance and inductance with temperature 
respectively. It is also clearly that the resistance has quadratic relationship with temperature. This 
relationship can be used to indicate operating temperature without need for additional 
thermocouple. Therefore, in the application of distance measurement, coil inductance is determined 
as measurement parameter to avoid the temperature drift problems.  

Meanwhile, compared with linear fitting and higher order fitting, the fitting degree of 
quadratic fitting is good enough and in order to facilitate subsequent back-extrapolation of ambient 
temperature through resistance values, the coil resistance and inductance are expressed by 
quadratic fitting relation and linear fitting relation as Equation (17) and Equation (18) show. The 
polynomial coefficients are listed in Table 3. 

Figure 15. Coil voltage curve with temperature.



Sensors 2019, 19, 61 11 of 13

The coil resistance and inductance at different temperatures are compared in Figure 16. It is
clearly that the coil resistance increases with temperature especially between 700 ◦C to 1100 ◦C, the
resistance increment is up to 11.4% from 500 ◦C to 1100 ◦C.
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The coil inductance is almost unchanged when temperature increased from 500 ◦C to 1100 ◦C.
The inductance remained stably about 0.1223 µH and the maximum inductance fluctuation is 0.343%.

Figure 17a,b illustrate the variation of resistance and inductance with temperature respectively.
It is also clearly that the resistance has quadratic relationship with temperature. This relationship can
be used to indicate operating temperature without need for additional thermocouple. Therefore, in
the application of distance measurement, coil inductance is determined as measurement parameter to
avoid the temperature drift problems.
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Meanwhile, compared with linear fitting and higher order fitting, the fitting degree of quadratic
fitting is good enough and in order to facilitate subsequent back-extrapolation of ambient temperature
through resistance values, the coil resistance and inductance are expressed by quadratic fitting relation
and linear fitting relation as Equations (17) and (18) show. The polynomial coefficients are listed in
Table 3.

R(T) = p0 + p1 ∗ T + p2 ∗ T2 R2 = 0.9829 (17)

L(T) = p0 + p1 ∗ T R2 = 0.9998 (18)
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Table 3. Polynomial coefficient of R and L.

p0 p1 p2

R(T) 1.9779 −9.7757 × 10−5 3.1143 × 10−7

L(T) 0.12227 −2.8571 × 10−9 /

Based on the above discussions, it is found by experiment that temperature has obvious influence
on induction coil resistance while the coil inductance almost does not change with temperature. Hence,
in the tip clearance measurement, the coil inductance value is determined as measurement variable for
it is not affected by temperature changes, that is to say the characteristic curve of the sensor becomes
the relationship curve between coil inductance and the clearance. While, the resistance value change
can indicate the environment temperature change. In this way, an inductive sensor can measure tip
clearance as well as measure the environment temperature through the data processing.

5. Conclusions

Based on Faraday’s law of electromagnetic induction and Lenz’s law, the following conclusions
are obtained by experiments:

1. The designed sensor with planar coil made of platinum wire is proved to be a good inductive
sensor for its phase angle is up to 85◦ and quality factor is 14.27 under 4 MHz excitation frequency.

2. The sensor performance meets the requirements of tip clearance measurement for the measuring
range of sensor is proved to be at least 5 mm and the resolution is better than 10 µm within 5 mm
range according to static calibration result. It is also found that the sensor coil repeatability is
almost better than 0.05% within the whole sensing range.

3. The encapsulated platinum coil can be long-term (2 h) heat-resistant at 1100 ◦C and maintains a
good stability during multiple temperature cycles. This suggests the designed sensor is capable
to operate in the high temperature for a long time and that is an important basis for the sensor to
be used in turbine tip clearance measurement in the future.

4. The inductance and resistance of the sensor coil can be solved based by phasor analysis and using
the series resistance circuit. This decoupled analysis of sensor parameters makes its application
range wider.
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