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Abstract: Applications such as autonomous navigation, robot vision, and autonomous flying require
depth map information of a scene. Depth can be estimated by using a single moving camera (depth
from motion). However, the traditional depth from motion algorithms have low processing speeds
and high hardware requirements that limit the embedded capabilities. In this work, we propose a
hardware architecture for depth from motion that consists of a flow/depth transformation and a new
optical flow algorithm. Our optical flow formulation consists in an extension of the stereo matching
problem. A pixel-parallel/window-parallel approach where a correlation function based on the sum
of absolute difference (SAD) computes the optical flow is proposed. Further, in order to improve
the SAD, the curl of the intensity gradient as a preprocessing step is proposed. Experimental results
demonstrated that it is possible to reach higher accuracy (90% of accuracy) compared with previous
Field Programmable Gate Array (FPGA)-based optical flow algorithms. For the depth estimation,
our algorithm delivers dense maps with motion and depth information on all image pixels, with a
processing speed up to 128 times faster than that of previous work, making it possible to achieve high
performance in the context of embedded applications.

Keywords: depth estimation; monocular systems; optical flow; smart cameras; FPGA (Field
Programmable Gate Array)

1. Introduction

Smart cameras are machine vision systems which, in addition to image capture circuitry, are
capable of extracting application-specific information from captured images. For example, for video
surveillance, image processing algorithms implemented inside the camera fabric can detect and
track pedestrians [1], but for a robotic application, computer vision algorithms could estimate the
system’s egomotion [2]. In recent years, advances in embedded vision systems such as progress
in microprocessor power and FPGA technology led to the creation of compact smart cameras with
increased performance for real world applications [3–6]. As a result, in current embedded applications,
image processing algorithms inside the smart camera’s fabric deliver an efficient on-board solution for
motion detection [7], object detection/tracking [8,9], inspection and surveillance [10], human behavior
recognition [11], etc. Computer vision algorithms can also be frequently used by smart cameras since
they are the basis of several applications (automatic inspection, controlling processes, detecting events,
modeling objects or environments, navigation, and so on). Unfortunately, mathematical formulation
of computer vision algorithms is not compliant with the hardware technologies (FPGA/CUDA) often
used in smart cameras. In this work, we are interested in depth estimation from monocular sequences
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in the context of a smart camera because depth is the basis to obtain useful scene abstractions, for
example, 3D reconstructions of the world and camera egomotion.

1.1. Depth Estimation from Monocular Sequences

In several applications, such as autonomous navigation [12], robot vision and surveillance [1],
and autonomous flying [13], there is a need for determining the depth map of the scene. Depth can be
estimated by using stereo cameras [14], by changing focal length [15] or by employing a single moving
camera [16]. In this work, we are interested in depth estimation from monocular sequences by using
a single moving camera (depth from motion). This choice is motivated because monocular systems
have higher efficiency compared with other approaches, simpler and more accurate than defocus
techniques and, cheaper/smaller compared with stereo-based techniques. In monocular systems,
depth information can be estimated based on two or multiple frames of a video sequence. For two
frames, image information may not provide sufficient information for accurate depth estimation.
The use of multiple frames improves the accuracy, reduces the influence of noise, and allows the
extraction of additional information that cannot be recovered from just two frames, but the system
complexity and computational cost is increased. In this work, we use information from two consecutive
frames of the monocular sequence since our algorithm is focused on smart cameras, and in this context
hardware resources are limited.

1.2. Motivation and Scope

In the last decade, several works have demonstrated that depth information is highly useful for
embedded robotic applications [1,12,13]. Unfortunately, depth information estimation is a relatively
complex task. In recent years, the most popular solution is the use of active vision to estimate depth
information from a scene [17–21], i.e., LIDAR sensors or RGBD cameras that can deliver accurate
depth maps in real time; however, they increase the system’s size and cost. In this work, we propose
a new algorithm and an FPGA hardware architecture for depth estimation. First, a new optical flow
algorithm estimates the motion (flow) at each point in the input image. A flow/depth transformation
then computes the depth in the scene. For the optical flow algorithm, an extension of the stereo
matching problem is proposed. A pixel-parallel/window-parallel approach where a sum of absolute
difference (SAD) computes the optical flow is implemented. Further, in order to improve the SAD,
we propose the curl of the intensity gradient as a preprocessing step. For the depth estimation proposes,
we introduce a flow/depth transformation inspired by epipolar geometry.

2. Related Work

In previous work, depth estimation is often estimated by using a single moving camera.
This approach is called depth from motion and consists in computing the depth from the pixel
velocities inside the scene (optical flow); i.e., optical flow is the basis for depth from motion.

2.1. FPGA Architectures for Optical Flow

In Ref. [22], a hardware implementation of a high complexity algorithm to estimate the optical
flow from image sequences in real time is presented. In order to fulfil with the architectural
limitations, the original gradient-based optical flow was modified (using a smoothness constraint for
decreasing iterations). The developed architecture can estimate the optical flow in real time and can be
constructed with FPGA or ASIC devices. However, due to the mathematical limitations of the CPU
formulation (complex/iterative operations), speed processing is low, compared with other FPGA-based
architectures for real-time image processing [23,24]. In Ref. [25], a pipelined optical-flow processing
system that works as a virtual motion sensor is described. The proposed approach consists of several
spatial and temporal filters (Gaussian and gradient spatial filters and IIR temporal filter) implemented
in cascade. The proposed algorithm was implemented in an FPGA device, enabling the easy change
of the configuration parameters to adapt the sensor to different speeds, light conditions, and other
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environmental factors. This makes possible the implementation of an FPGA-based smart camera for
optical flow. In general, the proposed architecture reaches a reasonable level of hardware resource
usage, but accuracy and processing speed is low (lower than 7 fps for 640 × 480 image resolution).
In Ref. [26], a tensor-based optical flow algorithm is presented. This algorithm was developed and
implemented using FPGA technology. Experimental results demonstrated high accuracy compared
with previously FPGA-based algorithms for optical flow. In addition, the proposed design can
process 640 × 480 images at 64 fps with a relatively low resource requirement, making it easier to
fit into small embedded systems. In Ref. [27], a highly parallel architecture for motion estimation
is presented. The developed FPGA-architecture implements the Lucas and Kanade algorithm [28]
with the multi-scale extension for the computation of large motion estimations in an FPGA. Although
the proposed architecture reaches a low hardware requirement with a high processing speed, the
use of a huge external memory capacity is needed. Further, due to the low hardware requirements,
the accuracy is low (near 11% more error compared with the original CPU version of the Lukas and
Kanade algorithm). Finally, in Ref. [29], an FPGA-based platform with the capability of calculating
real-time optical flow at 127 frames per second for a 376 × 240 pixel resolution is presented. Radial
undistortion, image rectification, disparity estimation, and optical flow calculation tasks are performed
on a single FPGA without the need for external memory. Therefore, the platform is perfectly suited for
mobile robots or embedded applications. Unfortunately, accuracy is low (qualitatively lower accuracy
than CPU-based approaches).

2.2. Optical Flow Methods Based on Learning Techniques

There are some recent works that addresses the optical flow problem via learning techniques [30].
In 2015, Ref. [31] proposed the use of convolutional neuronal networks (CNNs) as an alternative
framework to solve the optical flow estimation problem. Two different architectures were proposed
and compared: a generic architecture and another one including a layer that correlates feature vectors
at different image locations. Experimental results demonstrated a competitive accuracy at frame
rates of 5–10 fps. On the other hand, in 2017, Ref. [32] developed a stacked architecture that includes
a warping of the search image with intermediate optical flow. Further, in order to achieve high
accuracy on small displacements, the authors introduced a sub-network specializing on small motions.
Experimental results demonstrated that it is possible to reach an accuracy of more than 95%, decreasing
the estimation error by more than 50%, compared with previous works.

3. The Proposed Algorithm

In Figure 1, an overview of our algorithm is shown. First, given an imager as sensor, two
consecutive frames ( ft(x, y), ft+1(x, y)) are stored in local memory. Then, an optical flow algorithm
computes 2D pixel displacements between ft(x, y) and ft+1(x, y). A dynamic template based on the
optical flow previously computed (∆x,t−1(x, y), ∆y,t−1(x, y)) computes the search region size for the
current optical flow. We then let the optical flow for the current frame be (∆x(x, y), ∆y(x, y)). The final
step is depth estimation for all the pixels in the reference image D(x, y). In the following subsections,
details about the proposed algorithm are presented.
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Figure 1. Block diagram of the proposed algorithm.

3.1. Frame Buffer

The first step in our mathematical formulation is image storage. Considering that in most cases
the imager provides data as a stream, some storage is required in order to have two consecutive frames
available at the same time t. More information about the storage architecture is presented in Section 4.1.
For mathematical formulation, we consider the first frame (frame at t time) as ft(x, y), while the second
frame (frame at t + 1 time) is ft+1(x, y).

3.2. Optical Flow

In previous works, iterative algorithms, such as the Lucas Kanade [28] or the Horn–Schunck [33]
algorithms, have been used in order to compute optical flow across video sequences; given
dense optical flow, geometric methods allow one to compute the depth of the scene. However,
these algorithms [28,33] have iterative operations that limit the performance for smart camera
implementations. In order to avoid the iterative and convergence part of the traditional formulation,
we replace that with a correlation metric implemented inside a pixel-parallel/window-parallel
formulation. In Figure 2, an overview of our optical flow algorithm is shown. Let ( ft(x, y), ft+1(x, y) be
two consecutive frames from a video sequence. The curl of the intensity gradient d f (x,y)

dx is computed
(see Equation (1)), where ∇ is the Del operator. Let the curl be a vector operator that describes the
infinitesimal rotation; then, at every pixel, the curl of that pixel is represented by a vector where
attributes (length and direction) characterize the rotation at that point. In our case, we use only the
norm of Curl(x, y), as shown in Equation (2) and as illustrated in Figure 3. This operation increases
the robustness under image degradations (color/texture repetition, illumination changes, and noise);
therefore, simple similarity metrics [34] deliver accurate pixel tracking, simpler than previous tracking
algorithms [28,33]. Then, using the curl images for two consecutive frames as inputs (Curlt(x, y) and
Curlt+1(x, y)), the dense optical flow (∆x(x, y), ∆y(x, y), illustrated in Figure 4) is computed, as shown
in Figure 5. This process assumes that pixel displacements between frames is such that it contains
an overlap on two successive “search regions.” A search region is defined as a patch around a pixel
to track. Considering that, between ft and ft+1, the image degradation is low, any similarity-based
metric has to provide good accuracy. In our case, this similarity is calculated by a SAD. This process
is defined in Equation (3), where r is the patch size (see Figure 5). (Curlt(x, y), Curlt+1(x, y)) are
curl images on two consecutive frames. x, y are the spatial coordinates of pixels in ft, and a, b are
the spatial coordinates within a search region constructed in ft+1 (see Equations (4) and (5)), where
∆′x(t−1), ∆′y(t−1) represent a dynamic search template, computed as shown in Section 3.3. k is the
search size, and s is a sampling value defined by the user. Finally, the optical flow at the current time
(∆x(x, y), ∆y(x, y)) is computed by Equation (6).

Curl(x, y) = ∇× d f (x, y)
dx

=
∂

∂y
∂ f (x, y)

∂x
− ∂

∂x
∂ f (x, y)

∂y
(1)

Curl(x, y) = | ∂

∂y
∂ f (x, y)

∂x
− ∂

∂x
∂ f (x, y)

∂y
| (2)
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where
∂ f (x, y)

∂x
= Gx(x, y) = f (x + 1, y)− f (x− 1, y)

∂ f (x, y)
∂y

= Gy(x, y) = f (x, y + 1)− f (x, y− 1)

∂

∂y
∂ f (x, y)

∂x
= Gx(x, y + 1)− Gx(x, y− 1)

∂

∂x
∂ f (x, y)

∂y
= Gy(x + 1, y)− Gy(x− 1, y)

SAD(a, b) =
u=r

∑
u=−r

v=r

∑
v=−r

|Curlt(x + u, y + v)| − |Curlt+1(x + u + a, y + v + b)| (3)

a = ∆′x(t−1)(x, y)− k : s : ∆′x(t−1)(x, y) + k (4)

b = ∆′y(t−1)(x, y)− k : s : ∆′y(t−1)(x, y) + k (5)

[∆x(x, y), ∆y(x, y)] = arg min(a,b)SAD(a, b). (6)

Figure 2. The optical flow step: first, curl images (Curlt(x, y)), (Curlt+1(x, y)) are computed. Then,
given the curl images for two consecutive frames, pixels displacements ∆x(x, y), ∆y(x, y) (optical flow
for all pixels in the reference image) are computed using a dynamic template based on the optical flow
previously computed (∆x,t−1(x, y), ∆y,t−1(x, y)).

(a) input ( f (x, y)) (b) output Curl(x, y)

Figure 3. Curl computation example. Input image taken from the KITTI benchmark dataset [35].
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(a) ∆x(x, y) (b) ∆y(x, y))

Figure 4. Optical flow example. Image codification as proposed in the Tsukuba benchmark dataset [36].

Figure 5. The proposed optical flow algorithm formulation: patch size = 10, search size = 10,
and sampling value = 2. For each pixel in the reference image ft, n overlapped regions are constructed
in ft+1, and the n region center that minimizes or maximizes any similarity metric is the tracked
position (flow) of the pixel (x, y) at ft+1.

3.3. Search Template

In optical flow, the search window size defines the maximum allowed motion to be detected in the
sequence, see Figure 4. In general, let p be a pixel in the reference image ( ft), whose 2D spatial location
is defined as (xt, yt), the same pixel in the tracked image ( ft+1) has to satisfy xt+1 ∈ xt − k : 1 : x + k,
yt+1 ∈ y− k : 1 : yt + k, where k is the search size for the tracking step. In practice, large search region
sizes increase tracking performance since feature tracking could be carried out in both slow and fast
camera movements. However, large search sizes decrease the accuracy, i.e., if the search region size is
equal to 1, then xt+1 ∈ xt − 1 : 1 : xt + 1, yt+1 ∈ yt − 1 : 1 : yt + 1, so there are nine possible candidates
for the tracking step and the mistake possibility is equal to 8, this considering that camera movement
is slow and therefore pixel displacements between images are close to zero. In other scenarios, if the
search region size is equal to 10, then xt+1 ∈ xt − 10 : 1 : xt + 10, yt+1 ∈ yt − 10 : 1 : yt + 10, so there
are 100 possible candidates for the tracking step, and the mistake possibility is equal to 99. In our
work, we propose using the feedback of the previous optical flow step as a dynamic search size for
the current step. Therefore, if camera movement in t− 1 is slow, small search sizes closer to the pixels
being tracked (xt, yt) are used. On the other hand, given fast camera movements, small search sizes
far from the pixels being tracked are used. This makes the tracking step compute accurate results
without outliers; furthermore, the use of small search sizes decreases the computational resources
usage. For practical purposes, we use a search region size equal to 10 since it provides a good tradeoff
between robustness/accuracy and computational resources. Therefore, let ∆x,t−1(x, y), ∆y,t−1(x, y)
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be the optical flow at time t− 1, the search template for the current time is computed as shown in
Equations (7) and (8), where k is the template size.

∆′x(x + u, y + v) =
u=k,v=k

∑
u=−k,v=−k

(mean
u=k,v=k

∑
u=−k,v=−k

∆x,t−1(x, y)) (7)

∆′y(x + u, y + v) =
u=k,v=k

∑
u=−k,v=−k

(mean
u=k,v=k

∑
u=−k,v=−k

∆y,t−1(x, y)) (8)

3.4. Depth Estimation

In previous works, it was demonstrated that monocular image sequences provide only partial
information about a scene due to the computation of relative depth, the unknown scale factor, etc. [37].
In order to recover the depth in the scene, it is necessary to have assumptions about the scene and
its 2-D images. In this work, we assume that the environment within the scene is rigid. Thus, given
the optical flow of the scene (which represents pixel velocity across time), we suppose that the depth
in the scene is proportional to the pixel velocity; i.e., far objects have to be associated with a low
velocity value, while closer objects are associated with high velocity values. This could be considered
an extension of the epipolar geometry in which disparities values are proportional to the depth in the
scene, as shown in Figure 6.

(a) depth from epipolar geometry (b) depth from motion

Figure 6. (a) Epipolar geometry: depth in the scene is proportional to the disparity value, i.e., far objects
have low disparity values, while closer objects are associated with high disparity values. To compute
the disparity map (disparities for all pixels in the image) a stereo pair (two images with epipolar
geometry) are needed. (b) Single moving camera: in this work we suppose that depth in the scene is
proportional to the pixel velocity across the time. To compute the pixel velocity, optical flow across two
consecutive frames has to be computed.

Therefore, let ∆x(x, y) and ∆y(x, y) be the optical flow (pixel velocity) at t time. The depth in
the scene depth(x, y) is computed as proposed in Equation (9), where depth(x, y) is the norm of the
optical flow. In Figure 7, an example of depth map computed by the proposed approach is shown.

depth(x, y) = ||[∆x(x, y), ∆y(x, y)]|| =
√

∆x(x, y)2 + ∆y(x, y)2. (9)
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(a) input image (b) depth map

Figure 7. Depth estimation using the proposed algorithm.

4. The FPGA Architecture

In Figure 8, an overview of the FPGA architecture for the proposed algorithm is shown.
The architecture is centered on an FPGA implementation where all recursive/parallelizable operations
are accelerated in the FPGA fabric. First, the “frame buffer” unit reads the pixel stream (pix [7:0])
delivered by the imager. In this block, frames captured by the imager are fed to/from an external
DRAM memory and deliver pixel streams for two consecutive frames in parallel (pix1 [7:0], pix2 [7:0]).
“Circular buffers” implemented inside the “optical flow” unit are used to hold local sections of the
frames that are being processed and allow for local parallel access that facilitates parallel processing.
Finally, optical flow streams (pix3 [7:0], pix4 [7:0]) are used to compute the depth in the scene (pix7
[7:0]). In order to hold optical flow previously computed (which are used for the dynamic search
template computation), a second “frame buffer” is used. In the following subsections, details about
the algorithm parallelization are shown.

Figure 8. FPGA architecture for the proposed algorithm.

4.1. Frame Buffer

Images from the image sensor are stored in an external DRAM that holds an entire frame from the
sequence, and later the DRAM data are read by the FPGA to cache pixel flow of the stored frame into
circular buffers. In order to deliver two consecutive frames in parallel, two DRAM chips in switching
mode are used, i.e.,

1. t1: DRAM 1 in write mode (storing Frame 1), DRAM 2 in read mode (invalid values), Frame 1 at
Output 1, invalid values at Output 2.

2. t2: DRAM 1 in read mode (reading Frame 1), DRAM 2 in write mode (storing Frame 1), Frame 1
at Output 2, Frame 1 at Output 2.
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3. t3: DRAM 1 in write mode (storing Frame 3), DRAM 2 in read mode (reading Frame 2), Frame 3
at Output 2, Frame 2 at Output 2 and so on.

In Figure 9, an overview of the “frame buffer” unit is shown. The current pixel stream (pix [7:0])
is mapped at Output 1 (pix1 [7:0]), while Output 2 (pix2 [7:0]) delivers pixel flow for a previous frame.
For the external DRAM control, data [7:0] are mapped with the read/write pixel stream, address [31:0]
manages the physical location inside the memory, and the “we” and “re” signals enable the write/read
process respectively, as shown in Figure 9.

Figure 9. FPGA architecture for the “frame buffer” unit. Two external memories configured in
switching mode makes it possible to store the current frame (time t) into a DRAM configured in write
mode, while another DRAM (in read mode) deliver pixel flow for a previous frame (frame at time
t− 1).

4.2. Optical Flow

For the “optical flow” unit, we consider that the flow estimation problem can be a generalization
of the dense matching problem; i.e., stereo matching algorithms track (searching along the horizontal
axis around the search image) all pixels in the reference image. Optical flow aims to track all pixels
between two consecutive frames from a video sequence (searching around spatial coordinates of the
pixels in the search image). It is then possible to extend previous stereo matching FPGA architectures to
our application domain. In this work, we extended the FPGA architecture presented in [24], since it has
low hardware requirements and a high level of parallelism. In Figure 10, the developed architecture is
shown. First, the “curl” units deliver curl images in parallel (see Equation (2)). More details about the
FPGA architecture of this unit are shown in Section 4.2.2. The “circular buffer” units are responsible
for data transfers in segments of the image (usually several rows of pixels). Therefore, the core of the
FPGA architecture are the circular buffers attached to the local processors that can hold temporarily as
cache, for image sections from two frames, and that can deliver parallel data to the processors. More
details about the FPGA architecture of this unit are shown in Section 4.2.1. Then, given the optical flow
previously computed, 121 search regions are constructed in parallel (see Figure 5 and Equations (4)
and (5)). For our implementation, the search region size is equal to 10, so the center of the search
regions are all the sampled pixels within the reference region. Given the reference region in ft(x, y) and
121 search regions in ft+1(x, y), search regions are compared with the reference region (Equation (3))
in parallel. For that, a pixel-parallel/window-parallel scheme is implemented. Finally, in the “flow
estimation” unit, a multiplexer tree can determine the a, b indices that minimize Equation (3) and
therefore, using Equation (6), the optical flow for all pixels in the reference image.
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Figure 10. FPGA architecture for the optical flow estimation.
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4.2.1. Circular Buffer

In Ref. [23], we proposed circular buffer schema in which input data from the previous n rows of
an image can be stored using memory buffers (block RAMs/BRAMs) until the moment when an n× n
neighborhood is scanned along subsequent rows. In this work, we follow a similar approach to achieve
high data reuse and a high level of parallelism. Our algorithm is then processed in modules where all
image patches can be read in parallel. First, a shift mechanism “control” unit manages the read/write
addresses of n + 1 BRAMs. In this formulation, n BRAMs are in read mode, and one BRAM is in write
mode in each clock cycle. Data inside the read-mode BRAMs can then be accessed in parallel, and each
pixel within an n× n region is delivered in parallel with an n× n buffer, as shown in Figure 11, where
the “control” unit delivers control data (address and read/write enable) for the BRAM modules, and
one entire row is stored in each BRAM. Finally the “data” unit delivers n× n pixels in parallel. In our
implementation, there is one circular buffer of 13 × 13 pixels/bytes, one circular buffer of 17 × 17,
and two circular buffers of 3 × 3. For more details, see Ref. [23].

(a) General formulation of a 3× 3 circular buffer.

(b) FPGA architecture for the circular buffers.

Figure 11. The circular buffers architecture. For an n × n patch, a shift mechanism “control” unit
manages the read/write addresses of n + 1 BRAMs. In this formulation, n BRAMs are in read mode,
and one BRAM is in write mode in each clock cycle. The n× n buffer then delivers logic registers with
all pixels within the patch in parallel.
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4.2.2. Curl Estimation

In Figure 12, the curl architecture is shown. First, one “circular buffer” holds three rows of the
frame being processed and allows for local parallel access of a 3× 3 patch that facilitates parallel
processing. Then, image gradients ( ∂ f (x,y)

∂x , ∂ f (x,y)
∂y ) are computed. Another “circular buffer” holds

three rows of the gradient image previously computed and delivers a 3× 3 patch for the next step.
Second derivatives ( ∂

∂y
∂ f (x,y)

∂x , ∂
∂x

∂ f (x,y)
∂y ) are computed inside the “derivative” unit. Finally, the curl of

the input image is computed by the “curl” unit.

Figure 12. FPGA architecture for the “curl” unit.

4.3. Depth Estimation

In Figure 13, the depth estimation architecture is shown. Let “pix1 [7;0]”, “pix2 [7:0]” be the pixel
stream for the optical flow at the current frame (Equation (6)); first, the “multiplier” unit computes
the square value of the input data. Then, the “adder” unit carries out the addition process for both
components (∆2

x, ∆2
y). Finally, the “sqrt” unit computes the depth in the scene, using Equation (9).

In order to achieve high efficiency in the square root computation, we adapted the architecture
developed by Yamin Li and Wanming Chu [38]. This architecture uses a shift register mechanism and
compares the more significant/less significant bits to achieving the root square operation without
using embedded multipliers.

Figure 13. FPGA architecture for the “depth estimation” unit.

5. Result and Discussion

The developed FPGA architecture was implemented in an FPGA Cyclone IV EP4CGX150CF23C8
of Altera. All modules were designed via Quartus II Web Edition version 10.1SP1, and all modules
were validated via post-synthesis simulations performed in ModelSim Altera. For all tests, we consider
k = 3, s = 2 (Equations (4) and (5)) since these values provided a relatively “good” performance for
real world scenarios. In practice, we recommend these values as references. Higher k = 3, s = 2 values
could provide higher accuracy, but processing speed and hardware requirements can be increased.
On the other hand, lower k = 3, s = 2 values should provide higher performance in terms of hardware
requirements/processing speed, but accuracy could decrease. The full hardware resource consumption
of the architecture is shown in Table 1. Our algorithm formulation allows for a compact system design;
it requires 66% of the total logic elements of the FPGA Cyclone IV EP4CGX150CF23C8. For memory
bits, our architecture uses 74% of the total resources, which represents 26 block RAMs consumed mainly
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in the circular buffers. This hardware utilization enables one to target a relatively small FPGA device,
so a small FPGA-based smart camera might be suitable for real-time embedded applications. In the
following subsections, comparisons with previous work are presented. For optical flow, comparisons
with previous FPGA-based optical flow algorithms are presented. For depth estimation, we presented
a detailed discussion about the performance and limitations of the proposed algorithm compared with
the current state of the art.

Table 1. Hardware resource consumption for the developed FPGA architecture.

Resource Consumption/Image Resolution

640 × 480 320 × 240 256 × 256

Total logic elements 69,879 (59%) 37,059 (31%) 21,659 (18%)
Total pins 16 (3%) 16 (3%) 16 (3%)

Total Memory Bits 618,392 (15%) 163,122 (4%) 85,607 (2%)
Embedded multiplier elements 0 (0%) 0 (0%) 0 (0%)

Total PLLs 1 (25%) 1 (25%) 1 (25%)

5.1. Performance for the Optical Flow Algorithm

In comparison with previous work, in Table 2, we present hardware resource utilization
between our FPGA architecture and previous FPGA-based optical flow algorithms. There are several
works [22,25–27] whose FPGA implementations aims to parallelize all recursive operations in the
original mathematical formulation. Unfortunately, most popular formulations such as those based
on KTL [28] or Horn-Schunck [33] have iterative operations that are hard to parallelize. As a result,
most previous works have relatively high hardware occupancy/implementations compared with a full
parallelizable design approach. Compared with previous works, our FPGA architecture outperforms
most of those of previous works; for a similar image resolution, there are fewer logic elements and
memory bits than those in Ref. [25,29] and fewer logic elements and memory bits than those of [27].
In Ref. [27], memory usage decreased by a multiscale coding, making it possible to store only half of
the original image, but this reduction involves pixel interpolation for some cases, which increases the
logic element usage. For Ref. [22], the authors introduced an iterative-parallel approach; this makes
it possible to achieve low hardware requirements, but processing speed is low. Finally, for Ref. [26],
a filtering-based approach made it possible to achieve low hardware requirements with relatively high
accuracy and high processing speed, but the algorithmic formulation required the storage of several
frames, requiring a large external memory (near 250 MB for store 3 entire frames), which increases the
system size and cost.

Table 2. Hardware resource consumption.

Method Logic Elements Memory Bits Image Resolution

Martín et al. [22] (2005) 11,520 147,456 256 × 256
Díaz et al. [25] (2006) 513,216 685,670 320 × 240
Wei et al. [26] (2007) 10,288 256 MB (DDR) 640 × 480

Barranco et al. [27] (2012) 82,526 573,440 640 × 480
Honegger et al. [29] (2012) 49,655 1,111,000 376 × 240

Our work * 69,879 624,244 640 × 480
Our work * 37,059 163,122 320 × 240
Our work * 21,659 85,607 256 × 256

* Operating frequency = 50 MHz.
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In Table 3, speed processing for different image resolutions is shown. We synthesized different
versions of our FPGA architecture (Figure 8), and we adapted the circular buffers in order to work
with all tested image resolutions. We then carried out post-synthesis simulation in ModelSim Altera.
In all cases, our FPGA architecture reached real-time processing. When compared with previous
work (Table 4), our algorithm provided the highest speed processing and outperforms those of several
previous works [22,25–27,29]. For HD images, our algorithm reaches real-time processing: more than
60 fps for a 1280 × 1024 image resolution.

Table 3. Processing speed for different image resolutions, operating frequency = 50 MHz.

Resolution Frames/s Pixels/s

1280 × 1024 68 90,129,200
640 × 480 297 91,238,400
320 × 240 1209 92,880,000
256 × 256 1417 92,876,430

Table 4. Processing speed comparisons.

Method Resolution Frames/s Pixels/s

Martín et al. [22] 256 × 256 60 3,932,160
Díaz et al. [25] 320 × 240 30 2,304,000
Wei et al. [26] 640 × 480 64 19,550,800

Barranco et al. [27] 640 × 480 31 9,523,200
Honegger et al. [29] 376 × 240 127 11,460,480

Our work 640 × 480 297 91,238,400

In Figure 14, qualitative results for this work are shown alongside those of previous work. In a
first experiment, we used the “Garden” dataset since others [22,25,26] have used this dataset as a
reference. When compared with previous work (Figure 14), our algorithm shows a high performance
under real world scenarios. It outperforms several previous works [22,25,26], quantitatively closer
to the ground truth (error near to 9%) compared with other FPGA-based approaches. In a second
experiment, quantitative and qualitative results for the KITTI dataset [35] are shown. In all cases,
our algorithm provides high performance, reaching an error close to 10% with respect to several
test sequences, as shown in Figure 15. In both experiments, we computed the error by comparing
the ground truth Ωx(x, y) and Ωy(x, y) (provided with the dataset) with the computed optical flow
∆x(x, y) and ∆y(x, y). First, we computed the local error (the error magnitude at each point of the
input image) as defined in Equation (10), where i, j is the input image resolution. A global error (Ξ)
could then be computed as shown in Equation (11), where i, j is the input image resolution. ξ(x, y) is
the local error at each pixel in the reference image, and the global error (Ξ) is the percentage of pixels
in the reference image in which local error is closer to zero.

ξ(x, y) =
x=i

∑
x=1

y=j

∑
y=1

√
Ωx(x, y)2 + Ωy(x, y)2 −

√
∆x(x, y)2 + ∆y(x, y)2 (10)

Ξ =
100%

i · j ·
x=i

∑
x=1

y=j

∑
y=1

{
1 i f ξ(x, y) >= 0
0 otherwise

. (11)
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(a) input image (b) ground truth (c) Martín et al. [22]

(d) Wei et al. [26] (e) Díaz et al. [25] (f) this work (error = 9%)

Figure 14. Accuracy performance for different FPGA-based optical flow algorithms.

(a1) input image (b1) ground truth (c1) flow estimation (error = 11%)

(a2) input image (b2) ground truth (c2) flow estimation (error = 12%)

(a3) input image (b3) ground truth (c3) flow estimation (error = 11%)

(a4) input image (b4) ground truth (c4) flow estimation (error = 12%)

Figure 15. Optical flow: quantitative/qualitative results for the KITTI dataset.

5.2. Performance for the Depth Estimation Step

In Figure 16, quantitative and qualitative results for the KITTI dataset [35] are shown. In all
cases, our algorithm provides rough depth maps compared with stereo-based or deep learning
approaches [39,40] but with real-time processing and with the capability to be implemented in
embedded hardware, suitable for smart cameras. To our knowledge, previous FPGA-based approaches
are limited; there are several GPU-based approaches, but in these cases most of the effort was for
accuracy improvements and real-time processing, or embedded capabilities were not considered;
thus, in several cases details about the hardware requirements or the processing speed are not
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provided [41–43]. In Table 5, quantitative comparisons between our algorithm and the current state of
the art can be made. For previous works, the RMS error, hardware specifications, and processing speed
were obtained from the published manuscripts, while for our algorithm we computed the RMS error
as indicated by the KITTI dataset [44]. For accuracy comparisons, most previous works [41–43,45–47]
outperform our algorithm (near 15% more accurate than ours); however, our algorithm outperforms all
of them in terms of processing speed (a processing speed up to 128 times faster than previous works)
and with embedded capabilities (making it possible to develop a smart camera/sensor suitable for
embedded applications).

Table 5. Depth estimation process in the literature: performance and limitations for the KITTI dataset.

Method Error (RMS) Speed Image Resolution Approach

Zhou et al. [41] (2017) 6.8% - 128 × 416 DfM-based * -
Yang et al. [45] (2017) 6.5% 5 fps 128 × 416 CNN-based * GTX 1080 (GPU)

Mahjourian et al. [46] (2018) 6.2% 100 fps 128 × 416 DfM-based * Titan X (GPU)
Yang et al. [42] (2018) 6.2% - 830 × 254 DfM-based * Titan X (GPU)

Godard et al. [43] (2018) 5.6% - 192 × 640 CNN-based * -
Zou et al. [47] (2018) 5.6% 1.25 fps 576 × 160 DfM-based * Tesla K80 (GPU)

Our work 21.5% 192 fps 1241 × 376 DfM-based * Cyclone IV (FPGA)

* DfM: Depth from Motion, CNN: Convolutional Neural Network.

(a1) input image (b1) ground truth (c1) depth estimation (error = 21%)

(a2) input image (b2) ground truth (c2) depth estimation (error = 22%)

(a3) input image (b3) ground truth (c3) depth estimation (error = 21%)

(a4) input image (b4) ground truth (c4) depth estimation (error = 22%)

Figure 16. Depth estimation: quantitative/qualitative results for the KITTI dataset.

Finally, in Figure 17, an example of 3D reconstruction using our approach is shown. Our depth
maps allow for a real-time dense 3D reconstruction. Previous works like the ORB-SLAM [48] or
LSD-SLAM [49] compute motion and depth in 2–7% of all image pixels, while ours computes 80%
of the image pixels. Thus, our algorithm improves by around 15 times the current state of the art,
making possible real-time dense 3D reconstructions with the capability to be implemented inside
FPGA devices, suitable for smart cameras.
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(a) Input image

(b) Depth map

(c) 3D reconstruction

Figure 17. The KITTI dataset: Sequence 00; 3D reconstruction by the proposed approach. Our algorithm
provides rough depth maps (a lower accuracy compared with previous algorithms) but with real-time
processing and with the capability to be implemented in embedded hardware; as a result, real-time
dense 3D reconstructions can be obtained, and these can be exploited by several real world applications
such as augmented reality, robot vision and surveillance, and autonomous flying.

6. Conclusions

Depth from motion is the problem of depth estimation using information from a single moving
camera. Although several depth from motion algorithms have been developed, previous works have
had low processing speeds and high hardware requirements that limit the embedded capabilities.
In order to solve these limitations, we have proposed a new depth estimation algorithm whose FPGA
implementation delivers high efficiency in terms of algorithmic parallelization. Unlike previous works,
depth information is estimated in real time inside a compact FPGA device, making our mathematical
formulation suitable for smart embedded applications.

Compared with the current state of the art, previous algorithms outperform our algorithm in
terms of accuracy, but our algorithm outperforms all previous approaches in terms of processing speed
and hardware requirements; these characteristics make our approach a promising solution for current
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embedded systems. We believed that several real world applications such as augmented reality, robot
vision and surveillance, and autonomous flying can take advantage of our algorithm since it delivers
real-time depth maps that can be exploited to create dense 3D reconstructions or other abstractions
useful for extracting scene information.
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