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Abstract: Force changes in axially loaded members can be monitored by quantifying variations
in impedance signatures. However, statistical damage metrics, which are not physically related
to the axial load, often lead to difficulties in accurately estimating the amount of axial force
changes. Inspired by the wearable technology, this study proposes a novel wearable piezoelectric
interface that can be used to monitor and quantitatively estimate the force changes in axial members.
Firstly, an impedance-based force estimation method was developed for axially loaded members.
The estimation was based on the relationship between the axial force level and the peak frequencies of
impedance signatures, which were obtained from the wearable piezoelectric interface. The estimation
of the load transfer capability from the axial member to the wearable interface was found to
be an important factor for the accurate prediction of axial force. Secondly, a prototype of the
wearable piezoelectric interface was designed to be easily fitted into existing axial members. Finally,
the feasibility of the proposed technique was established by assessing tension force changes in a
numerical model of an axially loaded cylindrical member and a lab-scale model of a prestressed
cable structure.

Keywords: axial member; tension force; wearable technology; piezoelectric interface; impedance
signatures; impedance method

1. Introduction

In civil structures, axially loaded members, such as columns, connecting rods, cables, and trusses,
are common elements that are subjected to only tension or compression. During their service life,
these members may be exposed to repeated overloads and severe ambient conditions that could induce
local failures, leading to a reduction in their future load-carrying capacities. Thus, in-situ loading
status monitoring of these members is of significant interest in evaluating the operational safety of a
whole structure.

There have been several research attempts to monitor the tension of axial members. Since the
1980s, vibration-based structural health monitoring (SHM) has been widely adopted to estimate the
axial force in cable and beam-like structures [1–5]. The vibration technique is relatively simple to
perform and can provide reliable axial load estimation, but it requires measurements of vibration
responses that should be generated by sufficient external excitations. Another simple way is to estimate
the axial load by measuring the strain of axial members. Electrical strain gauges are low cost but do
not own a natural reference point, which may cause a significant error under long-term monitoring.
Therefore, some researchers have used optical strain sensors (e.g., fiber Bragg grating (FBG) sensors)
for force monitoring of axial members, such as cable structures [6,7]. FBG sensors have high precision,
self-referencing capability, and long service life, but they need to be embedded into the cables through
a complicated and expensive manufacturing process [8,9].
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In recent years, impedance-based SHM has emerged as a promising approach for integrity
assessment of civil infrastructures. The impedance technique is enabled by a piezoelectric sensor,
e.g., lead zirconate titanate (PZT), which is surface-bonded to a monitored structure to measure
electromechanical (EM) impedance. Because the measured EM impedance contains local dynamic
features of the monitored structure, impedance variations can be used as a local, sensitive signal
to detect damage occurrence. Major advantages of the impedance technique include self-excitation
and examination without external loads, cost-effective sensors and cheap data acquisition system,
high sensitivity to small damage sizes, and autonomous and real-time monitoring. Various
experimental and numerical studies in lab-scale and on real structures have demonstrated the
practicality of the impedance-based SHM technique [10–17].

However, the direct attachment method of the PZT often influences the appearance of the
monitored structure and causes difficulties in reconfiguration of the sensor in necessary cases [18,19].
An additional important issue is the repeatability of impedance signatures, which is dependent on
the structural condition of the bonding layer and the surficial condition of the target surface [20].
To overcome these issues, Annamdas et al. [18] developed an indirect attachment technique using
a portable structure embedded with PZTs to indirectly acquire impedance signatures from a host
structure. To enhance the sensitivity of impedance signatures and predetermine an effective frequency
band, Huynh and Kim [21] proposed a portable PZT interface technique for tendon-anchorage
monitoring. The interface technique was then modified using magnetic blocks for attaching the
PZT-embedded portable interface to a host structure [19]. Recently, Wang et al. [22] designed a wearable
sensor device comprising PZTs for health monitoring of bolted joints. These studies demonstrate the
promising value of wearable devices for impedance-based SHM.

Owing to its promising advantages, many researchers have used the impedance-based technique
to monitor the tension force in axial members, such as prestressing strands [23–25], in steel rods [26],
and in rock bolts [27]. However, the studies had drawbacks that hindered them from being used widely.
One of the important problems is the difficulty in quantitatively estimating the damage severity and
the change in structural parameters using well-known statistical damage metrics such as root mean
square deviation (RMSD) or cross-correlation deviation (CCD) because these metrics are not physically
related to the mechanical properties. Several research attempts have been made to deal with this issue.
Ritdumrongkul et al. [28] used model updating to correlate the measured impedance signatures with
the analytical signatures for quantitative torque monitoring of bolted joints. Lu et al. [20,29] proposed
a PZT-embedded smart probe for strength development monitoring of cementitious materials and
developed an analytical impedance-based model using the resonant frequencies of the smart probe for
strength estimation. Huynh et al. [30] developed a method using peak frequencies of the portable PZT
interface and a model-updating algorithm to assess the contact parameters of tendon anchorage.

Inspired by the wearable technology, this study proposes a novel piezoelectric interface-based
impedance method that can be used to monitor and quantitatively estimate the force changes in
axial members. Firstly, an impedance-based force estimation model was designed for axially loaded
members. The estimation was based on the relationship between the axial force level and the peak
frequencies of impedance signatures, which were obtained from the wearable piezoelectric interface.
The estimation of the load transfer capability from the axial member to the wearable interface was
found to be an important factor for the accurate prediction of axial force. Secondly, a prototype of the
wearable piezoelectric interface was designed to be easily fitted into existing axial members. Finally,
the feasibility of the proposed technique was established by assessing tension force changes in the
numerical model of an axially loaded cylindrical member and a lab-scale model of a prestressed
cable structure.
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2. Impedance-Based Axial Load Estimation Method

2.1. Schematic of the Method

Previous works have proven that the peaks of impedance signatures represent the modal
frequencies of the PZT-driven system [31,32]. This suggests that the natural frequencies of a host
structure can be extracted from the resonant peaks of impedance signatures [30,33,34]. By utilizing
this advantage, we developed an axial force estimation method using the impedance measurement,
as shown in Figure 1. The idea was to estimate the axial load using the natural frequencies of a PZT
interface structure, which were obtained from impedance measurements. The proposed method was
performed through three main steps. In Step 1, a piezoelectric interface prototype was designed.
Then, local dynamic characteristics of the interface were analyzed to predetermine the sensitive
frequency range of impedance responses that contain the modal frequencies. In Step 2, the PZT
interface prototype was attached to an axially loaded member. The impedance signatures of the PZT
interface were measured before and after load change events. In Step 3, the natural frequencies of the
PZT interface were extracted from the measured impedance signatures. Then, the axial force of the
monitored structure was estimated using a frequency-based force estimation model.
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Figure 1. Axial force estimation method using impedance measurement.

2.2. Axial Force Estimation Model

The axial load estimation method was proposed on the basis of the piezoelectric interface
technique, which was originally developed to acquire sensitive impedance signatures [21].
The piezoelectric interface is typically a beam-like structure that is embedded with a PZT sensor
at the middle. To monitor the axial force, a PZT interface was attached to an axially loaded member,
as schematized in Figure 2. A tension force F applied to the axial member will induce an external axial
load T into the PZT interface. The variation of F will result in the alternation of T, leading to the shift
in the modal frequency of the interface. By catching the frequency shift in the impedance signatures,
it is possible to detect and estimate the variation of the applied force F.
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Figure 2. Piezoelectric interface attached to an axial member under tension.

The governing differential equation of the beam-like interface under axial force T is given as
follows [35]:

∂4ν(x, t)
∂x4 − T

EiIi

∂2ν(x, t)
∂x2 +

mi

EiIi

∂2ν(x, t)
∂t2 = 0 (1)
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where mi is mass per unit area; Ei and Ii are Young’s modulus and moment of inertia of the interface,
respectively. The nth natural frequency of the interface that is dependent on its boundary condition
can be determined as follows:

fn =
Cn

2πLi
2

√
1 + η

TLi
2

EiIiπ2
C1

Cn

√
EiIi

mi
(2)

where η = 1
4 for a fixed-fixed (F-F) interface, and η = 1 for a pined-pined (P-P) interface. C1 and Cn are

nondimensional frequencies of the 1st mode and the nth mode of the interface, respectively, as listed in
Table 1 [35], and Li is the length of the interface’s flexible part.

Table 1. Nondimensional natural frequencies dependent on boundary conditions.

Mode
Nondimensional Natural Frequency Cn

Fixed-Fixed Pinned-Pinned

1 22.3733 π2

2 61.6728 4π2

3 120.9034 9π2

4 199.8594 16π2

5 298.5555 25π2

When the monitored axial member experiences a force change ∆F = F* − F, the interface
experiences a corresponding shift in its axial load ∆T = T* − T, and the natural frequency of the
interface is turned from fn to f∗n. By introducing the change in square frequencies ∆

(
f2
n

)
= f∗n2 − f2

n

into Equation (2), a formula representing the physical relationship between the force change in the
interface ∆T, and the frequency change is obtained as follows:

∆T =
4miπ

4Li
2

ηC1Cn
∆
(

f2
n

)
(3)

Under the applied load F, the strain of the axial member is transferred to the wearable PZT
interface. Therefore, the load change ∆F can be easily correlated with ∆T as follows:

∆F = α
EcAc

EiAi
∆T (4)

where Ec and Ac are Young’s modulus and area of the axial member, respectively; Ei and Ai signify
Young’s modulus and area of the interface, respectively. The term α is a load transfer capability factor
considering the attachment strength of the interface device to the axial member. A larger α suggests
a lower capability of load transfer to the interface. The value of α is close to 1 when the interface is
perfectly bonded to the structure or the applied load is completely transferred to the interface.

By substituting Equation (4) into Equation (3) and considering NM vibration modes of the
interface, the tension force change in the monitored structure can be obtained:

∆F = α
EcAc

EiAi

4miπ
4L2

ηC1Cn

1
NM

NM

∑
n=1

∆
(

f2
n

)
(5)

Using Equation (5), the load changes in an axially loaded member can be easily estimated from
the natural frequencies of the piezoelectric interface.
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3. Design of Wearable Piezoelectric Interface for Axial Cylindrical Structure

3.1. Conceptual Design

A novel wearable PZT interface was developed to monitor the tension force in axial cylindrical
structures, as shown in Figure 3. The device has a beam-like flexible part at the middle and two outside
contacting parts. The flexible part has a thin and long beam to provide the free vibration of the PZT
sensor and to enhance the effect of the tension force on the natural frequencies. The two outside parts
use two hoops with clamping mechanism to maximize the attachment capability of the interface to a
target structure. The clamping mechanism is controlled by bolt joints, which allow the interface to be
easily attached to and detached from the structure, thus enabling quick installation in the field.
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Figure 3. Design of wearable piezoelectric interface for cylindrical structure: (a) wearable lead zirconate
titanate (PZT) interface; (b) contact part.

The design parameters of the interface device are defined in Figure 3. Briefly, the flexible part
has width bi, length Li, and thickness ti; the hoop of the contact part has outer diameter db, length Lb,
and thickness tb; and the PZT sensor has width ba, length la, and thickness ta. The dimensional
parameters of the hoop should be designed to match with the dimension of the axial structure. In order
to minimize the effect of the PZT sensor on the natural frequency of the interface, the PZT’s dimensions
should be thin enough so that its mass is ignorable compared to the mass of the flexible part of
the interface.

3.2. Predetermination of Sensitive Frequency Range

The sensitive frequency band of impedance signatures obtained from the interface device is
decided by its modal frequencies. Thus, to identify the sensitive frequency range containing modal
frequencies, the local dynamic responses of the wearable PZT interface should be analyzed in advance.

3.2.1. Finite Element Modeling

An example design of the wearable interface was selected with the following dimensional
parameters: bi × Li × ti = 10 × 50 × 1 mm for the flexible part, db × Lb × tb = 16.2 × 10 × 1 mm for
the hoop part (or contact part), and ba × la × ta = 8 × 8 × 0.127 mm for the PZT patch. A finite element
(FE) model of the PZT interface was established using a commercial program, COMSOL Multiphysics,
as shown in Figure 4. For simplification, the bolted joints were not simulated. A previous study by
Islam and Huang [36] showed that when the host structure undergoes flexural deformations, the effect
of bonding layer on the resonant frequencies is slight and can be negligible. Thus, the bonding layer
between the PZT and the flexible part was not modeled. The fixed boundary condition was applied to
the inner surfaces of contacting hoops of the PZT interface, see Figure 4.
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The FE model was discretized by 3D solid elements. The meshing includes 24 elements for the
PZT patch and 440 elements for the interface body. Steel was used for the interface body, and PZT-5A
was used for the piezoelectric sensor. The material properties of the interface body and the PZT patch
are listed in Tables 2 and 3, respectively. Two modules of solid mechanics and piezoelectric devices
were coupled to model the impedance responses of the piezoelectric interface. For acquiring the
electromechanical impedance, a harmonic excitation voltage with amplitude of 1V was applied to the
top surface of the PZT patch, and the bottom was set as the ground electrode.

Table 2. Mechanical properties of the steel interface body.

Elastic Modulus
E (GPa)

Mass Density
ρ (kg/m3)

Poisson’s Ratio
υ

Damping Loss Factor η

200 7850 0.3 0.02

Table 3. Piezoelectric properties of the PZT patch.

Elastic Modulus
YE

11 (N/m2)
Mass Density
ρ (kg/m3)

Coupling Constant
d31 (m/V)

Dielectric Constant
εT

33 (Farads/m)
Damping Loss

Factor η
Dielectric Loss

Factor δ

6.1 × 1010 7650 −1.71 × 10−10 1.53 × 10−8 0.0125 0.015

3.2.2. Sensitive Frequency Range

The impedance response of the wearable PZT interface was analyzed under the swept frequency
of 1–32 kHz. The real part of impedance was plotted in log-scale against the swept frequency, as shown
in Figure 5. The figure shows the first, second, and third peak frequencies at 2.11 kHz, 11.55 kHz,
and 28.54 kHz, respectively. For comparison, the modal analysis of the wearable PZT interface was
also conducted. The first nine mode shapes representing the local vibrations of the interface were
obtained as shown in Figure 6. Among them, Modes 1, 2, 4, 7, and 9 are longitudinal bending motions;
mode 6 is a lateral bending motion; and modes 3, 5, and 8 are longitudinal twist motions.

Matching the peak frequencies of the impedance with the modal analysis result, it was shown
that the first bending motion (Mode 1 at 2.12 kHz) was identical to the first impedance peak (Peak 1 at
2.11 kHz), the third bending motion (Mode 4 at 11.55 kHz) was consistent with the second impedance
peak (Peak 2 at 11.55 kHz), and the fifth bending motion (Mode 9 at 28.55 kHz) agreed well with the
third impedance peak (Peak 3 at 28.54 kHz). It should be noted that the PZT sensor was located at the
middle of the interface, thus its ability to excite the modal motions with modal nodes at the sensor’s
location (Modes 2, 3, 5, 7, 8) was very low. Moreover, under the harmonic voltage, the PZT was not
bent in the lateral direction, so the ability to excite the lateral bending motion (Mode 6) was minimal.
As a result, these modal motions were absent from the impedance signatures.
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4. Numerical Evaluation of Finite Element Model of Axial Cylindrical Member

4.1. Finite Element Modeling of Axial Cylindrical Member with Wearable PZT Interface

To evaluate the numerical feasibility of the proposed wearable piezoelectric interface, an FE model
of an axially loaded cylindrical structure equipped with a wearable PZT interface was established
using COMSOL Multiphysics, as shown in Figure 7. The target structure with a diameter of 15.2 mm is
made of steel, which is commonly used in practice. As only the effect of axial force was considered
in the FE model, a 150 mm segment of the axial member was simulated to reduce the time and
computational costs. The wearable PZT interface designed in Section 3.2 was used to acquire the
impedance signatures.
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Figure 7. Finite element modeling of the axial cylindrical member with PZT interface (unit: mm).

The fixed boundary condition was applied at one end of the axial member, and the tension force
F was introduced at the other end, as shown in Figure 7. The FE model was discretized by 3D solid
elements. The meshing includes 24 elements for the PZT patch, 440 elements for the interface body,
and 1080 elements for the cylindrical structure. The material properties of the cylindrical structure are
the same as those of the interface body, as listed in Table 2.

4.2. Numerical Impedance Responses of Wearable PZT Interface

Five cases of the tension force (F0–F4) were introduced into the test structure, as listed in
Table 4. From the analysis in Section 3.2, the sensitive frequency range that contains the modal
frequencies of the PZT interface was 1–32 kHz. Therefore, the impedance signatures in 1–32 kHz
were numerically acquired from the PZT interface under the five cases of tension forces, as shown in
Figure 8. As identified previously, the first impedance peak (Peak 1) corresponded to the first bending
mode, the second impedance peak (Peak 2) corresponded to the third bending mode, and the third
impedance peak (Peak 3) was identical to the fifth bending mode of the PZT interface.

Three frequency bands containing Peaks 1–3 were zoomed in Figure 9. The figure shows that
the three impedance peaks were sensitively shifted to the right when the tension force went up from
F0 to F4. The increased peak frequency suggested the increment in the structural stiffness of the
steel member along with the increased tension force. When the tension force was increased from
F0 = 9.81 kN to F4 = 49.05 kN, the peak frequency increased gradually from 2.25 kHz to 2.77 kHz
(520 Hz change) for Peak 1, from 11.78 kHz to 12.71 kHz (930 Hz change) for Peak 2, and from 28.61 kHz
to 29.62 kHz (1010 Hz change) for Peak 3. The result demonstrated that the proposed wearable PZT
interface can be used to monitor the axial load change in an axially loaded member via tracking shifts
in the impedance peaks.

Table 4. Simulation cases of tension forces in axial cylindrical member.

Case
Inflicted Tension Force (kN)

F ∆F

F0 9.81 0
F1 19.62 9.81
F2 29.43 19.62
F3 39.24 29.43
F4 49.05 39.24
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Figure 8. Numerical impedance signatures of wearable PZT interface under different tension forces.
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Figure 9. Shifts in numerical impedance peaks due to tension force changes: (a) Peak 1; (b) Peak 2;
(c) Peak 3.

The modal frequencies of the PZT interface are compared for the impedance analysis and the
modal analysis in Figure 10. The comparison confirmed that the modal frequencies of the wearable
PZT interface can be accurately obtained from the impedance measurement.
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Figure 10. Natural frequencies of wearable PZT interface: numerical impedance analysis vs. modal
analysis: (a) Peak 1; (b) Peak 2; (c) Peak 3.

4.3. Estimation of Tension Force Changes in Axial Cylindrical Member

4.3.1. Analytical Model of Wearable PZT Interface

The analytical model of the PZT interface should be determined in order to use a correct
prediction formula of the tension force. For this purpose, the natural frequencies of the PZT interface
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from the analytical solutions (Equation 2) were compared with the impedance analysis results,
as shown in Figure 11 and listed in Table 5. It can be seen that the F-F interface model showed
similar natural frequencies with the impedance analysis, while the P-P interface model showed
lower values. The results suggested that the analytical model of the PZT interface should have F-F
boundary conditions.
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Figure 11. Natural frequencies of wearable PZT interface: numerical impedance analysis vs. analytical
solutions (Equation (2)): (a) Peak 1; (b) Peak 2; (c) Peak 3.

Table 5. Natural frequencies (kHz) of the wearable PZT interface under tension force changes.

Case
Peak 1 Peak 2 Peak 3

Imp.
Analysis

F-F
Model

P-P
Model

Imp.
Analysis

F-F
Model

P-P
Model

Imp.
Analysis

F-F
Model

P-P
Model

F0 2.25 2.28 1.23 11.78 11.43 8.60 28.61 27.91 23.25
F1 2.39 2.47 1.49 12.02 11.63 8.95 28.88 28.12 23.60
F2 2.53 2.64 1.70 12.25 11.84 9.29 29.12 28.33 23.95
F3 2.65 2.80 1.89 12.48 12.04 9.61 29.36 28.54 24.29
F4 2.77 2.96 2.07 12.71 12.24 9.92 29.62 28.74 24.63

4.3.2. Monitoring of Tension Force Change Using Statistical Damage Metric

To monitor the tension force change, the well-known RMSD damage metric is commonly used.
The metric is based on statistically quantifying the difference between the impedance signatures of
damage states and the signature of the pristine state as follows:

RMSD =

√√√√ N

∑
i=1

[Z∗(ωi)− Z(ωi)]
2/

N

∑
i=1

[Z(ωi)]
2 (6)

where Z(ωi) and Z∗(ωi) signify the impedance responses at the ith frequency before and after a
damage event, respectively, and N denotes the number of swept frequencies.

Figure 12 shows the RMSD metric plotted according to the level of tension forces. The RMSD
was computed using the impedance data in the frequency band of 1–32 kHz. As observed from the
figure, the RMSD value was increased linearly from 0% to 20.6% when the tension force rose from
F0 = 9.81 kN to F4 = 49.05 kN. The increased value of the RMSD suggested the variation of tension
forces. As discussed previously, the RMSD index reveals only the statistical change in impedance
signatures that are not physically related to the mechanical properties of the host structure. Therefore,
although the tension force change in an axial member can be effectively established by the RMSD
metric, it is difficult to interpret the damage quantity using this statistical tool.
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4.3.3. Prediction of Tension Force Change in Axial Cylindrical Member

The tension force changes in the cylindrical structure were computed using Equation (5) with
consideration of all three peak frequencies (Peaks 1–3), as listed in Table 6. Table 6 shows the predicted
tension force changes for the case of complete load transfer from the axial member to the interface
(i.e., the load transfer capability factor α = 1). From the table, it can be seen that when only Peak 1
was used to predict the tension force change, the error could be up to 26.5% of the inflicted value; the
error when using only Peak 2 was relatively smaller, near 20%. The error corresponding to the use of
Peak 3 was more significant, up to 31.5%. This means a single peak frequency could result in large
errors for the tension force estimation. When all three impedance peaks were considered, the error
was reduced significantly to 5% to 8%. The result demonstrated that the conceptual interface design is
quite reasonable. The result also suggested that the more impedance peaks considered, the higher is
the accuracy of the tension force estimation obtained.

Table 6. Prediction of tension force changes (kN) in the finite element (FE) model of axial
cylindrical member.

Infliction
Prediction (α = 1)

Using Peak 1 Using Peak 2 Using Peak 3 Using Peaks 1–3

Case ∆F ∆F Error ∆F Error ∆F Error ∆F Error

F0 0 0 0 0 0 0 0 0 0
F1 9.81 7.21 26.50% 11.72 19.47% 12.90 31.50% 10.61 8.15%
F2 19.62 14.84 24.36% 23.17 18.09% 24.46 24.67% 20.82 6.13%
F3 29.43 21.73 26.16% 34.84 18.38% 36.13 22.77% 30.90 4.99%
F4 39.24 28.94 26.25% 46.73 19.09% 48.87 24.54% 41.51 5.79%

4.3.4. Effect of Load Transfer Capability of Wearable PZT Interface on Tension Force Estimation

The effect of attachment condition of the wearable PZT interface on the accuracy of tension force
estimation was examined by analyzing the load transfer capability factor α. The tension force changes
in the test structure were computed for various values of α ranging from 0.7 to 1.1. As shown in
Figure 13, the larger value of the load transfer factor resulted in the larger value of predicted tension
force. It was found that the values close to 0.9 showed a good accuracy of predicted tension forces,
and it was noted that α close to 1 shows a nearly complete load transfer (see Equation (4)). In the FE
modeling, the PZT interface was perfectly bonded to the axially loaded cylindrical member, so the axial
force was well transferred from the test structure to the PZT interface under tensioning. The numerical
evaluation not only demonstrated the feasibility of the proposed method but also evidenced that the
estimation of the load transfer capability factor was important for accurate axial load prediction.
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Figure 13. Prediction of tension force changes in axial cylindrical member: load transfer capability
factor α = 0.7–1.1.

5. Experimental Evaluation on Lab-Scale Model of Cable Structure

5.1. Experimental Setup

The proposed axial force estimation method via the wearable PZT interface was evaluated on a
lab-scale cable model. As shown in Figure 14a, the cable was anchored at the right end and tensioned
at the left end using a stressing jack. A load cell was installed at the left end to measure the actual
tension introduced into the cable. The cable comprised seven steel wires and was uncovered, as shown
in Figure 14b. The steel cable structure had a length of 6.4 m, a nominal diameter of 15.2 mm, a nominal
area of 138.7 mm2, a tensile strength of 260 kN, an elastic modulus of 190 GPa, and a unit mass of
1.37 kg/m.
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Figure 14. Experimental setup of lab-scale cable structure: (a) schematic of test setup; (b) cable
equipped with wearable PZT interface; (c) attachment method.

By considering the dimensions of the cable, a wearable PZT interface was designed with the
following geometric parameters: bi × Li × ti = 10 × 80 × 1 mm for the flexible part, db × Lb × tb =
17.2 × 10 × 1 for the hoop part, and ba × la × ta = 8 × 8 × 0.508 for the PZT patch (type PZT-5A).
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For easiness of fabrication, aluminum was used for the interface body. The wearable PZT interface was
attached at the midpoint of the cable through the two outside contact parts by high-strength instant
adhesive Loctite 401, as shown in Figure 14c. The PZT sensor was excited with a harmonic voltage
1V, and the EM impedance was measured in 0.2–15.5 kHz (766 swept points) using the impedance
analyzer HIOKI-3532.

Three levels of the tension force (i.e., F1–F3) were applied to the cable, as listed in Table 7. After the
cable tension reached a desired force, impedance measurements were conducted. For each case of the
tension force, four repeat impedance measurements were carried out. To avoid the temperature effect,
room temperature was kept nearly constant with air conditioners during the tests.

Table 7. Test cases of tension forces in the cable structure.

Case
Inflicted Cable Force (kN)

F ∆F

F1 0 0
F2 9.81 9.81
F3 19.62 19.62

5.2. Experimental Impedance Signatures of Wearable PZT Interface

The experimental impedance signatures of the wearable PZT interface under the tension force
F1 are plotted in Figure 15a. Within the frequency band of 0.5–15 kHz, there were three distinct
resonant peaks at 0.67 kHz (Peak 1), 3.76 kHz (Peak 2), and 9.28 kHz (Peak 3). Figure 15b shows the
corresponding numerical impedance signatures simulated by COMSOL Multiphysics. Three distinct
impedance peaks were also observed in the numerical signatures. Even though there were certain
differences in the peak frequencies between the experiment and the simulation, the experimental
impedance pattern was quite consistent with the simulation, suggesting the confidence of the
impedance measurement.
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Figure 15. Experimental impedance signatures of wearable PZT interface under cable force F1:
(a) experiment; (b) simulation.

The three frequency bands containing the three impedance peaks (i.e., 0.6–1.0 kHz, 3.6–4.2 kHz,
and 9.2–9.4 kHz) are shown in detail in Figure 16a–c, respectively. Under an increased cable
force, the frequencies of Peak 1 and Peak 2 were sensitively shifted to the right, while the third
peak had no apparent trend. Particularly, when the cable force was increased from F1 = 0 kN to
F3 = 19.62 kN, the frequency of Peak 1 shifted from 0.67 kHz to 0.9 kHz (230 Hz increase), and the
frequency of Peak 2 changed from 3.76 kHz–4.02 kHz (260 Hz increase). The increased peak frequencies
suggested increments in the modal stiffness of the wearable PZT interface along with increased
tension forces.
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Figure 16. Shifts in experimental impedance peaks due to cable force changes: (a) Peak 1; (b) Peak 2;
(c) Peak 3.

5.3. Prediction of Tension Force Changes in Lab-Scale Cable Structure

The cable force changes in the test structure were predicted using Equation (5) with consideration
of the frequencies of Peaks 1–2 of the wearable PZT interface. Table 8 shows the predicted cable force
changes for the case α = 1 (i.e., axial load perfectly transferred to the wearable PZT interface). From the
table, it can be seen that when a single peak frequency or even multiple peak frequencies were used,
the predicted cable force changes were only about half of the inflicted values.

Table 8. Prediction of tension force changes (kN) in lab-scale cable structure.

Infliction
Prediction (α = 1)

Using Peak 1 Using Peak 2 Using Peaks 1–2

Case ∆F ∆F Error ∆F Error ∆F Error

F1 0 0 0 0 0 0 0
F2 9.81 4.99 49.13% 5.21 46.89% 5.10 48.01%
F3 19.62 11.00 43.93% 10.86 44.65% 10.93 44.29%

The effect of the load transfer capability of the wearable PZT interface on the tension force
estimation was experimentally analyzed. Figure 17 shows the predicted tension force changes in
the cable structure with various values of the load transfer capability factor α, ranging from 1 to 2.
When the value of the load transfer factor was increased, the predicted cable force changes tended to
approach the inflicted one. The load transfer capability factor of about 1.75 showed a good prediction
of cable force changes.
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Figure 17. Prediction of tension force changes in the lab-scale cable structure: load transfer capability
factor α = 1–2.

Compared with the FE modeling case, the experiment showed an increased value of the load
transfer capability factor. In the experimental setup, the interface was directly attached to the cable,
which comprised seven wires twisted into a helix. Thus, the hoop parts of the interface were not
fully contacted with the cable when being installed. The reduced contact area caused decreased
attachment strength of the interface, thus the value for the load transfer capability factor increased
to 1.75. The obtained result demonstrated that the estimation of the load transfer capability of the
wearable PZT interface was critical for an accurate axial force prediction. With a proper value of the
load transfer capability factor, the proposed method could accurately estimate the tension load changes
in an axial member. For real-world applications, the load transfer factor of the wearable PZT interface
should be identified by preliminary tests.

6. Conclusions

This study proposes a novel wearable piezoelectric interface that can be used to monitor and
quantitatively estimate the force changes in axial members. Firstly, an impedance-based force
estimation method was presented for axially loaded members. The estimation was based on the
relationship between the axial force level and the peak frequencies of impedance signatures, which were
obtained from the wearable piezoelectric interface. Secondly, a prototype of the wearable piezoelectric
interface was designed to be easily fitted into existing axial members. Finally, the feasibility of the
proposed method was demonstrated by predicting axial load changes in the FE modeling of an axially
loaded cylindrical member and a lab-scale model of a prestressed cable structure.

It was found that the estimation of the load transfer capability of the wearable PZT interface
was an important factor for accurate axial force prediction. The numerical simulation evidenced that
when the wearable PZT interface was completely bonded to the axial member (i.e., a nearly perfect
load transfer condition), the proposed method could accurately predict axial force changes. In real
situations where the wearable interface could receive a part of the axial load from the host structure,
the load transfer capability factor should be appropriately determined for a high-fidelity prediction of
the axial load.

While most of impedance-based SHM practices have utilized well-known damage metrics such
as RMSD or CCD, which are only statistically related to the damage, this work explored a formula
to physically describe the mechanical correlation between the axial load and the frequency shift in
EM impedance signatures, thus opening up a new strategy to predict the axial load in axially loaded
members. Despite the above positive findings, future studies are needed to optimize the geometric
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parameters of the wearable PZT interface and experimentally validate the practicality of the proposed
method on in-situ structures. In addition, the hoop parts of the interface should be adjusted to fit with
spiral fluted surface of target structures in order to enhance the load transfer capability.
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