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Abstract: Applying people detectors to unseen data is challenging since patterns distributions, such
as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ
from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt
frame by frame people detectors during runtime classification, without requiring any additional
manually labeled ground truth apart from the offline training of the detection model. Such adaptation
make use of multiple detectors mutual information, i.e., similarities and dissimilarities of detectors
estimated and agreed by pair-wise correlating their outputs. Globally, the proposed adaptation
discriminates between relevant instants in a video sequence, i.e., identifies the representative frames
for an adaptation of the system. Locally, the proposed adaptation identifies the best configuration
(i.e., detection threshold) of each detector under analysis, maximizing the mutual information to
obtain the detection threshold of each detector. The proposed coarse-to-fine approach does not
require training the detectors for each new scenario and uses standard people detector outputs, i.e.,
bounding boxes. The experimental results demonstrate that the proposed approach outperforms
state-of-the-art detectors whose optimal threshold configurations are previously determined and
fixed from offline training data.

Keywords: people detection; detector adaptation; pair-wise correlation; thresholds; entropy;
coarse-to-fine adaptation

1. Introduction

Automatic people detection in video sequences is one of the most relevant problems in computer
vision, which is essential in many applications such as for video-surveillance, human—computer
interaction and mobile robotics. Although generic object detection is maturing very rapidly thanks
to the recent widespread use of deep learning [1,2], many challenges still exist for the specific case of
detecting people. Video and images of people exhibit a great variation of viewpoints, motion, poses,
backgrounds, occlusions, sizes and body-part deformations [3]. Detection performance has a strong
dependency on the training data used to build detectors [4] and, therefore, accuracy drops are expected
when training and testing data have different patterns [5]. Moreover, people detectors often have many
parameters, which are heuristically or experimentally set according to training data. Such parameter
setting strategy may have limitations when applied to other data different from the training one.

The adaptation of people detectors is therefore desired to successfully apply such detectors
to unseen data [6]. This adaptation can be approached as best algorithm selection [7,8], domain
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adaptation for learning scene-specific detectors [9], data augmentation for the video-surveillance
domain [10] and unsupervised feature learning [3,4]. However, these approaches imply retraining
models for the new target domain, which may not be possible in certain applications such as real-time
video-surveillance where data may not be available in advance. Alternatively, one may adapt detectors
for testing time without changing any model by combining multiple features [11], embedding detection
within a multi-class Bayesian classification [5], designing cascades of heterogeneous detectors [12]
or coupling detection and tracking [13,14]. However, these approaches impose restrictions on the
employed detectors (e.g., high precision and low recall [14]) or require the use of tracking [13,14].

To overcome the above-mentioned shortcomings, in this paper, we propose a coarse-to-fine
framework to adapt the configuration of people detectors during testing time. In particular, we
focus on the thresholding stage that determines the detector output (i.e., bounding boxes), being
quite popular among a wide variety of recent detectors and having a strong impact on detector’s
performance (see examples in Figure 1). We employ multiple detectors to simultaneously find their
optimal threshold values within an optimization framework based on their mutual information [15].
Our proposal explores multiple thresholding hypotheses for all employed detectors and exploits
pair-wise correlations between their outputs within a coarse-to-fine adaptation strategy. First, a coarse
stage employs correlation entropy to identify which frames of the video sequence contain people and
therefore enables speeding up the detection process by avoiding analyzing frames without people.
Second, a fine adaptation stage is performed for frames where people are present by optimally
selecting the detection threshold for each detector. Such selection is performed for each detector
by accumulating all pair-wise comparisons with other detectors. Finally, we obtain the output of
each detector by applying the obtained threshold value. The proposed framework only requires
threshold-based detectors with an output in the form of bounding boxes. Therefore, it can be applied
to many recent approaches, as demonstrated by the experimental results, which show that adapting
sets of people detectors (from two to six) outperforms individual detectors tuned to obtain maximum
performance (i.e., whose threshold is trained offline and fixed in advance). Preliminary results are
published in [15].

Figure 1. People detection results for Faster R-CNN [1] of detectors (sequence tramstop, http:/ /www-

vpu.eps.uam.es/PDbm), in terms of FScore, true positive detections (TP), false positive detections (FP)
and false negative detections (FN). Each row corresponds to applying a detection threshold with values
0.24 (Row 1), 0.5 (Row 2) and 0.75 (Row 3). Finding an optimal threshold (framed in green) for all cases
is challenging due to the variability of viewpoints, people sizes and occlusions.
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The remainder of the paper is structured as follows. Section 2 describes the related work. Section 3
describes the proposed coarse-to-fine adaptation framework based on cross-correlations. Section 4
presents the experiments. Finally, Section 5 concludes this paper.

2. State of the Art

Adapting pedestrian detectors to specific scenes is frequently termed as domain adaptation where
the original training dataset (i.e., source domain) is fully annotated. Existing approaches adapt such
detectors to unseen data (i.e., target domain) which can be focused on features or models [16].

Feature-based approaches aim to transform feature spaces between the source and target domains,
and then apply a classifier. Early approaches annotate data in the target domain to define a grid
classifier from scratch [17]. Albeit effective, such annotation is time-demanding, several data samples
are needed and therefore difficult to perform for other domains. Most of recent feature-based
approaches focus on transfer learning where the knowledge from source domains is extended to
semantically-similar categories of the target domain by retraining models with few data annotations.
Transfer-learning can use bounding boxes from both the source and target domain such as the
learning of discriminative models using CNNs and data augmentation [10] and the transfer of shared
source-target attributes by feature selection where data distributions of the domains are similar [18].
Moreover, approaches can also assume the absence of annotations for the target domain and, therefore,
perform an online self-learning process by determining which samples to select. For example, such
selection can use super-pixel region clustering [19], Gaussian regression within a hierarchical adaptive
SVM [16], confidence scores within a deep model [3], background modeling [20] and multiple
contextual cues [4]. Other strategies may also be applied by weighting the source data to match
the distribution of the object categories in the target domain before re-training [4], by propagating
labels between frames for good positive instances [20] and by integrating classifiers at image and
instance level to maintain semantic consistency between two domains [21]. Image level aims to
determine whether source or target domains are analyzed, whereas instance level classifier is focused
on the feature maps. Finally, transfer learning using synthetic data has recently been proposed [22,23].
However, training complex models still presents challenges due to the visual mismatch with real
data [20].

Model-based approaches focus on adapting the parameters of the classifiers or the strategy applied.
For example, in [5], a Bayes-based multi-class classifier is adapted by computing the proportion of
objects in the target domain during runtime. Such adaptation may focus on correcting detection
errors by spatiotemporal filtering [24]. Other approaches make use of context such as for building
a partial belief about the current scene to only execute certain classifiers [25], for applying specific
combinations of part-based models based on spatial object information [26] and for modulating object
proposals (class prior probabilities) with semantic knowledge [27]. Model-based approaches may
also combine different models by learning the weights of predictions for different sensor modalities
in an online manner [11], by applying a cascade of detectors designed to combine the confidence of
heterogeneous detectors [12], and by selecting automatically the most suitable model for visible or
non-visible light images [28]. Another approach focuses on automatically learning classifiers on the
target domain without annotated data, which are later evaluated in the source domain with labeled
data and finally top-performing classifiers are selected as the most reliable for the target domain [29].
Moreover, model-based approaches may perform detector ranking by estimating the similarity between
both domains in some feature space to design a cost function for selecting the best algorithm in each
situation or domain [7]. Therefore, detector ranking can be efficiently learned for different target
domain subsets [8] but requires full annotation of source and target domain. Similar to feature-based
approaches, model-based detector adaptation may be achieved by coupling detection and tracking
for online retraining single [13] or multiple [14] detectors without annotated data. However, these
approaches share the limitations of transfer learning (detector re-training), impose restrictions on the
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employed detectors (e.g., high precision and low recall [14]) or require the use of tracking which is
may lead to unstable results [13,14].

Table 1 compares the proposed and reviewed approaches. As we can observe, the proposed
approach avoids re-training detectors, unlike many model-based and feature-based approaches based
on transfer learning, which often require an offline training stage before the final application to the
target domain. Instead of selecting accurate samples for re-training, we leverage results from multiple
and possibly independent people detectors assuming that their errors are diverse. The detection
threshold of each detector is adjusted according to similarities to other employed detectors. Moreover,
our proposal applies self-learning in an online fashion without requiring annotated data for the target
domain, unlike those in [26,27] and also without requiring a prior analysis of the target domain
features [7,8]. Additionally, the proposed approach employs standard outputs of people detectors
(i.e., bounding boxes) so it can be applied to a wide variety of existing approaches, unlike other
approaches restricted to CNNs [10], Faster R-CNN [21], and SVMs [16,18] or to being coupled with
other detectors [11] and trackers [13]. Finally, the proposed approach is applied to video sequences,
unlike most of those in the literature, which are focused on image-level classification. Such application
to video may determine when and where adaptation might improve performance, and therefore adjust
the computational complexity to the particular details of each video sequence.

Table 1. Comparison between the main reviewed approaches for adapting people detectors. FB,
feature-based approaches; MD, model-based approaches; PBD, part-based detector; I, image; V, video.

Target Domain Online
Ref.  Type Strategy Adapted Parameters Comments
Re-Training Labels Data Fashion

[17] FB - Yes Yes I No New classifier Full learning of grid-classifiers

[10] FB  Transfer learning Yes Yes I No Tuned classifier Data augmentation for CNNs

[18] FB  Transfer learning Yes Yes 1 No Tuned classifier Feature selection for attributes

[19] FB  Transfer learning Yes No I No Tuned classifier Sample selection using super-pixels

[3] FB  Transfer learning Yes No I No Tuned classifier Sample selection using confidence scores
[20] FB  Transfer learning Yes No I No Tuned classifier Sample selection and propagation

[4] FB  Transfer learning Yes No I No Tuned classifier Sample selection using multiple cues
[21] FB  Transfer learning Yes No I Yes Tuned classifier Added losses at image and instance level
[22] FB  Transfer learning Yes Yes I No Tuned classifier Use of synthetic data

[5] MB - No No I Yes Prior probabilities Multi-class Bayesian classifier

[26] MB Context No No I Yes PBD configurations Requires spatial context of scene

[27] MB Context Yes No I No Prior probabilities Requires knowledge rules of scene
[11] MB Model combination No No I Yes Feature weighting Combination of multiple modalities
[28] MB  Model selection No No I Yes Adaptive selection Visible or non-visible light images

[7] MB  Detector ranking No No I Yes  Best selection from pool Source-target domain similaritiy

[13] MB Detection-tracking Yes No I Yes Tuned classifier Sample selection by tracking

Proposed MB Cross correlation No No I/V  Yes Detection threshold Maximization mutual information

3. Detector Adaptation Framework

We propose a coarse-to-fine framework to improve detector’s performance at runtime classification
by adapting the configuration of each detector employed (see Figure 2). This proposal is inspired by the
maximization of mutual information strategy where classifiers are combined assuming that their errors are
complementary, being successfully applied for example to detect shadows [30] and skin [31]. We extend
such maximization framework to people detection by introducing pair-wise detector correlation and
by adapting online their configuration. Note that we are not re-training detectors at prediction time,
which may require data not available in real applications or highly-accurate detectors, and may imply
high latency [5], i.e., a minimum number of frames to compute accurate decisions over time. Instead,
we consider generic threshold-based detectors pre-trained on standard datasets, thus making this
proposal applicable to a wide variety of detectors.
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Assuming a set of N people detectors {D, }!V_; applied to an image, each detector D, obtains
a confidence map M, describing the people likelihood for each spatial location (x, y) and scale s in the
image. Then, detection candidates are obtained by thresholding this map:

1 if Mu(xys) >

0 otherwise

Ta(x,y,5) = { @

where 7, (x,y,s) = {0,1} and 7, is the detection threshold whose value is heuristically set based on
the confidence map. These candidates are later combined across scales and can be post-processed
by a variety of techniques such as non-maximum suppression [32] and background-people
segmentation [33]. The final result for each detector is a set B;" = {bk}',;zfm with K™ detections
(i.e., bounding boxes) representing the output of the detector D, where each detection by (i.e., bounding
box) is described by its position (x, y) and dimensions (w, ). A key parameter in this procedure is the
detection threshold T,;, which determines the number of detection candidates. Low (high) values of
T, generate several (few) detections increasing the false (true) positive rate: three examples of T;, are
shown in Figure 1. We propose to adapt such detection threshold to the image context by exploring
similarities with the other detectors.

Adaptation

Detector D, Presence

Cross- T
correlation

of detectors

Input
image

Coarse

Absence/Presence
of people?

Detector Dy Ty

Figure 2. Overview of coarse-to-fine adaptation system.

We compare the output of detectors to obtain a set of pair-wise correlation scores (cross-correlation
of detectors in Figure 2), which measures the output similarity. This stage is extended in Section 3.1.

We analyze this similarity at two different levels. First, we propose a coarse analysis to determine
relevant frames in a video sequence, where people are present. Second, a fine analysis is applied in
those selected frames to adapt the detection system, i.e., adjust the detection thresholds.

3.1. Cross-Correlation of Detectors

Firstly, we explore the decision space to determine each detector output by applying multiple
thresholds. Then, we correlate these multiple outputs for each pair of detectors (D, and Dy,) to obtain
a correlation map C;,,; which measures the output similarity (see Figure 3).

My Multiple ‘Lb/ )

thresholding | —~x> C
1 Pair-wise 1,2

\ B correlation
Multiple |——»
M, \_thresholding L -

Figure 3. Cross correlation of detectors overview.
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3.1.1. Multiple Thresholding

.y =L
To explore the possible detector outputs, we define a set of L thresholds {T’,]Z }],_1 for each detector

D, whose values are determined by considering L levels between the extreme values of the confidence
map M, (i.e., minimum and maximum). Then, we perform thresholding with multiple values %} to
obtain a set of outputs as follows:

Qp={BIL1<<L, @)

where each output BZ']1 is obtained by applying the threshold 'T',]; to Equation (1). Note that each detector
D,, may have different threshold values %} adapted to the range of values in M, (x,y,s). Figure 4

shows three examples (rows) of the possible detector outputs BZ']T obtained by applying two different
iy j=L=60
thresholds j = 1 and j = 52 from the full set {ffl }] .

j=1

(b)
Figure 4. Multiple thresholding examples with Faster R-CNN detector [1]. Three examples (rows) are

shown where columns are obtained bounding boxes for thresholds (a) i‘ll = 0 and (b) T152 = 0.85 from
-y j=L=60
the full set {f,]q }] .

3.1.2. Pair-Wise Correlation

We correlate the N detector outputs {2, }Zi\’ to estimate their similarity. We compute a correlation
map Cp  for each pair of detectors outputs 2, and (),,. Each element is defined as:

Comlis i) = p(BT B, (i € {1,..L}) 3)

where p(-, ) is a function to compute the similarity between the output of detectors. The number of

N!

correlation maps Cy,,im to be computed for N detectors is s | =z

We propose computing p(-,-) as a one-class classification problem by applying standard
evaluation measures. To compare bounding boxes from two outputs, we use three matching
criteria [34]: relative distance dr € [0,dyax] (Where dy,y is the image diagonal divided by each
b size), cover co € [0,1] and spatial overlap ov € [0, 1]. The criterion dr measures the distance between

zi z/ 2
the bounding box centers of B,f’l’ and B, in relation to the size of the bounding boxes in B, Similar
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)
to dr, criteria co and ov employ, respectively, the percentage of spatial bounding box coverage in B,

and the intersection-over-union features. A positive match is considered true if dr < 0.5, co > 0.5
and ov > 0.5, as commonly employed in related works [34], which corresponds to a deviation up to
i i
25% of the true object size. Only one b € BZ’I’ is accepted as correct by matching b; € B," (i.e., true
positive), so any additional by € BZ’I‘ on the same bounding box is considered as a false positive. Then,
we compute precision and recall measures from the matching results and obtain the FScore as the final
zi =/
similarity measure p(-, -) between B, and B, as in [35].
Thus, the final correlation map Cj, ;,;, between two detectors is defined as the FScores F:

F (B,?, B,T]f") F (B,? ) BZ;%)
Com = F (Bf,’i,Bf,él) ) @)
F (Bf,”L ) Bf,;lﬂ) F (BZ*,BZ;%)

wherei,j = {1,..., L}.

Figure 5 shows one example of correlation map C;, and four different outputs between two
the detectors C1,(i,j) (rows A, B, C and D). Example A corresponds to a low threshold value for
both detectors (T’{ and T’é) and therefore in this case a low FScore similarity F(i,j) = 0.52. On the
other hand, Example C corresponds to a medium-high threshold value for the first detector # and
a low-medium threshold value for the second detector Té, and therefore in this case a high FScore
similarity F(i,j) = 1.0.

&
FScore:0.67 / TP:2 / FP:0 / FN:2

@) (b) (0 (d)

Figure 5. Correlation map example C; » for two Faster R-CNN detectors [1] using VGG (cyan) and ZF
(orange) models (a). Four different outputs examples Cy 5 (i, j) (rows A, B, C and D) are shown where

=i =]
columns are the corresponding bounding boxes of: (b) the VGG detector B1T1 ; (¢) the ZF detector B;z ;
and (d) the associated correlation similarity result.

3.2. Coarse Adaptation

Assuming that frames without people are not relevant for the adaptation process, we propose
to use the correlation map C, »; to determine the relevant frames in a video sequence. In particular,
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we propose to measure the information entropy as an estimation of the presence of people in every
frame (see Figure 6).

Cio [ \ €12
1,2 2,
Entropy : Decision
: computation : fusion
—P> >

CN_l_N;/ En-1N

Has

people? Fine adaptation

lNo

T = T, = '[Xlzce

Figure 6. Overview of coarse adaptation.

Based on the principle of maximization of mutual information, we assume that two independent
detectors, albeit designed for the same purpose (to detect persons), in presence of people would be
highly correlated when many bounding boxes are matched and, therefore, a high level true positive
detections is expected. On the other hand, low correlation values would have few matches and,
therefore, imply an increase in the false positive rate or negative detection rate. Note that there is

one exception to this assumption when outputs are empty (i.e., B,?‘ = B,f;j” = () since both outputs
are equal and we cannot compute the FScore. To consider this, we avoid this situation by setting the
FScore to zero when these sets are empty. However, two independent detectors applied to a frame
without the presence of people would have low correlation values for every possible configuration
Cy,m- For that reason, we can assume that those frames with the presence of persons will produce more
variable correlation maps Cj, ;; than those without people.

We propose estimating the absence/presence of people using the entropy of the correlation map
Cyn,m. Information entropy is defined as the average amount of information produced by a stochastic
source of data. The measure of information entropy associated with each possible data value is the
negative logarithm of the probability mass function for the value. Entropy is a statistical measure of
randomness that can be used to characterize the texture of an input image. In our case, we propose
classifying every frame using the entropy over the correlation map Cj, ; as:

Enm=—Y_Cum (i,]) - 108 (Com (i,7)), (i,j € {1,..L}) ®)
L]

Figure 7 shows three different examples (rows) of correlation maps Cy,», the output of two
detectors for two different threshold values (low and high thresholds) and the corresponding entropy
En,m values. Note the three different correlation behaviors: the first example shows an empty scene,
almost zero FScore similarity for any possible pair-wise correlation and therefore a low entropy value
(En,m = 0.6); the second example shows an scene with five pedestrians, high FScore similarity for
a range of pair-wise correlations and therefore a high entropy value (&, ;; = 4.6); and the third example
shows only one person, a medium-high FScore similarity for a range of pair-wise correlations and
therefore a medium-high entropy value (&, = 3.3).

Up to this point, we have a set of hypothesis for presence of people obtained for each compared
pair of detectors &, , (i-e., D, and D,;), which are combined to obtain a final decision (decision fusion in
Figure 6). Such hypotheses combination is performed as a traditional mixture of experts via weighted
voting [36]:

N
&= Z W™ Eym (n #m), (6)
m=1

where w™™ € [0,1] is the weight for the hypothesis &£, achieved by comparing D, and D, and
2N:1 w"™ = 1(n # m). Although such ensemble voting may benefit from a previous learning
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stage [37], currently we assume no prior knowledge about detectors performance so we consider equal

weighting W' = ﬁ

E-..
ol 7|

Figure 7. Input images, correlation results, correlation map and entropy results for two Faster R-CNN

(d)

detectors [1] using VGG (cyan) and ZF models (orange). Three examples (rows) are shown where the
column (a) are the input images, the next two columns are the obtained bounding boxes for thresholds:

-y j=L=60
(b) ‘T’ll = 0; and (c) ‘Z'152 = (.85 from the full set {f,], }] L (d) the correlation map C; », with color code
]:

of (blue) 0 < C;p <1 (red); and (e) the corresponding entropy value & .

In the case of absence of people (i.e., low value of £), we assume the detections outputs are empty

(i-e., Bl = f,{” = ) and therefore the final configuration for each detector is 7" = 7;;.. = T3, = co.
This decision has the potential benefit of avoiding any possible false detection but also the possible
disadvantage of losing any correct detections (see visual examples in Figure 1). On the other side, in
the case of presence of people (i.e., high value of £), a further adaptation process is required, therefore
it is necessary to analyze the fine similarity for the adaptation process.

We formulate the detection of frames containing people (i.e., coarse adaptation) as a two-class
classification problem where class q; indicates the absence of people in a frame and g is the opposite
class. We classify the frame based on the evidence provided by the entropy £, we evaluate the
posterior probability of each class P(g; | £) and we choose the class with largest P(q; | £), i.e.,
P(g1]€) g P(ga | €). Then, applying the Bayes Rule results in:

w2

P(€ |P‘7(1€))P(‘71) :’% p(e IIDti(zg)l’(qz> @)

P(&) does not affect the decision rule so it can be eliminated. We simplify to the likelihood
ratio A(E):

_ P(E|q1) 1 P(q)
N = BE ) 2 Blay) ®
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Finally, assuming equal priors (absence/presence of people), the decision rule is known as the

Likelihood Ratio Test (LRT):
P(E1q)
= peTn &

which in essence turns into finding the first entropy value £ that determines the condition igzg >1

and using such value as a threshold for the entropy.

3.3. Fine Adaptation

The aim of the fine adaptation is to find the configuration with the highest similarity (i.e., highest
value in Cy,;) to select the best detection threshold for each detector (7; and T, respectively).
The threshold hypothesis selection requires searching a single maximum value in Cy ;, which may
contain multiple local maxima. The correlation map Cj, s, is the similarity p between the output of each

i by
pair of detectors B," and B,;", and the threshold hypothesis selection can derived as:

~n,m ~1,m =1 =] .
{Ti™, o™} p(BI ™ B ) > p(By, Bi), Vi j (i,j € {1,..L}) (10)

where p(-, -) is defined as Equation (3).
Our problem for finding the optimal global solution can be formulated by following the Maximum
Likelihood Estimation (MLE) criterion once computed C,

{5, Ty} = argmax (P(BZ'Q,BZél)) (i €{1,..L}). (11)

T T

To find such maximum value, we propose using a sub-optimal global search solution of the
threshold hypothesis selection problem with lower computational cost requirements, i.e. Simulated
Annealing (SA) [38]. SA is a probabilistic technique for approximating the global optimum of a given
function. For problems where finding an approximate global optimum is more important than finding
a precise local optimum in a fixed amount of time, SA may be preferable to other iterative alternatives
such as gradient descent [39].

Moreover, we may assume that the probability of selecting a pair of thresholds (i.e., choosing
a specific configuration) depends on the pair of detectors compared. For example, some detectors
may tend to use thresholds with low values, whereas other detectors may use high values. Therefore,
we include a function g(+, -) to model the prior distribution of thresholds which determines the most
likely pairs of thresholds given two detectors. It can be defined as follows:

(e, i) = argma (p(8F, B3F) - ¢(8 ) ) i € {11, (12)
T

Since the solution of Equation (11) or Equation (12) may not be unique, we may obtain various
maximum values 7, (see the darkest area in the bottom-left image in Figure 5a) as the detectors are
never totally independent. Therefore, we currently propose three alternatives: selecting the mean,
minimum or maximum value among those thresholds 7" maximizing Cy, .

After finding the best detection thresholds obtained for each compared pair of detectors ;"
(i.e., Dy and Dy;), we combine them to obtain a final configuration for each detector (decision fusion in
Figure 8).

Such hypotheses combination is performed as in Equation (6) as a traditional mixture of experts
via weighted voting as follows:

N
=Y """ (n # m). (13)

m=1
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It is important to note that this equation does not combined people detectors, instead the proposed
approach focuses on improving independently each detector by adapting the detection threshold.

12 1,2
{t17. 17}

\4

Threshold
hypothesis
search

Decision
fusion

|
N-1,N _N-1,N
/ {tv-1 Ty }

CN -1,N
Figure 8. Overview fine adaptation.
4. Experimental Results

This section describes the experimental setup to evaluate the proposed coarse-to-fine framework
to adapt people detectors during runtime classification, and the results of each part of the framework:
coarse adaptation, fine adaptation, and the complete system (see Figure 2).

4.1. Setup

We performed the evaluation using the people detection benchmark repository (PDbm
(http:/ /www-vpu.eps.uam.es/PDbm/, last accessed December 2018.)) [40]. It has 19 sequences with
ground-truth annotations for traditional indoor and outdoor scenarios in computer vision applications:
video surveillance, smart cities, etc.

We quantified detection performance for each video frame by precision, recall and FScore
metrics [35]. We report the frame-level mean FScore for all tested images as the final performance
value. However, to evaluate the impact of the coarse adaptation in the final system, we evaluated the
performance in terms of global FScore, i.e., the resulting video-level FScore of the adaptation process
for each video and not only frame by frame results.

We applied the adaptation system to six people detectors using publicly available implementations.
We used two versions for DPM [32] (Inria and Pascal models), ACF [41] (Inria and Caltech models)
and Faster R-CNN [1] (VGG and ZF models).

4.2. Coarse Adaptation Results

We proposed the estimation of the absence/presence of people for each frame, using the entropy
of the correlation map Cj, ;; (see Section 3.2). We first estimated the entropy probability density function
(pdf) of both classes (P(€ | q1) and P(€ | g2)) using the training dataset VOC2012 (Visual Object
Classes Challenge 2012 [42]). Figure 9a,b shows the estimated entropy pdfs P(€ | q1) and P(€ | q2),
respectively, while Figure 9c shows both pdfs together. After that, we used the LRT (see Equation (9))
to determine the best entropy threshold between the two classes, i.e.,, £ = 0.7.

Then, we validated the absence/presence of people classification approach. We analyzed the
results over the evaluation dataset, PDbm [40]. We performed a 10-fold cross-validation evaluation
selecting randomly a balanced set of 1000 frames with and without the presence of people. We analyzed
the precision (P), recall (R) and FScore (F) for each class (the absence/presence of people, Classes 1
and 2, respectively) and the final FScore sum. Table 2 shows the classification results obtained by
a random classifier, by the six detectors independently and by our proposal with different number
of thresholds L = {5,10,20,40,60}. For the independent detectors, the optimal fix threshold was
previously learned with the training dataset VOC2012 (Visual Object Classes Challenge 2012 [42]).
The proposed coarse adaptation could classify with around 80% of precision and recall both classes:
absence and presence of people. On the other hand, all the other approaches obtained worse results
(around 50-60%). The results show clearly how the use of the entropy over the six detectors improve
the results significantly in terms of precision, recall and FScore, with respect to the use of the detectors
independently and, therefore, versus a random classifier. In addition, the results show how the
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performance using different number of thresholds L = {5,10,20,40,60} are quite homogeneous,
getting all of them around 1.6 of FScore sum. For that reason, we use the coarse adaptation with L =5
since it presents a lower computational cost, i.e., lower number of pair-wise correlations between
detectors per frame (see detailed analysis in Section 4.3.3 and Table 8).

0.7 T T T T T T T T T T 0.04
06 0.035
0.03 [
0.5
= QU 0025
O o4f | o
w o ool
=~ o3f 4 N~—"
o O o5t
0.2 q
0.01
01 || 1 0.005 [
0 i - 0
0 0.5 1 15 2 25 3 35 4 45 5 0 1 2 3 4 5
Entropy (¢€) Entropy (¢€)
a b
0.7 r

[ presence (scaled by 10 factor for visualization)

I absence

25 3 3.5 4 4.5 5

-Entro.py (€)

C

0 0.5 1 1

Figure 9. Example of probability density function of absence/presence of people: (a) P(€ | g41);
(b) P(€ | 92); and (c) both pdfs together. The red distribution correspond to the absence of people
(Class 1) and the blue one to the presence of people (Class 2).
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Table 2. Absence/presence of people classification results obtained by a random classifier, by
the six detectors independently and using our proposal with different number of thresholds
L = {5,10,20,40,60}.

Approach Pr1 R1 P2 R2 F1 F2 F1+F2
Random 050 040 050 060 048 0.57 1.01
DPM-I 055 047 054 061 049 0.56 1.01
DPM-P 049 067 048 030 056 0.39 0.95
ACF-I 052 050 052 054 052 051 1.03
ACF-C 053 040 052 064 046 057 1.03

FRCNN-VGG 054 036 052 069 044 059 1.03
FRCNN-ZF 051 027 050 074 036 0.60 0.95
Proposed L=5 088 071 076 091 079 0.83 1.62
Proposed L=10 084 0.78 0.80 085 0.77 0.80 1.57
Proposed L=20 082 081 081 082 077 0.79 1.56
Proposed L=40 081 082 082 0.81 077 0.79 1.56
Proposed L=60 081 083 0.83 080 0.78 0.79 1.57

4.3. Fine Adaptation Results

4.3.1. Fine Adaptation: Maximum Likelihood Estimation

We evaluated the fine adaptation stage, Adaptive people Detection by maximizing Correlation
(ADC), with five sets with incremental size to test the effect of successively adding detectors to the
final result: ADC2 (DPM-I and DPM-P), ADC3 (DPM-I, DPM-P, and ACF-I), ADC4 (DPM-I, DPM-P,
ACF-1, and ACF-C), ADC5 (DPM-I, DPM-P, ACF-I, ACF-C, and FRCNN-VGG) and ADC6 (DPM-],
DPM-P, ACF-I, ACF-C, FRCNN-VGG, and FRCNN-ZF).

Table 3 shows the average results after adapting two and six detectors, ADC2 and ADCES,
respectively, with different number of thresholds L = {5,10,20,40,60} and strategies to select
a threshold 7" from those values maximizing Cy , (mean, minimum or maximumy). In both cases,
the results show that the performance increases progressively with the number of thresholds.
In addition, the minimum strategy obtained in general the worst results and the mean strategy obtained
slightly better results than the maximum one. Figure 10 shows examples of correlation and threshold
selection results between pairs of detectors. In the first row, there are three examples of scenes without
people and low FScore similarity for any possible pair-wise correlation, while the other two rows
include examples from one to five pedestrians and medium-high FScore similarity for a range of
pair-wise correlations.

Table 3. Average FScore of adapted detectors for different strategies to select a threshold 7,/™ from those
values maximizing C; ,; obtained with various threshold with L = 5, 10, 20,40 and 60. Bold indicates
best result for: (a) ADC2; and (b) ADC6. Data adapted from [15].

Strategy Mean Minimum Maximum

L=5 33.2 334 33.2
L =10 35.1 349 35.0
(@ADC2 L =20 35.9 35.7 35.7
L =40 36.3 359 36.0
L =60 36.3 359 36.0
L=5 39.8 38.8 40.1
L=10 41.6 39.9 41.7
(b) ADC6 L=20 42.4 39.6 42.2
L =40 42.7 39.0 422

L =60 42.7 39.1 42.0
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(b)

Figure 10. Correlation and threshold selection results between pairs of detectors. Each column pair
shows an example of the selected thresholds (cross-marked) in the correlation map (left column) and
the corresponding obtained bounding boxes (right column). Column pairs correspond to: (a) Faster
R-CNN [1] using VGG (cyan) and ZF (orange) models; (b) DPM[32] using Inria (cyan) and Pascal
(orange) models; and (c) ACF [41] using Inria (cyan) and Caltech (orange) models.

Table 4 shows one example of successively adding detectors to the final configuration from two
detectors to six (from ADC2 to ADC6). In general, the results show that the greater is the number
of detectors the higher is the performance. For example, the DPM-I increases progressively the
performance from 37.1 (ADC2) to 38.2 (ADC6). Aa other examples, the ACF-I increases progressively
the performance from 38.3 (ADC3) to 39.5 (ADC6) and the the ACF-C increases progressively the
performance from 40.0 (ADC4) to 42.0 (ADCS6).

Table 4. Average FScore of the five ADC combinations from ADC2 to ADC6. Percentage increase
(%A) calculated for each detector with respect to the previously obtained performance just before the
additional detector inclusion in the combination (in bold), from ADC2 to ADCS5, respectively. Data

adapted from [15].
ADC Combinations
ADC2 ADC3 %A ADC4 %A ADC5 %A ADC6 %A
FRCNN-ZF [1] - - - - - - - 47.2 -

FRCNN-VGG [1] - - - - - 51.6 - 51.8 04
ACF-C [41] - - - 40.0 - 41.6 4.0 42.0 5.0

ACF-I [41] - 38.3 - 38.6 0.8 39.3 2.6 39.5 3.1
DPM-P [32] 35.3 35.9 1.7 36.2 2.5 36.9 4.5 37.0 4.8
DPM-I [32] 371 37.2 0.3 37.6 1.3 38.2 3.0 38.2 3.0

Table 5 shows the comparative results of our approach (ADC6, all six detectors independently of
the order or their inclusion) versus two different fixed thresholding approaches (FTppy,, and FTyoc12)-
The FTppp, approach is the ideal case, the optimal threshold is previously learned with the chosen
evaluation dataset (PDbm [40]) and the FTyoc12 is a more realistic approach, where the optimal
threshold is previously learned with the training dataset VOC2012 (Visual Object Classes Challenge
2012 [42]). The results show clearly that the use of our adaptive threshold approach ADC6 significantly
improves the results of any of the individual detectors using a fixed threshold (10.1% and 18.6%
average improvement with respect to FTppy,,, and FTyoc1p, respectively).



Sensors 2019, 19, 4 15 of 22

Table 5. Comparison in terms of average FScore between two fixed thresholding approaches and the
ADC6 over PDbm dataset. Percentage increase (%APPP™ and %AVOC12) calculated with respect to the
fixed thresholding approaches, FTppy,, and FTyoc12, respectively.

Fixed Threshold Proposed Threshold Adaptation
FTppom FTvociz ADC6  %APPbm o AVOCIL2

DPM-I [32] 339 29.9 38.2 12.7 27.8
DPM-P [32] 329 313 37.0 12.5 182
ACF-1[41] 352 32.1 39.5 12.2 23.1
ACF-C [41] 36.6 35.2 42,0 148 19.3
FRCNN-VGG[1]  50.1 46.0 51.8 34 126
FRCNN-ZF [1] 442 412 47.2 6.8 14.6
Average 38.8 36.0 427 10.1 186

Additionally, we also evaluate the Fine adaptation stage (ADC6) over a different dataset,
the MILAN dataset [43]. This dataset includes eleven challenging, publicly available video sequences
with ground truth (TUD-Stadtmitte, TUD-Campus and TUD-Crossing, S1L1 (1 and 2), S1L2 (1 and
2), S2L1, 5212, S2L3 and S3L1). The first three sequences are recorded in real-world busy streets,
the complexity in terms of crowd or occlusions is medium or low (fewer than 10 pedestrians are
present simultaneously). The last eight sequences are part of the PETS 2009/2010 benchmark [44].
They are recorded outdoors from an elevated point of view, corresponding to a typical surveillance
setup. These scenarios include higher complexity in terms of crowds and occlusions than the previous
ones (generally more than 10 pedestrians are present simultaneously).

Table 6 shows the comparative results of our approach (ADC6) versus two different Fixed
Thresholding approaches (FTppan and FTyociz) over the MILAN dataset [43]. As in the previous
experiment, The FTpp 4N approach is the ideal case and the FTypcip is a more realistic approach.
The ADC6 presents similar results as with the previous dataset. In this case, the initial or fixed thresholding
results are higher, therefore the potential improvement is slightly smaller, even though our adaptive
approach ADC6 significantly improves the results of any of the individual detectors using a fixed threshold
(8.3% and 12.9% average improvement with respect to FTyj; an and FTyoc12, respectively).

Table 6. Comparison in terms of average FScore between two fixed thresholding approaches and the
ADC6 over MILAN dataset. Percentage increase (%AMITAN and %AVOC12) calculated with respect to
the fixed thresholding approaches, FTy;; on and FTyoc12, respectively.

Fixed Threshold Proposed Threshold Adaptation

FTyiran  FTvociz ADC6 % AMILAN %AVOC12

DPM-I [32] 50.1 47.1 54.5 8.8 15.7
DPM-P [32] 54.5 52.5 59.1 8.5 12.7
ACF-I [41] 65.4 61.4 67.8 3.7 10.4
ACF-C [41] 64.8 61.8 69.4 71 12.3
FRCNN-VGG [1] 70.1 66.1 76.6 9.3 16.0
FRCNN-ZF [1] 65.3 61.3 734 12.5 19.8
Average 61.7 59.2 66.8 8.3 12.9

4.3.2. Fine Adaptation: Maximum A Posteriori Estimation

As commented in Section 4.3.1, the previous results are for the threshold hypothesis selection
using the Maximum Likelihood Estimation (MLE). However, the results can be improved including
the prior distributions of any pair of thresholds configurations, i.e., the correlation map Cy ;. Therefore,
we evaluated the results using the Maximum A Posteriori Estimation (MAP). Firstly, during the optimal
fix threshold learning for evaluation comparison, we also learned the prior distributions of each pair
of detector with the training dataset VOC2012 (Visual Object Classes Challenge 2012 [42]) and then
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we evaluated the results of our approach ADC6 over PDbm including the estimated posteriori in the
threshold hypothesis selection.

Figure 11 includes a visual representation of the 15 different prior distributions, one for each pair
of six detectors and their 15 mirrored versions. Note the clear different behavior between different
detectors. While the DPM and ACF versions present a more concentrated range of best thresholds,
both FRCNN variations present a sparser range of best thresholds. It is due to the better detection
performance of the FRCNN itself and therefore any possible improvement versus a predefined fix
threshold will be more difficult. Table 7 shows the comparative results using the MLE versus using the
MAP. The results show clearly that the use of our adaptive threshold approach ADC6 with the MAP
improves the results of any of the individual detectors without the MAP (3.3% average improvement).

DPM-1 DPM-P ACF-1 ACF-C FRCNN-VGG FRCNN-ZF

o
- -
-
o - -
Y ]
. AT -

Figure 11. Visual representation of prior distributions of any pair of thresholds configurations.

Table 7. ADC6 FScore results including the maximum a posteriori estimation in the threshold
hypothesis selection or fine adaptation.

Proposed Threshold Adaptation
ADC6 (MLE) ADC6 (MAP) %A

DPM-I [32] 38.2 40.2 5.2
DPM-P [32] 37.0 38.4 3.8
ACF-I [41] 39.5 40.7 3.0
ACF-C [41] 42.0 43.9 4.5
FRCNN-VGG [1] 51.8 52.7 1.7
FRCNN-ZF [1] 47.2 48.9 3.6
Average 427 441 3.3

4.3.3. Fine Adaptation: Threshold Hypothesis Selection

We propose using a sub-optimal global search solution of the threshold hypothesis selection
problem with lower computational cost requirements, the Simulated Annealing (SA) [38]. We compared
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SA against other search alternatives; for example, applying a subset of thresholds K = |L/k]|
(see Section 3.1.1), being k the sub-sampling factor in the decision space, i.e.,, k € R and k > 1.
In particular, we evaluated four sub-sampling factors from the original decision space L = 60
(Exhaustive Search, ES), the sub-optimal subsets of thresholds are K = {40,20,10,5}. We also evaluated
three non-regular sub-sampling patterns, the Three Step Search (TSS) [45], the Four Step Search (FSS) [46],
and the Diamond Search (DS) [47]. Finally, we also evaluated two traditional global optimization pattern
search approaches: the Pattern/Direct Search (PS) [48] and the Particle Swarm Optimization (PSO) [49].

Table 8 shows the comparative results in terms of FScore and computational cost (number and
percentage of operations per each frame), between different threshold hypothesis selection approaches,
including regular sub-sampling patterns with sub-optimal subsets of thresholds K = {40, 20, 10,5},
non-regular sub-sampling patterns (TSS, FSS and DS) and more traditional global optimization
approaches (PS, PSO, and SA). The results show clearly how the exhaustive approach, i.e., searching
in the original decision space L = 60, obtains the best results but the highest computational cost.
Logically, any sub-optimal global search solution of the threshold hypothesis selection problem will
obtain worse results in terms of FScore, but also a reduction of the computational cost. The use
of different sub-optimal subsets of thresholds (K = {40,20,10,5}), obtained progressively worse
FScore results (from 42.5 to 37.4 respectively) but with a strong reduction in terms of percentage of
operations (from 44.4% to 0.7%, respectively, being the 100% of operations per each frame required
with K = 60). The use of non-regular sub-samplings also obtained worse FScore results (between
32.8 and 39.9) but with always a drastic reduction in terms of percentage of operations (only between
0.4% and 1.1% of operations per each frame are required). In particular, FSS obtains the best ratio
between FScore results and computational cost. Finally, the use of more traditional global optimization
pattern search also obtained worse FScore results (between 35.7 and 42.0) with a drastically reduction
in terms of percentage of operations only between 0.2% and 5.0% of operations per each frame are
required). In particular, SA obtained the best FScore results (42.0) but also a strong computational cost
reduction in terms of percentage of operations (only 5.0% of operations per each frame are required).
Note the progressive reduction of FScore and computational cost of the sub-optimal subsets of threshold
(K = {40,20,10,5}), the significant reduction of FScore with the use of any non-regular sub-samplings
(TSS, FSS and DS) but with a strong computational cost reduction, and the different behaviors of the three
more traditional global optimization pattern search, being significantly better the use of SA.

Table 8. Comparative results between different search approaches for threshold hypothesis selection,
including regular sub-sampling patterns with sub-optimal subsets of thresholds K = {40,20,10,5},
non-regular sub-sampling patterns (TSS, FSS and DS) and more traditional global optimization
approaches (PS, PSO, SA). Results in terms of FScore and computational cost (number and percentage
of operations per each frame).

Search FScore #Operations %Operations

ES(K=60) 426 54,000 100
K=40 425 24,000 444
K=20 419 6000 11.1
K=10 407 1500 2.8
K=5 374 375 0.7

FSS[46]  39.9 285 0.5
TSS[45] 375 615 11
DS[47] 32.8 240 0.4
PS[48] 357 83 0.2
PSO[49] 418 489 0.9

SA[38] 42,0 1270 53
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4.4. Final Adaptation System (Coarse and Fine)

We evaluated the whole proposed framework (coarse and fine adaptation), described in Section 3.
The coarse and fine adaptation were evaluated at frame-level, as shown, respectively, in Sections 4.2
and 4.3. In particular, we evaluated the use of our coarse analysis to identify the representative
frames for a possible adaptation of the system; those frames without the presence of people were
discarded and those with the presence of people were further analyzed locally. To evaluate the whole
coarse-to-fine adaptation process, we compared the results without and with the inclusion of the coarse
adaptation stage at video-level. The system without the coarse adaptation corresponds to the proposed
fine adaptation ADC6 with MLE or MAD, as evaluated in detail in, respectively, Sections 4.3.1 and
4.3.2. We defined the entropy coarse adaptation threshold with L = 5 and according to the Likelihood
Ratio Test, i.e., £ = 0.7 (see detailed reasoning in Section 4.2). Generally, the inclusion of the coarse
adaptation obtained worse results in terms of the number of true positive detections because those
frames misclassified as if there were no people certainly produce missed detections. However, the
coarse adaptation also obtained better results in terms of false positive detections, since those frames
correctly classified as if there is no people potentially reduce the total number of false detections (see
Section 4.2 for further details). In addition, the inclusion of the coarse adaptation significantly reduces
the computational cost since the fine adaptation in every frame demands a higher computational cost.

Table 9 shows the final adaptation system results for each detection algorithm, with the use of
MLE or MAP. In general, the use of the coarse adaptation introduces a significant improvement in the
evaluation results (between 21.7% and 90.8% of improvement). It is due to the balance between the
number of the false detections and the true positive detections.

Table 10 shows the comparative results in terms of FScore and computational cost (number and
percentage of operations per each frame), between the use of a fixed threshold FTyoc1, and the final
adaptation system results (MLE or MAP). There is also an improvement in FScore performance (10.8%
and 16.1% average improvement with respect to the fixed thresholding approach FTyoc12, MLE and
MAP, respectively) and almost a 50% of reduction in terms of computational cost per frame.

To understand the relation between the entropy coarse adaptation threshold (£) and the
performance in terms of FScore and computational cost, we analyzed the performance of our final
system with MLE (MAP version present the exactly same behavior) for different entropy coarse
adaptation thresholds, £ = 0,0.1,...,1.5. Note that £ = 0 corresponds to the absence of coarse
adaptation, only fine adaptation, i.e., ADC6. Figure 12 shows the final results versus the corresponding
computational cost in terms of percentage of operations. Note clearly the progressive increase in
terms of FScore from entropy £ = 0 until the LRT (£ = 0.7) and the posterior reduction in terms
of FScore until £ = 1.5. In general, avoiding frames without the presence of people improves the
results avoiding false detections until the LRT (£ = 0.7), after this point the balance between the false
detections and the missed detections starts decreasing the performance.

Table 9. Final adaptation system average results with likelihood ratio test (£ = 0.7). Video-level
evaluation results.

Final Adaptation System
MLE MAP
ADC6 Final %A ADC6 Final %A

DPM-I [32] 373 539 +445 439 578 +31.7
DPM-P [32] 36.5 545 +493 37.1 57.6 +55.3
ACF-I [41] 454 579 +275 498 60.6 +21.7
ACF-C [41] 40.0 554 +38.5 44.6 599 +34.3
FRCNN-VGG [1] 38.8 73.8 +90.2 39.3 75.0 +90.8
FRCNN-ZF [1] 438 679 +55.0 452 702 +55.3
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Table 10. Final adaptation system for each video average results.

Video Results
Search FScore #Operations %Operations
FTyociz 54.7 - -
ADC6 (MLE) 40.3 2.73 x 10° 100.0
Final (MLE) 60.6 1.40 x 10° 51.3
%AADPCO +50.4 - -
%AVOC12 +10.8 - -
ADC6 (MAP) 433 2.73 x 10° 100.0
Final (MAP) 63.5 1.40 x 10° 51.3
%AAPCOMAP) 4467 - -
%A VOC12 +16.1 - -
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Figure 12. Comparative video analysis results with different coarse adaptation configurations,
absence/presence of people classification decision, from entropy £ = 0 to 1.5. Global FScore results for
each video versus computational cost in terms of percentage of operations.

5. Conclusions

We have presented a coarse-to-fine framework to automatically adapt people detectors during
runtime classification. This proposal explores multiple thresholding hypotheses and exploits the
correlation among pairs of detector outputs to determine the best configuration. The coarse adaptation
determines the presence/absence of people in every frame and therefore the necessity /not necessity of
adaptation of the system. The fine adaptation obtains the optimal detection threshold for each detector
in every frame. The proposed approach uses standard state-of-the-art detector outputs (bounding
boxes), therefore it can employ various types of detectors. This framework allows the automatic
threshold adaptation without requiring a re-training process and therefore without requiring any
additional manually labeled ground truth apart from the offline training of the detection model.

The proposed coarse adaptation is able to classify with around 80% of precision and recall both
classes absence and presence of people. The fine adaptation results (both MLE and MAP versions)
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demonstrate that any correlation up to six detectors outperforms state-of-the-art detectors, whose
thresholds are optimally trained in advance. In addition, we also explored other sub-optimal threshold
hypothesis selection approaches with lower computational cost requirements (number of pair-wise
correlations between detectors per frame). In particular, the SA search obtains almost the exhaustive
FScore results but with a drastic computational cost reduction. Overall, the final coarse-to-fine
framework also outperforms state-of-the-art detectors, for both frame by frame and video analysis
results, with a computational cost reduction of around 50%.

For future work, we will study other threshold selection and fusion alternatives and we will apply
this proposal to other detectors and object types. We will also explore other additional configurations
and not only the detection threshold, for example the position of the bonding box, scale of the detected
objects, pose, etc.

We acknowledge that running six detectors significantly increases the required resources as
compared to running a single detector. However, this adaptation scheme may not need to be applied
for each frame of a video sequence and it may be used periodically (e.g., every 1 or 5 s) or be used
on-demand (e.g., when scene conditions change after a camera moves). In this case, the computational
cost is considerably decreased as we may not apply our adaptation to each frame. We will consider
such applicability in real systems as future work.
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