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Abstract: This paper presents the problem of obstacle avoidance with bearing-only measurements in
the case that the obstacle motion is model-free, i.e., its acceleration is absolutely unknown, which
cannot be dealt with by the mainstream Kalman-like schemes based on the known motion model.
First, the essential reason of the collision caused by local minimum problem in the standard artificial
potential field method is proved, and hence a revised method with angle dependent factor is proposed.
Then, an unknown input observer is proposed to estimate the position and velocity of the obstacle.
Finally, the numeric simulation demonstrates the effectiveness in terms of estimation accuracy and
terminative time.
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1. Introduction

To travel safely in unstructured environments, it is crucial for agents to be able to plan their paths
adaptively and optimally, even in the absence of a priori knowledge. This task is referred to as obstacle
avoidance (OA) [1,2].

One important issue of OA is to design a collision-avoidance path given positions and velocities
of obstacles. Artificial Potential Field (APF) method [3] is one of the most popular planners. APF and
its variants [4–6] are cost-effective but face the local minimum problem, i.e., the agent is trapped at
the local minimum position and hence collides with obstacles or loses the possibility of reaching the
destination. Although much attention has been paid to the method revision (e.g., [7–9]), the existence
condition of the collision caused by local minimum (LM) has not been explored and hence these
revision schemes are somewhat ad hoc. The corresponding existence condition needs to be found and
furthermore a suitable revision needs to be presented.

Another important issue and precondition of OA is to estimate obstacles’ states, such as positions
and velocities, precisely. Given the a priori movement model of obstacles, the Kalman filter or
its variants [10–14] are utilized to estimate states of obstacles. According to the basic principles,
these methods can be divided into three classes. The first one is multi-model matching [15,16],
where a set of models is designed to cover the possible obstacle motions and the stochastic model
switch is considered as a Markov chain [17]. The second scheme is clustering-based [18,19],
where the previously-obtained obstacle trajectories are classified into multiple clusters for matching
the current obstacle track. The third one is Gaussian-mixture approximation [20–22], where
the means and covariances of Gaussian motion models are adaptively self-learning. In general,
all these schemes are computation-intensive due to multi-model filtering, multi-hypothesis mode
recognition, or multi-parameter learning. Moreover, it is important to mention that these schemes
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absolutely depend on a priori models and hence will definitely become invalid in the incomplete
mode/hypothesis/parameter set case, which may exist in unstructured or even hostile environment.

Actually, such model-unknown cases amount to the dynamic equations with unknown transition
matrix and unknown input. Moreover, a bearing measurement corresponds to infinite position
solutions. As a result, it is unlikely to derive accurate state using the traditional filtering algorithms.
Although the unknown input observer (UIO) was utilized to reconstruct the states for dynamic systems
with unknown input in the automation field, it would be invalid for the model-unknown case with
bearing-only measurements since a known transition matrix is necessary for the UIO calculation. It is
highly demanded to develop a cost-effective method to reconstruct states for the model unknown
motions with bearing-only observations.

In this paper, an OA scheme with obstacle bearing-only measurement is proposed for the case
that the obstacle motion model is general. One contribution is to explore a sufficient collision condition
of the APF, and further propose the revised APF. The other is to design an unknown input observer to
estimate obstacles’ states, which avoids the precondition that the motion model should not contain
unknown parameters or input required by the mainstream Kalman-like schemes. The proposed
unknown input observer also has potential applications in the field of tracking and clustering.

Throughout this paper, the symbols · and× represents dot product and cross product, respectively;
the subscript ⊥ represents the perpendicular operation of the vector; and I denotes the identity matrix
with proper dimensions.

2. Problem Formulation

Consider the OA task with an agent and multiple obstacles, all mass-points in the two-dimensional
Cartesian X-Y coordinates. The acceleration of the ith obstacle at time t is

p̈Oi (t) = fi(t) (1)

where fi(t) is an unknown time-varying function, representing arbitrary possible movement or
unexpectable maneuver. In other words, Equation (1) means that the motion is general without
special requirement or a priori movement information, i.e., model-free. The acceleration of the agent at
position pA(t) is

p̈A(t) = fA(t) (2)

where fA(t) is determined according to the task of path planning with the constraint that
‖ fA(t)‖ ≤ amax, i.e., the maximum acceleration is given. Besides, the position and the velocity
of the agent, pA(t) and ṗA(t), are both known.

Here, the object of path planning should satisfy two requirements. One is minimum safety
distance, i.e.,

min
fA
‖pA(t)− pOi (t)‖ ≥ δ1, ∀t (3)

where δ1 > 0 represents the permissible minimum safe distance. The other is destination reachability,
i.e.,

‖pA(t f )− pdes‖ ≤ δ2, ∃t f < ∞ (4)

where pdes is the destination position and δ2 ≥ 0 is the permissible maximum navigation error.

Remark 1. To satisfy these two requirements, the OA task has to be divided into two subtasks. One is to design
a path planner to generate a path automatically to reach the destination under the constraint of the minimum
safety distance. The other is to to estimate pOi (t) and ṗOi (t) from bearing measurements to guarantee the first
requirement:
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• In planner design, artificial potential field method is cost-effective, but may involved in the LM and hence
collide with obstacles in some cases. In other words, it is highly demanded to explore the collision condition
of the APF, and further present the reasonable revision to avoid the local minimum.

• In obstacle state estimation, the traditional Kalman-like state estimators, whose applicability or optimality
depends on the a priori model, will hence become inapplicable in the presence of unknown acceleration as
the unknown model parameters or unexpected model mismatch.

3. Angle-Dependent APF

The acceleration of the agent can be written as

fA(t) =

F(t) if ‖F(t)‖ ≤ amax

amax
F(t)
‖F(t)‖ otherwise

(5)

where F(t) is the force generates by a path planner given the pOi (t) and ṗOi (t).
The resultant of forces generated by APF is

F(t) = Fatt(t) + Frep1(t) + Frep2(t) (6)

where
Fatt(t) = αp‖pdes − pA(t)‖mnAD (7)

Frep1(t) = ∑
i

−η(2amax + vAOi (t))
2amax(ρi(t)− ρm(t))2ϕi(t) (8)

Frep2 = ∑
i

−ηvAOi (t)vAOi⊥(t)
amaxρi(t)(ρi(t)− ρmi (t))2ϕi⊥(t) (9)

ϕi(t) =
pOi

(t)−pA(t)
‖pOi

(t)−pA(t)‖
, vAOi (t) = [vA(t) − vOi (t)]

Tϕi(t), ρi(t) = ‖pA(t) − pOi (t)‖, ρmi (t) =
v2

AOi
(t)

2amax
,

vA(t) = ṗA(t) and vOi (t) = ṗOi (t). αp, m and η are positive constants and nAD is the unit direction
vector from the agent to the destination.

Theorem 1. (Collision Condition) Considering one obstacle case in the artificial potential field method in
Equations (7)–(9), and assuming that backward movement is not allowed for agent, ∃0 < to < ∞, there holds
pOi (to) = pA(to), if

(vA(t)− vOi (t)) · (pOi (t)− pA(t))
|vA(t)− vOi (t)||pOi (t)− pA(t)|

= 1, t > 0 (10)

and
|(pOi (t)− pA(t))× (pOi (t)− pdes)| = 0, t > 0 (11)

Proof of Theorem 1. The equation of the Frep2 for one obstacle is

Frep2 =
−ηvAOi (t)vAOi⊥(t)

amaxρi(t)(ρ̂i(t)− ρmi (t))2ϕi⊥(t) (12)
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where vAOi⊥ =
√
‖vA(t)− vOi (t)‖2 − v2

AOi
(t). Since vA(t) = [vax, vay]T , pA(t) = [xa, ya]T , vOi (t) =

[voxi, voyi]
T and pOi (t) = [xoi, yoi]

T , we have

vAOi⊥ =
√
‖[vax, vay]T − [voxi, voyi]T‖ − v2

AOi
(t)

=

√
A2 + B2 − (

[A, B][C, D]T√
(C)2 + (D)2

)2

=
√

B2C2 + A2D2 − 2ABCD

=
√
(BC− AD)2

(13)

where A = vax − voxi, B = vay − voyi, C = xoi − xa, and D = yoi − ya. The condition in Equation (9)
represents the case that (vA(t)− vOi (t)) and (pOi (t)− pA(t)) have the same direction, i.e., BC = AD.
Then, we have vAOi⊥ = 0 and Frep2 = 0 from Equations (13) and (12). According to Equation (11),
Frep1 and Fatt(t) are collinear. Finally, F(t) and Fatt(t) are collinear, i.e., the agent either moves along
the obstacle-agent line or remains stationary. Because the obstacle is moving toward the agent
and the agent does not permit the backward movement, one collision will definitely happen, i.e.,
‖pOi (t)− pA(t)‖ = 0 will hold at a finite time t.

As shown in Figure 1, γ denotes the relative angle of two lines: one of which crosses through
the agent and the obstacle; another crosses through the agent and the destination. Obviously, γ = 0
is equal to Equation (11). Theorem 1 implies that the collision will be inevitable if Frep2 = 0 under
condition Equations (10) and (11). In other words, we should make Frep2 non-zero in the case of γ = 0,
which can be implemented through introducing an angle-dependent factor β(γ) to Equation (12),

Frep2 =
−ηvAOi (t)(vAOi⊥(t) + αβ(γ))

amaxρi(t)(ρ̂i(t)− ρmi (t))2 ϕi⊥(t) (14)

to guarantee Frep2 6= 0 under Equations (10) and (11). In Equation (14), a positive constant α represents
a given weight to control the effect of β. We suggest one possible choice: β(γ) = nADϕi(t) = cos(γ).
Then, Equation (9) can be rewrite as:

Frep2 = ∑
i

−ηvAOi (t)(vAOi⊥(t) + αβ(γ))

amaxρi(t)(ρ̂i(t)− ρmi (t))2 ϕi⊥(t) (15)

x

( )
iO tp

( )A tp

( )i tφ

( )i tφ

( )i t

desp



Figure 1. The illustration of relationship between variables.

4. Unknown Input Observer for Bearing-Only Tracking

In Section 3, states as positions and velocities of obstacles are all known information for the
planner, while in practice they often need to be determined from sensor data. Considering that the
obstacle motion is general, i.e., acceleration is the unknown input (UI), traditional Kalman-like filter
and observer are all invalid for determining positions and velocities of obstacles, because they both
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rely on the system state without UI. Thus, the problem boils down to the the unknown input observer
(UIO) design. The existing UIO has been applied in the field of fault detection, in the linear model
through decoupling UI estimate error with UI [23]. However, reconstructing position and velocity
from bearing is the distinct and open non-linear estimation problem in the presence of UI. In this
section, a non-linear UIO is proposed to estimate positions and velocities of obstacles, which fill up the
blank of the field.

As shown in Figure 1, θi(t) is the bearing-only measurement obtained by a sensor, for example
monocular camera [24]. Then, a direction unit vector (DUV), which is also needed in Equation (8), is
denoted as ϕi(t) along the direction of the vector pOi (t)− pA(t) with respective to the X axis coordinate:

ϕi(t) =
pOi (t)− pA(t)
‖pOi (t)− pA(t)‖

= [cosθi(t) sinθi(t)]T (16)

where θi(t) is the angle.

4.1. Position Estimation

As shown in Figure 2, an agent is at pA(t); the DUV of ith obstacle is denoted by ϕi(t). Question
marks represent the situation that the true obstacle position pOi (t) is unknown. The DUV of p̂Oi (t) is

ϕ̂i(t) =
p̂Oi

(t)−pA(t)
‖p̂Oi

(t)−pA(t)‖
.

?

?

?

ˆ ( )
iO tp

( )A tp

iφ
ˆ

iφ ˆ
i iφ φ

( )
iO tp

x

1
ˆ( )( )i iC t φ φ

ˆ ( )
iO t t p

2
ˆ( )( )i iC t φ φ

Figure 2. The principle of position estimation of our UIO.

Generally speaking, the design idea of our UIO estimator is to make the estimate close to the
true state along the relative direction. In other words, if ϕ̂i(t) is not as same as ϕi(t), then p̂Oi (t)
should be modified to be close to the line pOi (t)− pA(t). Specifically, the estimate should satisfy the
following conditions.

¬ If the DUV of the true position equals the DUV of the estimate, then no modification is needed.
 The direction of the estimate should point to the line pOi (t)− pA(t).

Denote
˙̂pOi (t) = lim

4t→0

p̂Oi (t +4t)− p̂Oi (t)
4t

(17)

then one possible scheme for position estimation is

˙̂pOi (t) = C(t)(ϕi(t)− ϕ̂i(t)) (18)

where C(t) = C1(t) + C2(t), C1(t) = k1(I − ϕ̂i(t)ϕi(t)T), C2(t) = k2(1− ϕ̂i(t)Tϕi(t)), while k1 and k2

are positive numbers.



Sensors 2019, 19, 31 6 of 11

Recalling two conditions, we can check the above conditions as follows:

¬ If the bearing of the true position equals the bearing of the estimate, i.e., ϕi(t) = ϕ̂i(t). We have
both C(t) = 0 and ϕi(t)− ϕ̂i(t) = 0 and hence ˙̂pOi (t) = 0.

 Obviously, C2(t) is scalar and hence C2(t)(ϕi(t)− ϕ̂i(t)) remains the direction of (ϕi(t)− ϕ̂i(t)).

4.2. Velocity Estimation of UIO

From Equation (16), we have

ϕi(t +4t)−ϕi(t)

=
1

‖pOi (t +4t)− pA(t +4t)‖ (pOi (t +4t)

− pOi (t)− (pA(t +4t)− pA(t))

+ (1−
(‖pOi (t +4t)− pA(t +4t)‖)

‖pOi (t)− pA(t)‖
)(pOi (t)− pA(t)))

(19)

Furthermore,

‖pOi (t +4t)− pA(t +4t)‖(ϕi(t +4t)−ϕi(t))

− (1−
(‖pOi (t +4t)− pA(t +4t)‖)

‖pOi (t)− pA(t)‖
)(pOi (t)− pA(t))

= pOi (t +4t)− pOi (t)− (pA(t +4t)− pA(t))

(20)

and hence

‖pOi (t +4t)− pA(t +4t)‖ϕi(t +4t)

− ‖pOi (t)− pA(t)‖ϕi(t))

= pOi (t +4t)− pOi (t)− (pA(t +4t)− pA(t)).

(21)

Through dividing t on both sides of Equation (19) and taking the limit4t ⇀ 0, we have

ϕ̇i(t) = lim
4t→0

ϕi(t +4t)−ϕi(t)
4t

=
ṗOi (t)− ṗA(t)
‖pOi (t)− pA(t)‖

(22)

or
ṗOi (t) = ṗA(t) + ‖pOi (t)− pA(t)‖ϕ̇i(t) (23)

which can be treated as the constraint between ṗOi (t) and pOi (t). Because it is expected to obtain
ˆ̇pOi (t) as near as possible to ṗOi (t), such constraint is also accepted in constructing the UIO:

ˆ̇pOi (t) = ṗA(t) + ‖p̂Oi (t)− pA(t)‖ϕ̇i(t) (24)

Here, Equation (24) is obtained from Equation (23) by substituting pOi (t) with p̂Oi (t). To decrease
the effect of improper initialization, a discount factor 0 < d(t) < 1 is introduced for UIO initialization

ˆ̇pOi (t) = ṗA(t) + d(t)‖p̂Oi (t)− pA(t)‖ϕ̇i(t) (25)

for t ≤ tin where tin is initialization terminate instant.
The total method with its flowchart is shown in Figure 3.
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UIO
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END
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Calculate forces by Eq. 
7, 8, 15

Calculate resultant force 
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Eq. 5 and 6

ˆ ( ),
iO tp ˆ ( )

iO tp( ),A tp ( ),i t ( )A tp
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by  Eq.18

Execute  
Eq. 24

ˆ ( ),
iO tp ˆ ( )

iO tp

UIO

( )A tp( ),A tp

ADAPF

 If ?int t

Execute  
Eq. 25

        
Yes No

Figure 3. The flowchart of the algorithm

5. Simulation and Analysis

Three scenarios to test the performance of our method were considered. The first scenario was
set to test the performance of UIO estimator, which includes one serpentine motion agent and one
obstacle has “curve-maneuver” or “constant-velocity”, respectively. To demonstrate validation of our
path planner with the ability of escaping the local minimum point, the second scenario considered the
situation that one agent and one obstacle move head on given the position of the obstacle. The third
scenario contained multiple moving and stationary obstacles to test the integrated performance of
obstacle estimation and path planner. In general, ‖p̂Oi (t)− pA(t)‖ is much larger than the amplitude
of ˆ̇pOi (t) at the beginning, so the factor d(t) should be small, e.g., d(t) = 0.01 in Equation (25).
Based on the velocity of the agent, k1 and k2 were set to 5 for agent’s velocity [5 + 10sin(0.02t), 5]Tm/s
in Scenario 1 and 10 for agent’s velocity [10a, 10b]Tm/s (a, b ∈ {1,−1}) in Scenario 3, respectively.
In Scenarios 2 and 3, the parameters of our path planner were chosen as αp = 0.009, αβ = 200 and
η = 700; the maximum acceleration was set as amax = 5m/s2; from Dsa f e = vmax

A + ρ0 + 3δ, the safe
distance was set as 31.5 m where δ = 0.5 and vmax

A = 20.

5.1. UIO Estimator

In this scenario, the agent’s trajectory was given, and the obstacle motion contained two cases.
Case 1 is curve-maneuver with velocity [−3 + 2sin(0.05t),−3]Tm/s and Case 2 is constant-velocity
with velocity [−3,−3]Tm/s. The initial position of the obstacle was [50, 50]Tm, whose corresponding
estimate was [65, 55]Tm. There is no existing method to solve the same problem as our UIO estimator,
so we take M estimator [25] as the rival, which has a similar form as our UIO estimator. It is worth
mentioning that M estimator does not obtain velocity estimate, thus we computed the differential of
position estimate as its velocity estimate. As shown in Figures 4 and 5, our proposed UIO estimator is
much better than M estimator in estimating the position and velocity of the obstacle. Blue and red
squares represent terminate positions of obstacle and agent, respectively.

5.2. ADAPF

In this scenario, we compared the path planner with APF on minimum distance (MD) between
the agent and the obstacle. At the beginning, besides that the motion of the obstacle was opposite
the agent motion, the obstacle, the agent and the destination were on the same line, which means the
spatial layout satisfies collision condition in Theorem 1. The initial position and velocity of the obstacle
were [170, 170]Tm and [−5,−5]Tm/s, respectively. The initial position and velocity of the agent were
[0, 0]Tm and [5, 5]Tm/s, respectively. Then, as the initial position changes,γ changes from 0◦ to 90◦,
accordingly. The initial velocity of the agent has the direction pointing to the obstacle.
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As shown in Figure 6, the APF fails to guarantee that the MD is always larger than the minimum
safety distance 31.5 m, while our path planner is reliable for all γ. Especially in the situation of γ = 0◦

and γ = 1◦, the agent using APF inevitably collides with the obstacle because the MD is zero.
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5.3. Integrated Performance

To test the integrated performance of obstacle estimation and angle-dependent APF, a scenario
including agents A1 − A4 and stationary obstacles O1 − O4 was set up, as shown in Figure 7b.
Every agent moves along a straight path with constant velocity without OA so that it will collide with
two stationary obstacles and three other agents. Among scenario setups in Table 1, obs and pos are
short for obstacle and position, respectively; CC obs represents the obstacle satisfying conditions of
Theorem 1; and non-CC obs is the reverse.
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 Figure 7. Minimum separation distances and trajectories of agents.

Table 1. Scenario set up.

po
s K L P T O1 O2 O3 O4

[700, 800] [0, 800] [700, 800] [700, 800] [700, 800] [700, 800] [700, 800] [700, 800]

pl
an

velocity direction CC obs non-CC obs

A1 [−10,−10] K → P O1, O3, A3 A2, A4

A2 [10,−10] L→ T O2, O4, A4 A1, A3

A3 [10, 10] P→ K O1, O3, A1 A2, A4

A4 [−10, 10] T → L O2, O4, A2 A1, A3

Here, we compared between the combination of angle-dependent APF with UIO (ADUIO) and
APF with UIO (AUIO). As shown in Figure 7a, minimum separation distances between each agent to
other three moving agents by ADUIO are all above δ, while their AUIO counterparts are below δ. It is
implied that paths generated by AUIO fail to avoid collision threats but succeed by ADUIO. As shown
in Figure 2c,d, both methods avoid stationary obstacles successfully but cost different length of time to
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reach destinations. As shown in Table 2, the terminative time of ADUIO is much smaller than AUIO.
In other words, our proposed scheme reaches the destination more quickly, while AUIO produces
significant improper roundabout movements, as shown in Figure 7c, due to APF forces caused by CC
obs. Results in Figure 7a,d also suggest our UIO guarantees estimation accuracy for the requirement
of OA.

Table 2. Terminative time of two schemes.

A1 A2 A3 A4

ADUIO/ AUIO 84 s/85 s 85 s/120 s 85 s/100 s 83 s/109 s

6. Conclusions and Future Work

This paper addresses the problem of automatic path planning using bearing-only measurements
in the case that the obstacle motion is general. The reason for local minimum problem is discovered,
based on which a variant of the APF is proposed to be the path planner. Then, an improved
unknown input observer is proposed to estimate the positions and velocities of the obstacles. Finally,
numeric simulations demonstrate the advantages of our method in terms of estimation accuracy and
terminative time.

It needs to be noted that there are significant differences between our UIO and its traditional
counterpart. First, our UIO avoids using the dynamic equations, which is necessary for the calculation
in the traditional UIO. Second, our UIO is nonlinear, while traditional one needs to be linearized.

Nevertheless, our method only considers the case of the mass-point target and the accuracy is
lacking theoretical proof. Therefore, our future research includes solving the problem about targets
with different shapes, proving the convergence of the algorithms and considering the effects of noise.
For example, one research line is about agents network techniques [26] involving clustering estimation,
and another research line to be followed is to investigate the case where multiple agents are present
and share their estimates simultaneously.
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