
sensors

Article

Visual Semantic Landmark-Based Robust Mapping
and Localization for Autonomous Indoor Parking

Junqiao Zhao 1,† , Yewei Huang 2,† , Xudong He 1, Shaoming Zhang 2, Chen Ye 1,
Tiantian Feng 2,* and Lu Xiong 3

1 MOE Key Laboratory of Embedded System and Service Computing, and the Department of Computer
Science and Technology, School of Electronics and Information Engineering, Tongji University,
4800 Caoan Road, Shanghai 201804, China; zhaojunqiao@tongji.edu.cn (J.Z.);
hexudong@tongji.edu.cn (X.H.); yechen@tongji.edu.cn (C.Y.)

2 School of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai 200092, China;
huangyewei@tongji.edu.cn (Y.H.); zhangshaoming@tongji.edu.cn (S.Z.)

3 School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China;
xiong_lu@tongji.edu.cn

* Correspondence: fengtiantian@tongji.edu.cn
† These authors contributed equally to this work.

Received: 9 December 2018; Accepted: 31 December 2018; Published: 4 January 2019
����������
�������

Abstract: Autonomous parking in an indoor parking lot without human intervention is one of
the most demanded and challenging tasks of autonomous driving systems. The key to this task
is precise real-time indoor localization. However, state-of-the-art low-level visual feature-based
simultaneous localization and mapping systems (VSLAM) suffer in monotonous or texture-less
scenes and under poor illumination or dynamic conditions. Additionally, low-level feature-based
mapping results are hard for human beings to use directly. In this paper, we propose a semantic
landmark-based robust VSLAM for real-time localization of autonomous vehicles in indoor parking
lots. The parking slots are extracted as meaningful landmarks and enriched with confidence
levels. We then propose a robust optimization framework to solve the aliasing problem of semantic
landmarks by dynamically eliminating suboptimal constraints in the pose graph and correcting
erroneous parking slots associations. As a result, a semantic map of the parking lot, which can
be used by both autonomous driving systems and human beings, is established automatically and
robustly. We evaluated the real-time localization performance using multiple autonomous vehicles,
and an repeatability of 0.3 m track tracing was achieved at a 10 kph of autonomous driving.

Keywords: autonomous driving; semantic landmark; parking lot; robust SLAM

1. Introduction

Autonomous driving has seen considerable progress in recent years. Researchers have
made breakthroughs in several challenging fields, including obstacle detection, real-time motion
planning and high-precision localization (many based on differential global navigation satellite
system (GNSS)). Self-driving cars have recently been shown to drive safely in urban and suburban
areas (https://waymo.com). However, parking in a large indoor parking lot without human intervention
remains an unsolved problem, especially with only budget visual sensors. One critical reason is the
lack of robust high-precision localization in GNSS-denied areas. Traditional indoor localization methods
include the inertial sensor-based dead-reckoning systems [1] and the wireless-based localization systems,
such as WiFi, Bluetooth, RFID or Ultra-Wide Band (UWB) [2]. However, dead-reckoning systems could
not relocalize a vehicle and inertial sensors tend to drift without the updating from the GNSS system.
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The wireless-based systems suffer from occlusion in complex indoor environments and decay as the
user’s distance to the signal sources increases. Therefore, a considerable number of stations are required
for stability and acceptable precision [3]. Laser-based simultaneous localization and mapping (SLAM)
systems are eligible for the localization of unmanned vehicles in environments such as factories and
warehouses [4]. However, this method requires expensive LiDAR sensors and is characterized by an
enormous data volume and high computational cost. As a result, visual SLAM (VSLAM), which is based
on low-cost cameras, has become one of the most demanded localization methods.

Traditional visual feature-based VSLAM is effective in texture-rich environments [5]. Nevertheless,
as shown in Figure 1a, VSLAM can easily fail in monotonously textured scenes, such as an indoor
parking lot. Grimmett et al. [6] first adopted sparse feature-based SLAM with panoramic images to
localize a car in a parking lot. However, the extracted BRISK features can be unstable when the ground
floor is stained with tire markings or water spots. The distortion presented in the stitched images can
also disturb the feature extraction.

(a) (b) (c)

Figure 1. (a) Wrongly matched feature pairs (indicated by red arrows) interfere with the initialization
of ORB-SLAM2. (b,c) HorizonAD stereo DSO result (red) compared with real vehicle trajectory (green)
from both the perspective and top-down view.

Direct methods estimate camera poses based on the photometric error derived from the whole
image and thus are more robust than sparse methods in textureless areas [7,8]. HorizonAD applied such
a method for indoor parking (https://github.com/HorizonAD/stereo_dso). However, these methods
often require high frame rates and are susceptible to global illumination changes, which restricts
their usage in unevenly illuminated indoor parking lots [9]. Figure 1b shows the results of this
method applied to our testing parking lot. Only a small part of the trajectory can be estimated before
drastic drifting. More importantly, the re-localization based on a pre-built dense map is not trivial
since illumination can vary when revisiting. Therefore, most direct VSLAM methods are rather visual
odometries [7]. As a result, stable and legible visual landmarks that are immune to various illumination
conditions are demanded.

As a typical kind of semantic landmark in parking lots, the parking slot is one of the focuses
for researchers [6,10,11]. Recently, deep learning-based methods have shown their capability for
accurate and robust detection of such meaningful objects [12]. Inspired by these methods, we present a
robust VSLAM system based on the recognition of high-level landmarks for parking, i.e., parking slots.
The whole pipeline is shown in Figure 2. The parking slots are detected in the surround view composed
of four fish-eye cameras. Both the geometry of the slots, i.e., the position and the size, and the IDs of
the slots (which are optional) are extracted and treated as landmarks in the proposed SLAM system.
To support localization in slot-lack area such as passways, we introduce visual fiducial tags detected
from the front view camera for improving the overall accuracy and robustness. Their numbers and
configurations are further analyzed. Faced with the visual aliasing problem of parking slot landmarks,
we propose a robust strategy that incorporates slot confidence level to semantically detect and eliminate
outliers in the optimization stage.

Finally, a two-dimensional map of parking slots, which is distinguished from the traditional visual
feature-based maps in terms of its stability, re-usability, lightweight and human readability, can be
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robustly established. Our system is implemented on low-cost autonomous driving vehicles and tested
in real parking lots.

This paper is a substantial extension of our previous paper [13]. The main contributions are
the following:

• We design and implement a low-cost and robust visual-based SLAM system using a typical visual
landmark of parking slots with aid from a limited number of visual fiducial tags, which is immune
to monotonous texture, varying illumination and dynamic conditions;

• We propose a robust SLAM back-end approach to associate parking slots considering the
confidence level of the landmarks;

• We analyse the effectiveness and arrangement strategy of visual fiducial tags in a typical indoor
parking lot.

The rest of this paper is organized as follows. Section 2 summarizes previous research on VSLAM,
semantic SLAM, and robust SLAM methods. Section 3 introduces our landmark-based indoor parking
SLAM method. Meanwhile, our semantic landmark detection and robust outlier elimination strategy
are detailed in Sections 3.1 and 3.2. Section 4 presents the experiments and analysis, while the potential
improvements of our methods are discussed in Section 5.

Front View Monocular

Surround 
View

FrontLeft

Right Back

Robust 
Optimization
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ID

Size
Output

Stable Parking Map

Vehicle Position

Tag
ID
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Figure 2. Pipeline of the method: Slots’ IDs, positions and sizes are detect from the surround view
image fused by fisheye frames. Tags’ positions and IDs are detected from the front view image. Slots are
then roughly matched according to their poses and ID and a robust back-end is also introduced to detect
slot matching outliers. The final output is a stable parking map with the real-time vehicle position.

2. Related Work

The related works are separated into three parts: the VSLAM, the semantic landmark-based
VSLAM, and the robust SLAM methods.

2.1. Visual SLAM

SLAM has long been a classic topic in the field of robotics [14] and has become a popular
research direction in autonomous driving since many drivable areas are GNSS denied, such as indoor
parking lots and urban roads covered by tree branches or beside skyscrapers [15]. VSLAM, which is
based on budget vision sensors, is preferred by many car manufacturers who have already equipped
multiple cameras on their production cars. Generally, traditional VSLAM methods fall into two groups,
feature-based methods (indirect methods) and image-based methods (direct methods).

Feature-based methods rely on sparse visual features extracted from images, i.e., corners, blobs.
Features are fast and accurate to extract, and invariant descriptors make the features robust against
certain viewpoint and scale changes. As a result, in a VSLAM system, frames are matched based on
these features for estimating local transformations of camera poses. These features are also packed to
facilitate data associations for detecting loops [5].

The optimization back-end evolved from filter-based methods [16] to factor graph-based
methods [17]. As one of example, ORB-SLAM offers a stable and efficient graph-based VSLAM
system based on ORB features [5]. The system consists of several parallel operating tasks, such as
keyframe detection and tracking based on feature matching, Bag-of-Words empowered fast loop closure
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detection, and local and global bundler adjustment (BA). This system performs well in texture-rich
indoor and outdoor environments in real time.

Since feature-based methods are capable only of creating a sparse map, they cannot be directly
used in applications where full reconstruction is demanded, e.g., Argument Reality (AR) or structure
from motion (SfM). To satisfy those applications, direct methods based on the photometric error,
which uses all image pixels, have been proposed [7]. Compared with feature-based methods,
direct methods aim to estimate pixelwise coordinates and can output a dense or semi-dense point
cloud in real time. However, in practice, direct methods require a high rate of overlap between
sequential frames. Moreover, a high frame rate is also required since brightness consistency is crucial
for estimating the depth accurately [18]. Semi-direct Visual Odometry (SVO) [8] and Direct Sparse
Odometry (DSO) [19] combine the advantages of feature-based methods and direct methods. However,
these odometric methods, which lack loop closure detection, drift as time increases and cannot easily
re-localize a vehicle.

2.2. Semantic Landmark-Based SLAM

The low-level descriptions of images adopted by the above methods are vulnerable to textureless
scenes, and such descriptions are also difficult to adapt to dynamic changes in scenes [14]. Moreover,
feature-based methods do not incorporate humanly understandable meanings (semantics) associated
with landmarks into the method, which now is recognized to be crucial for strengthening the
descriptive power of landmarks and constructing a human-readable map [14]. On the contrary,
the human cognitive system relies on abstractive object-based landmarks for localization and
navigation. These landmarks are meaningful and robust against different backgrounds, shapes,
perspectives, illumination and even occlusions. Object detection in images has obtained unprecedented
precision empowered by the deep learning-based methods [20]. Therefore, object-based semantic
SLAM (in short, semantic SLAM) has become one of the forefronts of SLAM.

SLAM++ [21] was the first object-based SLAM method to employ furniture as semantic landmarks.
Objects were segmented from RGB-D observations and were matched using Iterative Closest Point
fitting (ICP). The back-end was the popular graph-based optimization, but semantics were minimally
helpful in the optimization stage.

In [22], shop names and facades were recognized and combined as landmarks for location
inferencing based on the 3D floor plan of an indoor shopping space. Li and Belaroussi [23] added
semantic labels to an LSD-SLAM framework to construct a dense map with classes attached to
geometric entities. Gálvez-López et al. [24] first incorporated visually detected objects into the graph
SLAM. The pre-built 3D object database and ORB-feature were employed for object detection. However,
the feature-based object description cannot be used in textureless scenes. Mccormac et al. [25] employed
semantic labels in the RGB-D SLAM framework to aid loop closure. Sünderhauf et al. [26] detected
and segmented meaningful objects from RGB-D data and archived the semantic mapping in office
scenarios. However, this method relied heavily on ORB-SLAM.

Grimmett et al. [6] and Himstedt and Maehle [11] reconstructed the metric map and the semantic
map of an indoor driving scene, i.e., a parking lot and a warehouse, but they adopted traditional visual
feature-based or grid-based SLAM methods. Object-based landmarks were not employed. The recently
proposed CubeSLAM [27] adopted both traditional feature points and 3D cuboid to represent objects
as joint landmarks, but the data association still relied on feature point matching.

To the best of our knowledge, there has been little application of object-based SLAM for practical
usage, especially for autonomous vehicles.

2.3. Robust SLAM

Although semantic landmarks are robust and consistent for observation, the association
between them is more difficult than the association between visual features because of their equal
representations as objects.
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To reduce the probable erroneous associations, the robust SLAM methods were proposed [28–30].
These methods can be performed either in the optimization stage, i.e., switchable constrains (SC) [28],
max-mixture (MM) [29] or as a middle layer before optimization i.e., Realizing, Reversing, Recovering
(RRR) [30], Graphtinker (GTK) [31].

SC and MM adopted multi-model constraints in the graph and attempted to find the best
constraint that conforms to the global optimal. The topologies of the graphs in both methods are
modifiable instead of fixed. Although the inferior correct constraints were eliminated, which may
result in an undesirable sparse graph, these methods are flexible and are convenient to integrate into
optimization. RRR and GTK detected outliers by maintaining only consistent loop closures before
optimization and can operate collaboratively with previous methods. GTK can even introduce artificial
constraints to robustify the final graph and improve the results when detained with a high portion of
outliers. However, both methods have slow computation speed compared to SC and MM [31,32].

Methods that optimize the distribution of data associations together with the graph were recently
proposed, mainly for object-based SLAM [33,34]. However, these methods were complicated to
be integrated into existing optimization frameworks and the performance is still inadequate for
real-time usage.

In summary, existing VSLAM methods generally do not perform robustly in textureless areas
such as an indoor parking lot. Therefore, more descriptive landmarks, especially landmarks attached
to semantics, should be used. However, robust data association for these semantic landmarks should
be proposed.

3. Approach

As shown in Figure 3a, our semantic VSLAM system is based on images captured by four fisheye
cameras and one monocular front view camera, which have now become a standard configuration
in many production vehicles. The four fisheye cameras are fixed at two reflectors and at the front
and rear bumpers to create a surround-view system. A bird’s-eye view image is then fused from the
surround-view inputs after intrinsic and extrinsic calibration, as shown by Figure 3c) Parking slots can
be detected in the bird’s-eye view image, which indicates ground textures. We use a monocular camera
installed to the left of the rear-view mirror to capture front-view scenes (Figure 3d). The steering wheel
angle, as well as the vehicle speed and heading direction collected by a budget inertial measurement
unit (IMU), Xsens MTi-3 AHRS, compose a dead-reckoning subsystem. The steering wheel angle and
the heading direction are first fused by a Kalman filter, and the fused heading is integrated with the
vehicle speed to estimate the 3-DoF translation and rotation.

Our parking slot detector is based on [12], in which the corner points of parking slots are detected
and assembled (Figure 4). Although the CNN-based method is capable of detecting most types of
corner points in a rapid and robust manner, only part of the slot is visible due to the limited visual field
of the surround vision system, as Figure 4 shows. As a result, the shape of the parking slot can only be
guessed initially. Furthermore, the ID of each parking slot is detected for facilitating data association
between parking slots, which will be elaborated in Section 3.1.

Another type of landmark used in our system is the visual fiducial tag. Fiducial tags are introduced
as an aid for the constancy of localization since few parking slots are detected near the entrances
and exits. In our study, we found fiducial tags may not be entirely prohibited, but their number can
be limited to a small amount. We select AprilTags as the fiducial tags for their robustness and high
efficiency [35].

3.1. Semantic Landmark Recognition

The semantic parking slot recognition procedure is twofold: detecting the slot position and
determining the slot ID, both of which are detailed in the following subsection. Moreover, the measurement
of visual fiducial tags is also mentioned.
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Figure 3. The low-cost sensors configuration used in our proposed system (a) Four fisheye cameras,
two monocular cameras, a low-cost inertial navigator and a computer are equipped. (b) The captured
images from four fisheye cameras. (c) Fused bird’s-eye view image. (d) The image from one of the
monocular camera.

3.1.1. Learning-Based Parking Slot Detection

We adopt the method proposed by Li et al. [12] to detect parking slots. The method is an
AdaBoost-based slot detection method that detects parking slots from calibrated bird’s-eye view
images. Slot detection is achieved by first recognizing the corner patterns from the image. Figure 4a
shows examples of detected corner patterns. Since not all the corners of a parking slot may be fully
observable, the parking slots are estimated according to their entrance lines (Figure 4b), which are
determined by the configuration of patterns. Several constraints are applied to robustify the detection
results: entrance-line candidates that contain more than two corner patterns are removed to avoid
repeated detection. Extremely large or small candidates are also discarded because all slots are
approximately the predefined size. Then, each slot is parametrized by a pose (direction and center
position) and inserted into the global map as an entirety. Moreover, our framework can also be
extended to optimize the shapes, as done by Yang and Scherer [27].

(a) (c)(b) (d)

Figure 4. This figure illustrates how parking slots are detected. Corner patterns are detected (a) and
assembled (b), which enables the initial parking slot hypothesis (c). (d) false positives are discarded by
constraints based on prior knowledge of slot shapes.

3.1.2. CNN-Based Slot ID Recognition

ID of each parking slot can be used for the association of these semantic landmarks. We fine-tuned
PVANet to detect each digit of the ID [36]. Figure 5a illustrates how the entrance line of a parking
slot helps to roughly locate IDs and how slot IDs are detected. Image patches containing slot IDs are
extracted and aligned according to the entrance line. Each digit is first detected as an individual and
then assembled. During the training phase, we augmented the training sets by rotating the samples
by random small angles (0◦–5◦) and created blurred and shaded samples. Unfortunately, due to the
heavily distorted and blurred texture, especially in the corner of the surround view image (Figure 5b),
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even the sophisticated detection network could not achieve satisfactory performance. Therefore,
our proposed robust back-end should be able to cope with the uncertainty, which will be detailed in
Section 3.2.

Rotate CNN based
 Detection

Collect Assemble

29

34

52

51

36

38 30

64 50

33 36

66 53

(a) (b)

Figure 5. The slot ID detection method: (a) the slot ID detection pipeline, (b) examples of harsh image
patches for ID detection. Digits under images are the true IDs, and the white digits shown at the
top-right corner are the detection outputs.

3.1.3. Visual Fiducial Tags

Recalling the goal of developing a robust localization system for practical autonomous driving
and indoor parking, we introduced certain numbers of artificial landmarks, i.e., visual fiducial tags.
One reason for the tags is to help the vehicle localize in entrances and corridors where few parking slots
exist. The other is to introduce “faithful” constraints as anchors to the graph for robust optimization.

We adopted AprilTag [35] and its detection library (https://april.eecs.umich.edu/wiki/AprilTags).
Moreover, the relative position between fiducial tags and the vehicle are solved by the Perspective-n-Point
(PnP) model [37] in a fast and accurate way [13].

Other types of objects, such as signs or edges of pillars, could potentially be used as landmarks too.
However, fiducial tags are easy and generic to implement and provide high accuracy and robustness
to various illumination conditions. We will show later in this paper that only a limited number of
fiducial tags, e.g., 3 to 4, are needed for highly precise localization inside a parking lot.

3.2. Semantic-Based Robust SLAM

The fallible detection of parking slots and their IDs from low-quality bird’s-eye view images
introduces erroneous data association, which is known to be hazardous to optimization in SLAM
algorithms. Thus, it is crucial to employ a robust optimization strategy, where correct associations
are ensured and incorrect associations are detected, discarded or even fixed. Our robust optimization
pipeline includes a series of processes in both the front-end and the back-end (Figure 6).

Nearest 
Neighbor 
Match

discard Front End

graph
IMU

tag

No

Slot

unusual shape

without ID

with high 
confidence ID

with low 
confidence ID

add max-mixture edge with null hypothesis

temporary pool
 + 

graph

add robust edge

add temporary slot ID → 
store in temporary landmark pool

add max-mixture edge
 with multi hypothesis

Candidate slot 
detected?

Back End

Yes

Figure 6. The overall pipeline of robust semantic SLAM. Green boxes are the front-end procedures and
the back-end procedures are coloured in blue.

https://april.eecs.umich.edu/wiki/AprilTags
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3.2.1. Front-End

In the front-end, the detected slots with abnormal size that are either too large or too small
according to the standards are the first to be discarded. Then, the remaining slots are processed
according to their slot IDs. Since the uncertainty present in the slot ID detection leads to uncertainty in
slot observation associations, cases of multiple associations should be considered.

On one hand, detected slots with high confidence level are inserted into the graph or associated
with previous observations directly. On the other hand, detected slots with low confidence level or
undetectable IDs are associated with candidate slots by nearest-neighbour matching considering slot
pose and shape.

The confidence level, pID, is given by the slot ID detector as the smallest probability of the digits
of the detected ID. If the ID is not detected, pID is decided by the slot detection accuracy.

pID = min{pdigit1 , pdigit2 , pdigit3 , ...} (1)

If no candidate slot is matched, the slot is regarded as a potential new slot and is stored in the
temporary landmark pool and “lazily” (after being observed two or more times) inserted into the map.
This “lazy” strategy efficiently avoids the impact of false positive slot detection on the map.

If one or more candidates are matched, the original slot observation and its candidate slot
associations are initial multi-hypotheses. In other cases, slots with similar IDs generated by confusing
digits, e.g., 1 and 7, and slots with partially detected IDs, e.g., only one of two digits is detected,
offer associating alternatives for multi-hypothesis optimization. Moreover, IDs also act as a reference
for correcting erroneous slot observations. When associating a slot observation to a candidate slot who
has already been observed several times, their IDs are also compared. The ID of the former slot will be
discarded if it is inconsistent with the latter one.

3.2.2. Back-End

In the back-end, we adopt the popular g2o framework [38]. The classic graph optimization aims
to solve a least-squares problem:

F(x) = ∑
k∈C

ek(xk, zk)
TΩkek(xk, zk) (2)

x∗ = arg min
x

F(x) (3)

where uncertainties, denoted by error function ek, are distributed according to each observation’s
pre-designed and immutable information matrix Ωk. C denotes the set containing all edges, xk and zk
are the state and observation vector of kth edge respectively.

However, the unimodal Gaussian adopted by classic graph-optimization cannot describe multiple
hypotheses. Therefore, slot association, where ambiguity generally occurs, is added to the graph as
multiple variable edges, expressed by the max-mixture model [32], with information matrices that are
set switchable.

In the standard max-mixture method, the likelihood function of xi is expressed by a max-mixture
of Gaussian distributions [29]:

p(zj
i |xi) = max

j
wj

i N(µ
j
i , Ωj

i
−1

) (4)

where N(µ
j
i , Ωj

i
−1

) and wj
i denote the Gaussian distribution and weight for the jth observation

hypothesis zj
i generated in Section 3.2.1.
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In this paper, wj
i and Ωj

i are dynamically set according to the landmark’s confidence level pj
ID:

wj
i = b0 + b1 · p

j
ID , ∑

j=0...N
wj

i = 1 (5)

Ωj
i = A0 + A1 · p

j
ID (6)

where N is the total number of observation hypothesis and there is always a j = 0 case denoting a false
positive. The diagonal matrix A0, A1 and parameter b0, b1 are normalized coefficients and should be
set considering both the slot detection and the tag detection accuracy.

The best observation hypothesis z∗i and its corresponding information matrix Ω∗i are selected
by the max operator. This offers flexibility to the graph, which helps to suppress the observation
uncertainty. The max operator is indeed achieved by iterating through all hypotheses and selecting the
best component that minimize the negative log of Equation (4):

(z∗i , Ω∗i ) = arg min
j

[− log p(zj
i |xi)]

= arg min
j

[− log wi +
log |Ωj

i |
2

+
ei(xi, zj

i)
T

Ωj
iei(xi, zj

i)

2
] (7)

Then, the original least-squares problem is transformed into a new mixed form containing both
unimodal and max-mixture Gaussian distributions:

F(x) = ∑
i∈Cslot

ei(xi, z∗i )
TΩ∗i ei(xi, z∗i ) + ∑

j∈CIMU,tag

ej(xj, zj)
TΩjej(xj, zj) (8)

x∗ = arg min
x

F(x) (9)

Since z∗i and Ω∗i have already been selected by Equation (7), the remaining steps are identical
to those of classic graph optimization. Moreover, z∗i and Ω∗i are re-evaluated dynamically in each
optimization [29].

4. Experimental Analysis

In this section, we evaluate the results of the proposed method in the parking lot of the
Telecoms building on Jiading Campus, Tongji University. The rough building plan of the parking lot,
which covers an area of approximately 3000 square meters, is shown in Figure 7a. This parking lot is
illuminated by dim lights, as shown by Figure 3. When facing the entrance, sunlight overexposes the
front view cameras (Figure 1a). Other intruders include pedestrians and passing vehicles. The test
platforms in Figure 7b are the two low-cost autonomous vehicles aiming for production prototype,
which are equipped with previously mentioned sensors. The resolutions of the fisheye camera and the
front-view camera are 640 × 480 and 1000 × 1000 respectively. The industrial computer is equipped
with an i7 2.3 Ghz quad-core CPU and 8 GB memory and a Nvidia 1050Ti GPU with 4 GB memory.
Both vehicles are able to drive autonomously.

We first tested and compared mapping results with different input measurements,
i.e., Dead reckoning only, Parking slot-only and Parking slot aided by tags. Then the online localization
performance is assessed. We further quantitatively analyzed the crucial influential factors of the
configuration of the visual fiducial tags. The results show that only a few tags with high visibility and
even spatial converge are required for robust mapping and localization.
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Figure 7. (a) A rough building plan of the parking lot with tags marked by red lines. (b,c) our
test platforms.

4.1. Mapping with Semantic Landmarks

The mapping process can be conducted either online or offline. During mapping, the transition
between frames is estimated by the dead-reckoning system, as described in [13]. This dead-reckoning
system drifts when the vehicle moves at a relatively low speed e.g., below 5 kph (shown by the
trajectory in Figure 8).

Figure 8. The drifting trajectory collected by the dead reckoning system at 5 kph.

4.1.1. Parking Slot-Only Mapping

First, we test the performance of the parking slot-only mapping using the proposed method.
The datasets are collected while the vehicle maintaining a speed of 3–5 kph by a human driver. Figure 9
shows the results of mapping without tag assistance at three time stamps. As time passes and the map
expands, the error accumulates and distorts the map (shown from Figure 9a,b). However, the detected
parking slots corrected the odometric error as compared to the trajectory in Figure 8. When the
vehicle revisits a parking slot, large drifts prevent the new slot observation from been associated
with the former (Figure 9b). Finally, the optimization falls into a local optimum, and both the vehicle
trajectory and slot locations diverge considerably (Figure 9c). With purely the parking slot information,
the mapping is difficult to converge even with the robust optimization method.

(b)(a) (c)

Figure 9. (a–c) are temporal results of mapping using observations of parking slots only at time stamp
No. 1000, 2000 and 4000 respectively.
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4.1.2. Tag-Aided Parking Slot Mapping

To assist the parking slot-based SLAM, 60 A2-sized fiducial tags are placed in the parking lot
to cover the slot-free area near the entrance and to guarantee a stable and credible observation for
SLAM (as shown in Figure 10). During observations, tags that are 20 m or farther from the vehicle
are discarded since the accuracy decreases as the tags become smaller, and the tags may even become
unreadable in the image. loop closureusing tags only (b)loop closureusing tags and lots (a)

Figure 10. (a) Mapping result with loop closure using tags and slots, (b) Mapping result with loop
closed using only tags. The dead-reckoning trajectory is shown by dashed lines in both figures.

The mapping results of using combined tags and slots are compared with the results of using tags
only. Figure 10a shows the mapping results using all tag and slot observations during optimization.
Figure 10b shows the mapping results with tag observations only, and parking slots are added to the
map only at their first sight. The comparison shows that with the assistance of tags, slot observations
are correctly associated, and the drift caused by dead-reckoning is effectively abated. Nevertheless,
in the area where tags are sparse (marked by the red square in Figure 10), observations of parking slots
lead to crucial constraints for the optimization.

Figure 11 shows the map results of the whole experimental area using combined tags and slots.
All the parking slots are successfully mapped. The undetected parking IDs minimally affect the
mapping result, as shown by the slot with IDs starting with “t” in Figure 11. We compared the
mapping results with and without the proposed robust method, and the results are shown in Figure 12.
In Figure 12a, some slots are wrongly associated with others due to the incorrectly detected slot IDs,
causing global ambiguity, e.g., slot No. 39 is wrongly recognized as No. 38 when firstly detected,
and the IDs of the two slots reversed. In Figure 12b, the proposed robust method avoids this issue by
choosing a more reasonable hypothesis.

4.2. Online Localization Performance

Since the ground truth of localization in an indoor space is difficult to obtain, we first evaluated the
localization performance by measuring the “revisiting error” (repeatability) according to the revisiting
of pre-recorded trajectory and poses. In addition, we then evaluated the mapping accuracy according
to the measured distances between selected tag pairs.

The vehicle is first operated by a human driver to initialize the map. Once the map stabilizes,
a reference trajectory is recorded. Then, the vehicle drives autonomously following this reference
trajectory according to the real-time localization. The experiment is repeated for twelve times.
The actual driving trajectory is recorded and compared with the reference trajectory. Figure 13
shows the trajectories of both manual (blue) and autonomous driving (claret). By measuring the
deviation between actual driving trajectories and the reference trajectory (The deviation is calculated
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based on the distance between the closest points of two trajectories), the average revisiting error is
0.31 m, the minimum revisiting error is 0.125 m and the maximum revisiting error is 0.45 m. Both the
two vehicles could autonomously follow the reference trajectory at the maximum speed of 10 kph
without human intervening.

Figure 11. The mapping result of the whole parking lot, slot IDs starting with “t” are temporary slot
IDs for slots where ID detection fails.

(b)

(a)

Figure 12. (a) Map optimized by the traditional graph-based method without a back-end error detection
strategy, (b) map result optimized by the proposed robust SLAM method.

Because the previous dynamic revisiting error contains uncertainties from both the localization
and the control system, thus, we further evaluated the localization precision by manually driving the
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vehicle repeatedly to revisit three pre-recorded test points. These test points are of different locations.
The test point No. 1 is around the corner, the test point No. 2 is on the straight path and the test point
No. 3 is in one of the parking slots. The reference coordinates were pre-recorded by using one of the
test vehicles. We then drove another vehicle to the three points five times. The localized coordinates
are shown in Table 1. ∆x and ∆y indicates the difference between the test point and the reference point.

∆d is the distance between the two points, where ∆d =
√

∆x2 + ∆y2.
The final revisiting error can be evaluated by averaging the mean errors of three test points

((0.382 + 0.211 + 0.26)/3), which is 0.284 m. This can already meet the demand of the low-speed
autonomous driving in an indoor parking lot.

Figure 13. Comparison of the reference and automatic driving trajectories, where the blue trajectory is
a human driving trajectory and the claret trajectory is the automatic driving trajectory.

Table 1. Online localization performance (unit: meters).

Test Point No. 1 Reference Mean STD

x −8.404 −8.324 −8.631 −8.368 −8.172 −8.257
y 7.477 7.973 7.171 7.563 7.761 7.909

∆x 0.147 0.068 0.374 0.111 0.084 0.157 0.125
∆y 0.432 0.063 0.739 0.346 0.148 0.346 0.265
∆d 0.456 0.093 0.828 0.364 0.171 0.382 0.289

Test Point No. 2 Reference Mean STD

x −1.947 −2.021 −2/023 −1.709 −1.695 −1.942
y 9.838 9.706 9.816 9.371 9.538 9.756

∆x 0.005 0.079 0.081 0.233 0.247 0.129 0.106
∆y 0.082 0.050 0.059 0.385 0.219 0.159 0.144
∆d 0.082 0.093 0.100 0.450 0.330 0.211 0.169

Test Point No. 3 Reference Mean STD

x −4.896 −5.178 −5.269 −5.183 −4.924 −5.184
y 5.995 6.533 5.941 6.249 6.138 6.167

∆x 0.289 0.006 0.085 0.001 0.261 0.128 0.138
∆y 0.172 0.367 0.236 0.082 0.029 0.177 0.133
∆d 0.336 0.367 0.251 0.082 0.263 0.26 0.110

We also evaluated the mapping accuracy by comparing the distances between selected tag pairs in
the map with the distances measured by hand using a laser measure. As shown in Table 2, five evenly
distributed tag neighbor pairs, i.e., (14, 16), (4, 30), (54, 57), (19, 39) and (8, 10), are selected and their
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distances are measured as dr. Based the coordinates of these tags in the map, x1 and y1, their distances
are calucalted as dc. ∆d is the difference between dc and dr, and the mean ∆d is just 0.10 m.

The time cost of the proposed system is presented in Table 3. The total processing time for
detection is around 0.2 s per frame. The optimization for the whole graph took 0.137 s at maximum
since the number of vehicle node in graph grows and the processing time increases linearly.

This proposed SLAM system enables the vehicle to pass through a 3-m wide entrance and several
90-degree corners, ensuring robust localization performance inside the parking lot.

Table 2. Online mapping performance (unit: meters).

No. x1 y1 No. x2 y2 dc dr ∆d

14 −48.898 7.298 16 −44.462 5.201 4.90 4.84 0.06
4 −44.169 20.138 30 −45.621 17.461 3.04 2.97 0.07

54 5.620 5.202 57 0.146 7.650 5.99 5.83 0.16
19 −14.118 6.760 39 −8.928 4.102 5.83 5.87 0.04
8 −36.820 19.263 10 −33.176 25.916 7.58 7.42 0.16

Mean ∆d 0.10 RMSE ∆d 0.05

Table 3. Online SLAM time cost of each part (unit: seconds).

Detection Time Per Frame

AprilTag Detection 0.055 Slot Detection 0.048 ID Detection 0.143

Optimization Time Per Frame

Frame 1000 0.011 Frame 2000 0.074 Frame 3000 0.137

Comparison with Traditional VSLAM Methods

We applied the well-known ORB-SLAM2 [5] and DSO [19] methods to our parking lot both online
and offline. The input of the ORB-SLAM2 system is the front-view images and the same dead-reckoning
results. We employed the pre-trained vocabulary dictionary from the original ORB-SLAM2 system.
Figure 1a shows examples of feature matches in ORB-SLAM2. Although the visual fiducial tags in
the environment add additional textures for ORB-SLAM2, many mismatching feature pairs remain,
which prohibits the initialization of the system. The original DSO fails to initialize because of the
dim lighting conditions. We then turn to the stereo DSO method developed by HorizonAD (https:
//github.com/HorizonAD/stereo_dso). However, this method also fails in the second turn when a
mild turning maneuverer was conducted, which is presented in Figure 1b. The stereo ORB-SLAM also
fails in the same second turn. In addition, none of the tested methods is able to re-localize the vehicle
as tested in Section 4.2.

4.3. How Many Visual Fiducial Tags Are Needed?

Visual fiducial tags add crucial assistance to the robust semantic SLAM system for autonomous
driving. However, they may confuse human drivers and require additional work for placement.
Therefore, we analysed and attempted to minimize the number of fiducial tags without affecting the
mapping and localization accuracy. We extract the tag and slot cohabited area and select 36 tags for
analysis. The influence of the observation frequency and distribution are discussed separately.

4.3.1. Observation Frequency-Based Analysis of Tags

We divide the parking lot according to the front camera’s field of view (Figure 14a). Since the
camera can only capture tags right ahead, the rectangle parking lot is divided into four sub-regions.
The vehicle moves at a low, almost constant speed so that tags have an equal opportunity of being
observed. The observed frequencies of all the tags are counted and clustered in Figure 14b, and each of

https://github.com/HorizonAD/stereo_dso
https://github.com/HorizonAD/stereo_dso
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the frequency ranges is marked in a different colour. We then activated various combinations of tags
based on their observation frequency in 4 subregions and evaluated the mapping results. With a limit
on the total number of tags, the numbers of tags selected from each subregion are 1, 2 and 3, and the
corresponding results are shown in Figure 15.

1

2 3

4

(b)(a)

Figure 14. (a) The segmentation plan based on the vehicle trajectory and sensor’s field of view.
(b) Observation frequency of tags in four subregions with tags of high frequency (in khaki), where the
horizontal axis represents the tag IDs and the vertical axis represents the observation frequency of each
tag. The frequencies can be clustered into four ranges: above 400, 100–400, 30–10 and below 30.

(a)

(g)(e)

(b) (c) (d)

(f) (h)

Figure 15. Mapping results obtained by retaining various numbers of tag with different observation
frequencies. (a) Retaining the first four most frequently observed tags, (b) retaining the first four
tags with high (100–400) observation frequency, (c) retaining the first four tags with low (30–100)
observation frequency, (d) retaining the four least frequently observed tags, (e) retaining the first
eight most frequently observed tags, (f) retaining the first eight tags with low (30–100) observation
frequency, (g) retaining first twelve most frequently observed tags, (h) retaining twelve least frequently
observed tags.

Figure 15a–d show the results with four tags selected (one tag from each subregion). Tags with
different observation frequencies (from high to low) are used in each result. In Figure 15d, where the 4
least frequently observed tags are selected, the mapping is unable to sustain global loop closure. In the
mapping result for tags with low (30–100) (Figure 15c) and high (100–400) (Figure 15b) observation
frequencies, some misplaced slots are present in the slot sequence, and the vehicle trajectory is bent.
By contrast, the four most frequently observed tags ensure a good trajectory and slot alignment
(Figure 15a). Figure 15e–h show the results with eight tags and with twelve tags selected, respectively
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(Restricted by the number of tags, only two groups are compared for each case). In Figure 15e,f,
the eight most frequently observed tags perform well, and there are unusual and skewed parking slots
and twists in vehicle trajectory when eight tags with low observation frequency are used.

In Figure 15g,h, the most frequently observed tags act as robust fiducial tags, as before. The twelve
least observed tags give a better result than the four or eight least frequently observed tags. The vehicle
trajectory roughly loops on the global scale although local disagreements and misplaced parking slots
are observed.

As a result, in Figure 15a,e,g, where only the most frequently observed tags are used, the cycled
vehicle trajectory and parking slots show the best alignment. The use of even one tag with high
observation frequency in each subregion (Figure 15a) can provide reliable mapping and localization
results that are comparable to the results generated with the eight or twelve tags with the highest
observation frequency. Therefore, even a limited number of tags with the highest observation frequency
is effective for loop closure.

To identify other factors that influence the effectiveness of the tag arrangement, the influence of
the tags’ distribution is analysed based on frequently observed tags.

4.3.2. Position-Based Analysis of Tags

Since tags with high observation frequency are good fiducial tags, only frequently observed tags
(with an observation frequency greater than 100) are considered in this analysis. Two groups of tag
combinations are tested: tags evenly distributed in one group (Figure 16a,b), and tags located close
together (Figure 16c–h). In the former group, we tested the top one or two most frequently observed
tags (four or eight tags in total). In the latter group, tags are either gathered together in one of four
subregions, i.e., tags from region 1, 2, 3, 4 only, or in an area of the parking lot, i.e., tags from the
right-hand side of the parking lot or from a combination of regions, e.g., 2 and 4.

(a) (c) (e)

(b) (f)

(g)

(d) (h)

Figure 16. Performances of evenly distributed (a,b) and gathered (c–h) tags. All tags used here have
an observation frequency greater than 100. (a) Retaining the most frequent observed tag from each
subregion, (b) retaining the first two most frequently observed tags from each subregion, (c) retaining
all six tags in subregion No. 1, (d) retaining all two tags in subregion No. 2, (e) retaining all seven tags
in subregion No. 3, (f) retaining all five tags in subregion No. 4, (g) retaining twelve tags from the
right-hand side of the parking lot, (h) retaining seven tags from subregions No. 2 and No. 4.

According to Figure 16, the mapping results with the top one or two most frequently observed
tags in each subregion are the best (Figure 16a,b), where three rows of parking slots are aligned and
the vehicle trajectory loops after two rounds. In the gathered group (Figure 16c–h), gathered tags
are good fiducial tags for local optimization but are not reliable for the global map. In Figure 16g,
the vehicle trajectory and most slot positions are optimized, although the fiducial markers are located
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in one lane. This is because these tags are around the global loop (where the vehicle first revisits its
former trajectory), which provides robust evidence for global loop closure. However, there are small
angular deviations in most slots’ directions (with one slot with extremely large angular deviation)
due to the absence of local fiducial tags. Despite the effectiveness in global loop closure of the tags
concentrated near the global loop, evenly distributed tags provide better fiducial markers for local slot
and trajectory optimization, as well as global loop closure. Four tags, consisting of the most frequently
observed tag from each subregion, are better fiducial markers than gathered tags, even when there are
more tags (even twelve) in uneven situations.

4.3.3. Explanation Based on Graph Configuration

To depict the underlying factors, we further investigated the topology of the graph structure built
for optimization. Some of the ’good’ and ’bad’ maps in Figures 15 and 16 are visualized in Figure 17.

(a)

(b) (d)

(c) (e)

(f)

Figure 17. Visualization of connectivities in ’good’ maps (a,b) and ’bad’ maps (c–f). (a,b) The visualizations
of Figure 15a,b, respectively. (c,d) The visualizations of Figure 15f,h, where low observation frequency
leads to loop closure failure. (e,f) are the visualizations of Figure 16e,g, where the gathered tags ensure
only local optimization.

In the upper two ’good’ maps (Figure 17a,b), which correspond to Figure 15a,b, the tag
observations are evenly distributed and easily accessible, and the tags are visible for more than
50 % of the vehicle positions. By contrast, in the ’bad’ maps, tags are either too secluded to be observed
(Figure 17c,d) or are serried in a specific location (Figure 17e,f). Figure 17c,d show the visualizations
of the graphs for the cases of (Figure 15f,h). Although the tags are evenly distributed, the sparse tag
observations do not provide sufficient constraints for loop closure. Figure 17e,f show the visualizations
of the graphs for the cases of the gathered tag maps (Figure 16e,g. Dense tag observations ensure
robust local loop closure near the concentrated tag region, but drift emerges gradually outside of the
region because of the long-time absence of fiducial markers. These comparisons reflect the nature of
the least-squares optimization for imbalanced constraints.

5. Conclusions

Due to the monotone texture, various illumination and dynamic conditions, a parking lot is
a harsh environment for most visual SLAM methods. As a result, indoor autonomous parking is
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a bottleneck for autonomous driving applications. In this paper, we employed the detection of a
semantic landmark, namely, the parking slot with its ID, and constructed a robust and practical
semantic SLAM system for an indoor parking lot. To solve the problem of robust semantic data
association, we proposed an extension of the max-mixture method by incorporating confidence level
from the detection. Additionally, we attempted to determine the minimum number of visual fiducial
markers to enhance the robustness and precision of the proposed system. We concluded that only the
four most visible fiducial markers placed evenly in our test environment provide satisfactory mapping
and localization results. This small number of markers drastically lessens the burden caused by the
placement of a large number of markers and proves the practicability of the proposed SLAM methods
for autonomous parking.

In future work, we aim to replace visual fiducial markers with general semantic clues, including
instruction arrows or parking signs on pillars. Additionally, the influence of imbalanced constraints on
graph optimization will be investigated. Finally, the joint optimization of the data associations and the
poses of the vehicle and semantic landmarks will be investigated.
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