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Abstract: The fourth industrial revolution has brought several risks to factories along with its plethora
of benefits. The convergence of new technologies, legacy technologies, information technologies and
operational technologies in the same network generates a wide attack surface. At the same time,
factories need continuous production to meet their customers’ demand, so any stopped production
can have harsh effects on a factory’s economy. This makes cyber resilience a key requirement in
factories nowadays. However, it is difficult for managers to define effective cyber resilience strategies,
especially considering the difficulty of estimating adequate investment in cyber resilience policies
before the company has suffered cyber incidents. In this sense, the purpose of this article is to define
and model an effective cyber resilience strategy. To achieve this, the system dynamics methodology
was followed in order to get five experts’ opinions on the best strategy to invest in cyber resilience.
Interviews were conducted with these experts; their reasoning was put into behavior over time
graphs and a system dynamics model was built from these findings. The main conclusion is that
a cyber resilience investment strategy should be dynamic, investing in both technical security and
personnel training, but at first with an emphasis on technical security and later shifting to have an
emphasis on training.

Keywords: cyber resilience; IoT (Internet of Things); IIoT (Industrial Internet of Things); IT-OT
(Information Technology-Operational Technology) convergence; investment policies; system dynamics

1. Introduction

Technology today has become crucial in the industrial sector in order to stay competitive.
With the paradigm of industry 4.0 or smart manufacturing, companies are now able to be more
efficient, more productive and more flexible [1]. The paradigm of smart manufacturing includes a
collection of technologies and a convergence of humans, technology, and information. Two of the main
technologies it includes are Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Through
these technologies, factories aim to obtain real-time data that will let them optimize their decision
making, resources and client satisfaction [1–3].

With all these advantages, smart manufacturing has also brought a convergence between the
Information Technologies (IT) and the Operational Technologies (OT) [3–5]. This convergence has
increased the companies’ risk and insecurity since OT systems have unique characteristics that cannot
be easily protected with standard IT security practices [6]. Even company directors are aware that
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their risks are greater as technology is more embedded in their processes, but at the same time feel that
companies are not prepared to face the challenges and implications of these new risks [3,5,7].

In fact, cyber incidents can have severe impacts on companies. The economic damage after a
cyber incident comes from different sources: loss of reputation and clients’ trust, stopped production
or services, loss of intellectual property, fines and contractual payment obligations, etc. [8–11]. In fact,
several reports show that cyberattacks are one of the main risks for companies these days [12,13] and
that cyber incidents cost around $445 billion annually [13].

In the industrial context, probably the most cited example of a cyber incident is Stuxnet, a malware
designed to target the industrial control systems (ICS) and slow down the uranium enrichment
plants outside of Natanz (Iran) in order to limit Iran’s nuclear weapon production in 2009. To do
this, the malware made the centrifuges of the uranium enrichment plant spin faster than they were
supposed to, and then slower to break the already fragile machines. The exact number of broken
centrifuges in Natanz is unknown, but authors estimate between 900 and 2000 centrifuges were broken
in less than a year [14].

Although Stuxnet was an attack on nuclear plants and many consider it to be the first
announcement of cyberwarfare [14,15], it was a direct attack on an ICS and similar attacks could
affect any kind of connected factory.

In this sense, in order for companies to thrive in this new industrial era, they must broaden their
cybersecurity concept from only perimeter security to a prevention, detection, response and recovery
point of view [16,17]. Many important institutions and researchers use the concept of cyber resilience
to describe this broader point of view [18–21]. However, building cyber resilience is not a merely
technical problem and it cannot be solved just through technological security tools. In fact, many
cybersecurity problems in companies are caused by humans and the vulnerability that this human
factor brings cannot be underestimated [7,18]. This means that for a company to be cyber resilient
it needs to avoid focusing only on perimeter security [6], it needs to be prepared to face the before,
during and after periods of an attack with both factors, technology and people, in mind [18,22].

Even though managers are becoming aware of the importance of including cyber resilience
policies, there is still a significant number of companies that lack adequate funding for security
practices [7]. Besides, it could be overwhelming to budget and execute a cyber resilience strategy
because of the multiple aspects it encompasses, such as protective technology, awareness and training,
asset management, response and recovery planning, etc. [23]. Moreover, it is difficult for managers
to define an effective cyber resilience strategy considering that most of the time they lack a sufficient
budget [7,24] and it is difficult to correctly budget for cyber resilience when there has not been any
cyber incident experience yet to indicate the cost and effects it has. Besides, since the budget allocation
can also change depending on the types of attacks that the company could expect, budgeting is different
to for a company that expects only opportunistic attacks than for a company that can be targeted for
an attack [25], adding another difficulty to the definition of an effective cyber resilience strategy.

The current literature seeks to optimize the investment in security measures for companies,
however, most of them focus only on technological investments and how to find the balance between
minimum investment and enough protection [24,26–30]. For this reason, these studies use game
theoretic models, optimization models or a combination of both, but neither kind of model considers
the variability and risks that the humans would include in a real situation. In other words, most
of the security investment is done in anti-viruses, firewalls, encryption, intrusion detection systems,
data backup, and hardware devices; but not in the human aspect that is often targeted through social
engineering [30]. These studies also approach the optimization of a cyber resilience investment strategy
with an economic point of view, however estimating cyber resilience costs is often a problem on its
own, with its own implications [31].

The purpose of this article is to address the above-mentioned difficulties through the analysis and
modeling of an effective cyber resilience investment strategy based on several experts’ mental models
(i.e., ideas) of how a connected factory would behave in different scenarios. This approach is different
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from previous studies because it uses a cyber resilience approach where the investment in security is
not limited to technological measures and it uses a system dynamics approach where it is possible to
model soft variables for which quantitative data is not available, but in practice play important roles in
the behavior of other variables [32]. This approach is not focused on getting hard data on the economic
part of the cyber resilience strategy, but on getting the knowledge and experience embedded in the
experts’ minds.

Nowadays, this kind of study is especially important since the rapid evolution of technology
and the lack of awareness from factory managers puts smart factories at high risk [5,7,33] and,
as mentioned above, makes cyberattacks one of the risks with a higher impact and higher probability
of occurring [12,13].

To achieve this article’s objectives, several interviews have been carried out with different
cybersecurity experts to obtain the behavior over time of key variables in a hypothetical industrial
company that has implemented the smart manufacturing paradigm. These behaviors were modeled
and simulated in a system dynamics model for a better understanding of the experts’ reasoning and to
check for unexpected long-term side effects of the reasoning they proposed in a dynamic simulation.
The development of this study faced different challenges such as: defining a suitable scenario that
all experts would understand equally considering their different profiles, defining the key variables
that should be included in the scenarios the experts would analyze, and reaching a consensus on the
behaviors of these variables. The latter was the most difficult to overcome, and thus the methodology
is prepared to have several rounds of proposals until consensus was reached.

The article is structured in such way that: Section 2 of this article explains in a detailed manner
how the interviews were done, and how the model was constructed. Section 3 shows the results of the
interviews with the experts, the hypothesis drawn from these graphs, the model that was created and
the simulations done with the model. Section 4 is a discussion of the results where the experts’ graphs
are contrasted to the model simulations’ graphs. Finally, Section 5 summarizes the conclusions the
authors of this article have drawn from this article.

2. Methodology

As stated in reference [34], the system dynamics (SD) modeling and simulation methodology
is suitable for the purposes of this article. SD has been used in several disciplines of research such
as in engineering, scientific humanitarian sciences, the economy, manufacturing and management,
planning and logistics, healthcare, urban planning, etc. The SD simulation and modeling methodology
uses a top-down approach that allows us to manage and analyze complex adaptive systems involving
interdependencies [35,36]. This methodology is grounded in the theory of nonlinear dynamics and
feedback control, which deals with the internal feedback loops and time delays that influence the
whole system [37].

SD methodology allows the effective modeling of socio-technical systems, consisting of human,
organizational and technological parts. This is possible because the SD methodology allows models to
deal with “soft” variables that cannot be quantified, but that are often important factors that influence
the behavior of other variables in the problem that is being modeled [32].

Another characteristic of SD is that it is used when the individual properties are not decisive and
high-level aggregation is desired or required for management purposes. This is typically the case for
management strategies and long-term planning [38,39].

Based on these specific characteristics of this modeling methodology, SD is especially suitable
for the analysis of cyber resilience management. On the one hand, cyber resilience development
involves multiple relationships between variables and the complexity increases because of the presence
of significant delays. The process of building cyber resilience in an organization needs to consider
variables that evolve quickly, like new types of cyber-attacks or software upgrades, with others that
need longer times to change, such as organizational culture or individual attitudes towards security.
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On the other hand, building cyber resilience involves “soft” variables that are hard to measure, such as
“employees’ training level”.

To follow the methodology, the first step is to find the reference behavior modes that describe
the problem to be modeled [40]. The reference behavior modes in the context of SD modeling refer
to the behaviors over time (BoT) of the key variables in the problem. It is important to notice that,
due to the nature of the variables involved in cyber resilience management, it is often difficult to find
quantitative data on these variables. However, experts can graph these variables because they have
acquired that knowledge through experience. By acquiring these experts’ experience and graphing
it in a pseudo-quantitative way, the results can be used as input for a model to represent reality.
Though this is not hard quantitative data it is vital to understanding the dynamics of managing cyber
resilience [32,34].

For this reason, in order to find the reference behavior modes for an industrial factory
implementing IoT devices, five experts were individually interviewed. The experts’ profiles were:
two cybersecurity researchers that work closely with industrial companies, one CISO from a company,
and two software engineers that work for industrial companies. All of these experts have vast
experience in the industrial context, its current evolution, and the trade-offs of managing cyber
resilience in a company.

During the interviews, the experts were asked to draw the BoT graphs of four variables (training
level, technical security level, management’s awareness, and cyberattacks’ success probability) in three
scenarios that only differed in the investment policies. The three considered scenarios were: (1) equal
investment in personnel training and technical security, (2) significantly more investment in personnel
training than in technical security, and, finally, (3) significantly more investment in technical security
than in personnel training.

The scenarios were 250 weeks (around 5 years) of a hypothetical industrial company that started
to invest in IoT and as a result, by week 20, had multiplied the number of connected devices to the
network by five, abruptly increasing their attack surface. As a simplification, they were told that the
change was immediate (such as the graph shown in Figure 1) and that before week 20 the company
had a reasonable technical and personnel training level; meaning that they could assume that before
that week the situation was stable for all of the variables.
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To make sure all of the experts understood the same for the presented variables, the following
definitions were given to them:
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• Cyberattacks’ success probability: variable that shows how likely is a cyberattack to succeed in
the current company’s conditions. As a probability, this variable is dimensionless (does not have
units) and has a range from 0 to 1.

• Training Level: this variable shows how much knowledge the non-IT personnel has about the
existence of threats to the current systems, their role in preventing them, and what to do in case
they detect one. In other words, it measures the ability of the non-IT personnel to follow the
established policies to prevent, detect, resist and recover from vulnerabilities and cyberattacks.
The training level will also reflect the ability of the personnel to improvise and adapt to crisis
situations or incidents whose solution is not previously known. Since this is a soft variable it
is dimensionless and in this case, is considered to be proportional to the threats the company
currently faces.

• Technical security Level: measures the ability of the installed technology to prevent, detect, resist
and respond to the company’s current threats. In other words, how protected the company is
from external threats through their antivirus software, firewalls, Intrusion Detection Systems
(IDS), software security updates, etc. Like the training level, this variable is dimensionless and
proportional to the threats the company currently faces.

• Management’s awareness Level: shows the knowledge and commitment of the management
about the threats that the company faces and their potential impacts. The higher the management’s
awareness the more likely they are to invest in technical security or personnel training. Since
this is also a soft variable it is dimensionless as well. This variable could be influenced by the
personnel’s training (since the personnel includes the management) or by the concern owed to
the effects of a suffered cyber incident.

Once the experts had drawn the BoT graphs of these variables for the three scenarios they were
asked several questions to see what would change if there were two cyber incidents in the company,
one in week 90 and the other one in week 150. The questions emphasized focusing on two main
aspects, the values of the variables they had already drawn and possible differences in the second
incident once the company had suffered the first one.

The main goal of the five interviews with the experts was to capture their mental models and the
reasoning behind them. With all this information, the experts’ mental models were compiled into one
set of BoT graphs and textual descriptions about the reasons for these behaviors. These BoT graphs
were sent with a written explanation to the experts to see if they agreed with those behaviors. When an
expert disagreed with the graphs or their explanation, these were adapted to the expert’s suggestions
and the process was repeated until consensus was achieved.

After getting the reference behavior modes, the SD methodology requires a dynamic hypothesis [40].
In SD the dynamic hypothesis is usually represented in a causal loop diagram (CLD), which represents
the causal relationships between variables, the feedback loops they produce, and the interactions
between feedback loops. For this article, with the BoT graphs the experts drew and their reasoning,
the CLD was developed.

Finally, with the CLD defining the interrelationships of variables in the problem to be modeled,
an SD model was developed. The model was designed to apply the experts’ reasoning, this way a
better understanding of their point of view could be achieved, their reasoning could be checked for
unintended side-effects in dynamic simulations and conclusions could be drawn.

3. Results

Using the methodology described above, three main results have been obtained. These three
results are the reference behavior modes, the dynamic hypothesis, and the SD model that represents
this behavior. The following subsections present these results in a detailed manner.
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3.1. Reference Behavior Modes

After the interviews with the experts and the subsequent consensus-seeking process described
previously, the BoT graphs obtained and their explanations were the following.

3.1.1. BoT for an Equal Investment Scenario

For a scenario with equal investment in technical security and in personnel training, the experts
consider the BoT would look like the one in Figure 2.
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As shown in the graph, in a scenario with equal investment in technical security and in training,
experts agree that the training level and the technical security that the company had before the
investment in IoT technology is not enough after multiplying the number of devices in the network by
five. The reason for this is that the personnel does not have enough knowledge about the new devices
nor the risks that they bring to the company and that the new technical vulnerabilities are probably not
covered with the currently installed technology. Therefore, there is a sudden decrease in the technical
security and training levels at week 20 when all the new devices are installed.

Even though the investment in technical security and training is the same in this scenario, experts
agree that the learning process is slower than the technology installation process, which they believe
has an almost immediate effect. For this reason, the training level has a higher time delay than security
technology in the BoT graph for this scenario. As a consequence, training reaches reasonable levels
(like before week 20) later in time than technical security.

At the same time, since there is not enough training and technical security in the company for
those new devices, the success probability of a cyberattack acutely increases during the period where
these variables are not yet at adequate levels. However, as the company starts implementing more
technical security and the personnel is trained (after week 20), the probability starts to decrease.

Meanwhile, the management’s awareness increases slowly between weeks 20 to 90 just due to
the training they receive since it lets them have a better understanding of the threats the company is
exposed to.
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On week 90, when the experts were told that the company suffered the first cybersecurity incident,
the management’s awareness noticeably increases for a couple of weeks because of the sudden concern
that the incident brought to them. Though the peak awareness is short-lived, the management’s
awareness level stays higher than before the company suffered the incident, because the experts agree
that the management learns from incident to incident.

Also, according to the experts, the management would change its investment policies in order to
mitigate the cause of the cyber incident. Meaning that, if the cause was a human mistake, they would
invest more in training, but if the cause was a technological gap, they would invest more in technical
security. In this case, the cause of the cyber incident was not specified in the scenario, so experts
thought that it was safe to assume that the failure would be caused by each case’s lowest-valued
variable between the technical security level and the training level, or in other words their “weakest
link”. In this scenario, at week 90 the training level had a lower value than technology, so the experts
assumed that the cause of the incident was a human mistake and that the management would invest
more in training after the incident. Hence, the training level temporarily increases more than the
technical security level after week 90. This effect, however, is not so immediate because of the delay
between the investment and the increase in training level.

Experts have also considered that the success probability of a cyberattack increases drastically
after a cyber incident. The cause of this is that the probability becomes a conditional probability,
and their experience shows that it is usually easier to have a successful cyberattack right after another
attack. However, after the incident and its causes are mitigated through the training and technology in
the company, this probability starts to decrease again.

Finally, similar effects to those after week 90, can be observed after the second cyber incident at
week 150. However, in this case, the increases in the technical security and training levels are smaller,
because experts agree that after achieving a certain level in both variables it becomes harder and more
expensive to increase these levels. This certain level of technical security or training where it becomes
harder and more expensive to increase will be further referred to as the saturation level.

It is also worth mentioning that experts agree that this scenario would have the lowest cyberattack
success probability of the three scenarios towards the end of the simulation. The reason for this lower
success probability, according to the experts, is that neither technical security nor training can work
without the other, and the mix of both of them will make the company more resilient in the long term.

3.1.2. BoT for a Training Biased Scenario

In a scenario where the company invests significantly more in training than in technical security,
the experts consider the BoT would look like the graph in Figure 3.

In this scenario, experts have agreed that at week 20 the decreases in technical security and
training levels would be similar to the previous scenario. The reason for this decrease is also the same:
the cybersecurity technology and the training that the personnel had before is not enough for this
sudden change.

However, when these variables start increasing because of the investment (after week 20),
the training level increases faster than in the previous scenario and technical security level would
reach a reasonable level (similar to the one before week 20) later in time due to the defined scenario.

As a consequence of the increased investment in training, the management reaches higher
awareness levels in less time. According to the experts, the increase in training investment would also
cause the awareness levels to stay at peak after-attack levels for longer than in the other two scenarios.
This is because the training they receive lets them understand the risks the company faces better and
thus be more aware.

Also, as in the previous scenario, the cyberattacks’ success probability would increase steeply
after week 20 and decrease as the technical security and training levels increase. There would also be a
temporary increase in this probability after the cyber incidents at weeks 90 and 150 as well.
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The behavior of the training and technical security levels after the cyber incidents is similar to the
previous scenario. Meaning that even though the investment in both variables increases because of
the management’s concern, as in the previous scenario, experts consider there will be a change in the
investment policies that will cause a higher increase in the “weakest link”. In this case, the technical
security level is lower than the training level; hence, the experts have assumed that the cause of the
incident was technological and therefore, they think there would be a higher investment in technical
security and as a consequence, there is a higher increase in this variable.

Experts agree that the success probability of a cyberattack in this scenario stays the highest of
the three scenarios throughout the whole simulation. They agree that even though both variables,
the human and the technological, are important, technology reduces the cyberattacks’ success
probability the most. The reason behind this is that industrial IoT technology itself brings technological
vulnerabilities that cannot be controlled by humans, and that there are several exploits and attack
vectors that cannot be mitigated only by humans, no matter how trained they are.

3.1.3. BoT for a Technical Security Biased Scenario

Figure 4 shows how the experts consider the key variable’s BoT would be in a scenario where the
company invests significantly more in technical security than in training.

On a third and last scenario where there is more investment in technical security than in training,
the decrease in training and technical security levels at week 20 maintains, but, when both start to
increase due to the current investment policies, technical security is the one that reaches saturation
faster. Experts agree that saturation in technology would be even faster than the saturation in training
in the previous scenario and that due to its delay, the training level would stay even lower than the
technical security level in the previous scenario.

As mentioned in the previous scenario, the technical security level is very important for the
cyberattacks’ success probability, hence this variable decreases faster in this scenario than in both of the
previous ones. However, in the long term, the lower training level leaves the cyberattacks’ probability
of success higher than in the first scenario.
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The management’s awareness would grow the slowest in this scenario, because of the lower
investment in training. This results in a lower overall curve than in the previous scenarios.
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Figure 4. BoT in a technical security biased scenario.

In this scenario, the behaviors after the cyber incidents are similar to the previous scenarios. In this
case, the management would invest more in training because, according to the experts, it is most likely
the cause of the cyber incident since it has a lower value than the technical security level. Therefore,
after the time delay that this variable has, it will increase more noticeably than the technical security
level after both incidents.

3.2. Dynamic Hypothesis

From the BoT graphs and the reasoning that the experts have agreed on, a dynamic hypothesis
with four feedback loops is proposed. These four feedback loops are depicted in the CLD shown in
Figure 5.

The arrows in the CLD represent causal relationships, and the (+) sign near the head of the arrows
between variables means that the causal relationships are directly proportional. On the other hand,
the (−) sign represents inversely proportional causal relationships.

The causal relationships in the CLD form feedback loops that can be of two types: reinforcing
or balancing. Reinforcing loops represent behaviors where there is exponential growth or decay due
to the interaction between variables involved in them. Balancing loops, on the other hand, represent
limiting behaviors.

In this case, the dynamic hypothesis, through its four feedback loops, describes four main
behaviors:

1. Training reinforces awareness (loop R1).
2. Cyber incidents can increase the chances of having another cyber incident (loop R2).
3. The management invests in training to improve cyber resilience (loop B1).
4. The management invests in technical security to improve cyber resilience (loop B2).
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Besides the four main behaviors mentioned above, notice that the CLD considers the fact that
investing in connected devices generates more attack surface and thus a higher cyberattacks’ success
probability. Although it is not inside a feedback loop, this consideration is important because it
represents the real scenario companies are living and therefore, it is key to represent the problem that
is being modeled.

It is also important to mention that not all the feedback loops in this hypothesis occur with the
same frequency. B1, B2, and R2 can only act completely after a cyber incident occurs. This represents
the fact that managers will become more aware when there is a cyber incident (B1 and B2), and that
cyber incidents increase the probability of success of other cyberattacks due to the compromised
systems (R2).

3.3. SD Model

SD models are usually represented with a stocks and flows diagram. This kind of diagram can
depict a system in a way that the variables involved, and the relationships between them can be
translated into mathematical formulas.

In a stocks and flows diagram, stocks represent the accumulation of material or state variables
and are portrayed as rectangles. On the other hand, flows are represented as valves that control the
inflow or outflow of the stocks.

Other variables involved that are neither stocks nor flows are called auxiliary variables. This kind
of variable is necessary in order to close causal relationships inside any system. Moreover, the arrows
that connect variables in a stocks and flows diagram represent the aforementioned causal relationships
so that if variable A has an arrow that comes from variable B, then variable B is a cause of variable A
and thus it will appear as part of the mathematical formula for variable A. Notice that variables A and
B in an SD model can be stocks, flows or auxiliary.



Sensors 2019, 19, 138 11 of 16

One stocks and flows diagram that models the dynamic hypothesis posited in the previous
subsection is shown in Figure 6.
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Figure 6. Stocks and flows diagram.

As mentioned in Section 3.2, the dynamic hypothesis was made based on the experts’ reasoning,
therefore the simulations done with the same scenarios that the experts were given should result in
similar behaviors as the BoT that were explained in Section 3.1.

Figure 7 shows the BoT generated in a simulation of this model in an equal investment scenario.
To interpret this and the following BoT graphs take into account that due to the fact that the variables in
this model are soft or dimensionless, no numerical scale, even not an arbitrary one, has been provided.
Accordingly, the values on y-axes should be interpreted as expressing low, medium or high values.
In this sense, the features of interest in the graphs that should be taken into account instead are changes
in shapes, inflections, maxima and minima.

In a training biased scenario, the BoT graph generated by the model looks as presented in Figure 8,
which can be compared to Figure 3.

Finally, in a technical security biased scenario, the BoT graphs generated by the model look as
presented in Figure 9, which should be compared to Figure 4.

Although the graphs generated by the model look fairly similar to the ones drawn by the authors,
there is one difference that should be emphasized: as Figures 8 and 9 show that in a training biased
scenario, the technical security level reaches higher levels faster than in a technical security biased
scenario. This behavior, despite being paradoxical, has an explanation that will be further discussed in
the next section.
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4. Discussion

The literature posits that there are many domains to be considered when building cyber resilience
in a company. These domains have a very heterogeneous nature as they include internal, external,
technological, cultural and human aspects [18,19,22,23]. This heterogeneity makes building cyber
resilience a complex process where managers have to invest time and money in different cyber
resilience policies that encompass these domains. Even though this is widely known, there is no
roadmap for the order in which these policies should be implemented or prioritized. In this line,
this article’s results show the following:

After interviewing experts using hypothetical scenarios with different investment policies it
is clear that technology plays an important role in the cyber resilience building process. In fact,
as explained in previous sections, experts believe technology is the most important aspect to invest in
when building cyber resilience since it is the one that will most significantly reduce a cyberattacks’
success probability and prevent it from becoming a cyber incident.

Nonetheless, experts have also agreed that training the personnel is still important in the cyber
resilience building process. They unanimously agreed that neither technical security nor personnel
training could build cyber resilience completely without the other being present.

Therefore, according to the experts, an investment should be made in both technical security
and personnel training. However, taking into account their reasoning the investment strategy should
be dynamic and change from technical security-biased policies to training-biased policies once the
technology is saturated. Notice that this does not mean that companies should not invest in training
until they have saturated the technical security level, but that without neglecting training they should
focus on technical security at the beginning, and when they have a reasonable technical security
focus on improving training. This way the company would minimize the cyberattacks’ success
probability faster.

For a further understanding of the experts’ point of view, it was important to input their reasoning
into a model. Even though no model can completely depict reality, some can be really useful to draw
conclusions or show unexpected results that could affect a system. In fact, a distinctive feature of SD
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models is their ability to capture these unintended side-effects and to help identify policies to minimize
their impact. This is crucial since experience teaches that many strategies that initially seem to work
often have disastrous unintended long-term consequences [35,36,41].

In this case, the model shows one unexpected behavior that could happen when applying the
experts’ strategies to reality. The unexpected behavior is that in an equal investment scenario and in
a training biased scenario, the company might end up investing more in technical security than in
a technical security biased scenario. This is due to the dynamic behavior caused by the interaction
between R1 and B2 feedback loops. The increase in the training level increases the management’s
awareness level (R1), and the increase in management’s awareness level increases the investment in
technical security (B2).

Even though when simulated and reasoned the results seem to be coherent with the experts’
reasoning, they were interviewed once more to see the results of the simulations and asked if they
agreed with those behaviors. In these interviews, the unexpected behavior was explained to the experts
with the graphs generated in the simulation and consensus BoT graphs were shown to them at the
same time so they could see the difference more clearly.

In these interviews, the experts agreed that the unexpected behavior was reasonable, especially
since in the scenario with a technical security bias, before the first cyber incident, the company is
roughly at the same level than before installing the IoT devices. The experts reasoned that the behavior
shown in the simulations explained the following: In a scenario where the management’s awareness
does not increase, even when their strategy is to invest as much as possible in technical security, they
settle for having a technical security level similar to the one before the increase in IoT. According
to them, the management in a company such as this one would only invest to have more technical
security when they have been affected by the cyber incident and thus are more concerned.

After the interviews, experts also acknowledged that there is a bias in the industry that favors
technical security over personnel training, even though it is a commonly cited fact that the “weakest
link” in cybersecurity is the human error.

It is important to highlight that the model emphasizes the effect of training the personnel,
and especially the management, showing that this cannot be underestimated in a company; but
that this result does not mean that the experts were wrong, or that the best strategy is to invest equally
in personnel training and technical security from the beginning. On the other hand, this result stresses
that even though when starting to invest technology should be a priority, training should not be
completely forgotten, and that, as the experts have said, the technical security biased strategy should
at some point be changed to a training biased strategy for an optimal strategy.

It is also important to highlight that the model developed in this paper, besides helping simulate
and better understand the experts’ ideas and experience, could be a useful tool to raise awareness
among factory managers because it depicts in simple graphs the behaviors of the main variables whose
values are not easily quantifiable (soft variables). Knowing these behaviors and how the variables in
cyber resilience management interact could, by itself, lead to a better and more effective management
strategy. Besides, the model also depicts how these variables would evolve/change in situations such
as: rapidly increasing the number of IoT devices and suffering a cyber incident in a highly connected
factory; so, through the different simulations this model can help factory managers develop strategies
to react to these situations. Thus, this model could be a useful tool in the decision-making process of a
factory manager.

5. Conclusions

This article has found a roadmap to an efficient investment strategy for building cyber resilience.
In order to achieve this, experts were interviewed and their points of view were summarized into
behavior over time graphs of several key variables that led to the modeling of the problem in a system
dynamics model.
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The experts’ point of view and the system dynamics model led to the conclusion that in the cyber
resilience building process, both technology and personnel training are important, and neither should
be overlooked in an investment strategy. However, to efficiently invest in cyber resilience the first step
should be to invest more in tools and technical solutions, and when these are in place change to a more
training-centered investment. This strategy will help factories minimize any cyberattacks’ success
probability faster and more efficiently.

The model developed in this paper can be used as a tool in the decision-making process of factory
managers since it raises awareness and depicts in simple graphs how the important, yet intangible,
variables of cyber resilience management behave in situations such as the rapid increase of IoT devices
and the suffering of a cyber incident in different investment scenarios.
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