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Abstract: In multiple detection target tracking environments, PDA-based algorithms such as multiple
detection joint integrated probabilistic data association (MD-JIPDA) utilize the measurement partition
method to generate measurement cells. Thus, one-to-many track-to-measurements associations
can be realized. However, in this structure, the number of joint data association events grows
exponentially with the number of measurement cells and the number of tracks. MD-JIPDA is plagued
by large increases in computational complexity when targets are closely spaced or move cross each
other, especially in multiple detection scenarios. Here, the multiple detection Markov chain joint
integrated probabilistic data association (MD-MC-JIPDA) is proposed, in which a Markov chain
is used to generate random data association sequences. These sequences are substitutes for the
association events. The Markov chain process significantly reduces the computational cost since only
a few association sequences are generated while keeping preferable tracking performance. Finally,
MD-MC-JIPDA is experimentally validated to demonstrate its effectiveness compared with some of
the existing multiple detection data association algorithms.

Keywords: Markov chain process; multiple detection; target existence evaluation; multitarget
tracking; data association

1. Introduction

Target tracking and information fusion techniques have achieved more attention in recent years
due to their wide applications in both military and civilian domains [1–6]. In multitarget tracking
environments, the data association process decides which selected measurement comes from which
target and evaluates the corresponding association probability [7–9]. Usually, a target can be detected
once with a less-than-unity detection probability, and false alarms (clutter) are also present in the
surveillance area, which leads to more challenges for the data association process.

Tracks, which are formed to estimate the trajectories of the targets, are initialized using
measurements; however, they are initialized without prior information of the measurement origins.
This means that true tracks that are following targets and false tracks that are following clutter are
both initialized and that they propagate during the surveillance period. The problem of true and false
track discrimination is introduced, known as the false track discrimination (FTD) problem in [7,10].

Among the various tracking approaches, multiple hypothesis tracking (MHT) is an algorithm that
utilizes multiple-scan track-to-measurement association by evaluating the likelihoods of the association
hypotheses as specified in [11] and Chapter 6.3 of [12]. In MHT, hypotheses, which can be viewed
as the measurement resource declarations at each scan, are generated and updated, and then the
hypothesis with the highest a posteriori probability is the resulting output for track acceptance and
rejection at each scan. As we know, MHT has issues with its computational complexity, in which
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the number of hypotheses grows exponentially. Some heuristics have been proposed to relax the
complexity [11,13,14], but there is nevertheless a sacrifice in optimality.

The joint integrated probabilistic data association (JIPDA) algorithm [8] is a pseudo-Bayesian
estimator that enumerates all track-to-measurement associations and calculates the corresponding
weights. JIPDA is a single-scan algorithm that implements associations between the current scan
tracks and the selected measurements. Instead of trying to find one “best” measurement for a track,
all measurements selected by the track are evaluated and a track state is generated by the summation
of the state corresponding to each data association event over all the weighted association events.
In order to obtain the association weights, the summation of the data association probabilities over
all association events is needed, which is an NP-hard problem [15,16]. It has been proved that JIPDA
is much more efficient compared to MHT for closely spaced targets and dense clutter environments,
resulting in the extensive applicability of JIPDA.

Since JIPDA suffers from a heavy computational load, a suboptimal method is proposed in [17],
called linear multitarget integrated probabilistic data association (LM-IPDA). In this algorithm,
after track t selects various measurements, the measurement generated by the target being tracked by
another track is treated as additional clutter for track t. This additional clutter is used to modulate the
origin clutter measurement density, which allows LM-IPDA to totally bypass the joint data association
step. This clutter modification process is the core of the LM approach, which upgrades the single target
tracking algorithm to a multitarget tracking algorithm. This algorithm reduces the complexity of heavy
multiple target tracking to that of single target tracking, but sacrifices optimality in the process.

In MHT, the hypothesis with the highest probability is utilized to accept and reject tracks,
and PDA-based algorithms calculate the consecutive detection probability of each track in order to
terminate unstable tracks [2,11,12,18]. In [7,19], the probability of target existence (PTE) is introduced as
a track score, which is continuously updated (along with the track state) and used to confirm the track
(i.e., the target tracked by the corresponding track exists). The PTE of each track is updated considering
the ratios of measurement likelihood to clutter measurement density for all of the measurements
selected by that track. Compared to MHT, which uses a global hypothesis, each track has a PTE,
allowing JIPDA to perform track judgment for each track separately. Compared to the consecutive
detection probability used by JPDA, PTE has a more stable performance.

JIPDA enumerates all possible association events in order to approximate the optimal Bayesian
filter, which suffers from a large computational complexity, especially when targets are closely spaced.
The Markov chain JIPDA (MC-JIPDA) generates the association events via a Markov chain process [20].
In each event generation step for a track, the current track-to-measurement assignment is only
correlated with the last assignment and independent of the other tracks. The main benefit of this
approach is that the number of association sequences can be controlled and only a small number of
association sequences are needed. One drawback is that, repeat association sequences can be generated
in the MC-JIPDA algorithm, as all association events are generated randomly.

Due to the applications of high resolution sensors and some special kinds of radars such as
over-the-horizon-radar (OTHR), multiple detection target tracking generally attracts more attention
from the research community [9,21–26]. For such multiple detection situations, the widely used point
target assumption is relaxed and the data association process needs to assign multiple measurements
to one track, which leads to the association complexity exponentially increasing compared to the single
detection case.

The measurement partition method [21] is used to generate the measurement cells for each track,
where each cell is a combination of selected measurements that are assumed to be target detections.
This method is a mathematical technique that can be smoothly incorporated into any existing tracking
algorithms. However, the number of measurement cells quickly increases with an increasing number
of selected measurements, which results in an extremely high computational complexity at the
track-to-measurement cell association step. Since multiple detection JIPDA (MD-JIPDA) enumerates
all possible association events, it is not feasible in many multiple detection applications due to the
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computational resources that are required [27]. Multiple detection LM-IPDA (MD-LM-IPDA) is
efficient in these multiple detection scenarios, but afflicts the deteriorating tracking performance [28].

The contributions: The multiple detection Markov chain joint integrated probabilistic data
association (MD-MC-JIPDA) algorithm is proposed to solve the multiple detection target tracking
problem based on a much more efficient data association sequence generation process. Instead of
enumerating all feasible joint events (FJEs) for data associations among measurement cells and tracks,
MD-MC-JIPDA generates a certain number of FJEs based on the Markov chain sequence of each track.
Then, the corresponding event probabilities are evaluated using the measurement cells and track states
under consideration. The track state and probability of target existence are updated based on these
FJEs. The main benefit of this algorithm is that it needs only a small number of FJEs and this number is
decided in advance and can be adjusted according to the complexity of the tracking scenario. The novel
FJEs generation mechanism makes MD-MC-JIPDA algorithm much more efficient and tractable in
multiple detection multitarget tracking environments.

This paper is organized as follows. The assumptions and models are described in Section 2.
The structure of MD-MC-JIPDA is demonstrated in Section 3. The simulation studies and conclusions
are given in Sections 4 and 5, respectively.

2. Assumptions and Models

This section provides the details of the assumptions and models used in this paper. Targets usually
occur and disappear at random times and can be detected with a less-than-unity probability [18].
Targets become even harder to detect if they maneuver in certain ways [29]. In the bearing only case,
in order to track targets, the sensor needs to navigate with more complex maneuvers compared to the
targets in order to satisfy the observability condition [30].

2.1. Target Motion

The most widely used nearly constant velocity (NCV) model, in Chapter 4.2 of [31], is considered
here, where the target state evolves according to

xt
k+1 = Axt

k + vt
k, (1)

where xt
k is the state of target t at scan k, A is the state propagation matrix, and vt

k represents the
zero-mean white Gaussian process noise with covariance Q.

2.2. Measurements

The standard multiple detection situation, which is caused by a high resolution sensor that can
resolve multiple scattering feature points of a target, is considered. A target can be detected ϕt times
with the corresponding given detection probability PDϕt . Target measurements are generated by

zk = Hϕt x
t
k + wϕt (k) , (2)

where the parameters Hϕt and ωϕt are given by

Hϕt = ⊕
ϕt

H (3)

wϕt (k) = ⊕
ϕt

w (k) (4)

in which H = [1, 0]⊗ I2 is the measurement generation matrix for a single detection and the sign ⊕
represents the vertical vectorial concatenation operation. w (k) is the Gaussian measurement noise
that p (w (k)) = N (w (k) ; 0, R) in which R is the sensor error covariance. ϕt used here represents
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the number of target detections such that Hϕt and wϕt (k) correspond to the case that there are ϕt

detections from target t at scan k.
False alarms (clutter measurements) also arise in the surveillance area. This kind of measurement

is assumed to follow the Poisson/uniform distribution in this paper.
The set of measurements selected at scan k is represented by Zk, which contains both target

measurements and clutter measurements, given by

Zk =
{

zk,j

}mk

j=1
, (5)

where zk,j represents the jth measurement and mk is the total number of selected measurements at
scan k.

The set of sets of measurements collected from the initial to current scan is Zk, which satisfies

Zk = {Z1, Z2, . . . , Zk} . (6)

At each scan, the measurements selected by a track are used to estimate the target state and to
evaluate the target existence probability under the multiple detection paradigm.

3. Multiple Detection Markov Chain Joint Integrated Probabilistic Data Association

This section demonstrates the detailed derivations of MD-MC-JIPDA. We first introduce the track
state and the measurement partition method and then focus on the structure for jointly assigning
measurement cells to tracks. The contribution of MD-MC-JIPDA algorithm lies in the efficient joint
assignment mechanism.

When the targets are closely spaced or move across each other, the computational burden of the
joint association events increases sharply, hampering the implementation of the traditional tracking
algorithms such as MHT and JIPDA. Furthermore, the multiple detection situation significantly
aggravates this burden since the number of measurement cells of each track is usually much larger
compared to the number of measurements selected by that track. Therefore, in an attempt to realize
a real-time algorithm, the multiple detection version of the Markov chain process is proposed as an
approximation of the Bayes estimator.

3.1. Track State

For a detector, there is no a priori information on the measurement origins, resulting in that a
track may track a target or clutter. Thus, the existence of the target being tracked by a track is a random
event. The probability of this random event is termed the probability of target existence P

(
χt

k|Z
k
)

.
In MD-MC-JIPDA the track state pdf is represented by

p
[

xt
k, χt

k|Z
k
]
= p

(
xt

k|χ
t
k, Zk

)
P
(

χt
k|Z

k
)

(7)

which consists of the trajectory state and the target existence event. On the RHS of (7), we can see that
the kinematic state xt

k is conditional on the target existence χt
k. Both p

(
xt

k|χ
t
k, Zk

)
and P

(
χt

k|Z
k
)

are
propagated according to a standard predict-update mechanism [7,8].

3.2. Measurement Utilization

At each scan, each track uses the gating method, which can be found in Chapter 2.3.2 of [2],
to select measurements. Since the multiple detection problem is considered, the measurements
selected by a track are first used to generate measurement cells. Then, the measurement cells are used
for the data association in order to update the PTE and the state of the corresponding track. Assume
that track t selects three measurements

{
zk,1, zk,2, zk,3

}
and the maximum number of target originated

measurements ϕt,max is 3. Then, the measurement cells are generated as follows:
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{{
zk,1
}

,
{

zk,2
}

,
{

zk,3
}}

where z1,1 (k) =
{

zk,1
}

, z1,2 (k) =
{

zk,2
}

and z1,3 (k) =
{

zk,3
}

. In this case ϕt = 1, c1 = C3
1 = 3 and

n1 ∈ {1, 2, 3}. {{
zk,1, zk,2

}
,
{

zk,1, zk,3
}

,
{

zk,2, zk,3
}}

where z2,1 (k) =
{

zk,1, zk,2
}

, z2,2 (k) =
{

zk,1, zk,3
}

and z2,3 (k) =
{

zk,2, zk,3
}

. In this case ϕt = 2,
c2 = C3

2 = 3 and n2 ∈ {1, 2, 3}. {{
zk,1, zk,2, zk,3

}}
where z3,1 (k) =

{
zk,1, zk,2, zk,3

}
. In this case ϕt = 3, c3 = C3

3 = 1 and n3 ∈ {1}.
Then, these measurement cells are used in the joint data association process instead of using the

single measurements zk,1, zk,2 and zk,3.

3.3. Feasible Joint Event

In this part, we give a brief review of the feasible joint events of MD-JIPDA and introduce a new
perspective on the probability of a feasible joint event, preparing for the derivation of MD-MC-JIPDA.

Under the multiple detection condition, measurement cells, which are composed of one or more
selected measurements, are assigned to tracks in a feasible joint event [2]. In the following derivations,
we assume that the cluster tracks can select all the measurements in the cluster to form feasible
joint events [2].

In MD-JIPDA, the feasible joint events are used to generate the track-to-measurement cell
assignments. In each feasible joint event, the assignments for all the cluster tracks and all the
measurement cells are considered. The probability of a feasible joint event ε j in MD-JIPDA is
calculated by

P
(

ε j|Zk
)
= κ−1 ∏

t∈T
ε j
0

[
1− Pt

DecP
(

χt
k|Z

k−1
)]
· ∏

t∈Tε j

[
PDGϕt P

(
χt

k|Z
k−1
) pzϕt ,nϕt

ρϕt
ϕt!
]

, (8)

where each track is assigned one measurement cell or is unassigned, and any two measurement cells
assigned to different tracks do not share common measurements [27].

The truncated measurement cell likelihood pzϕt ,nϕt
in (8) for zϕt ,nϕt

(k) is calculated by

pzϕt ,nϕt
= N

(
_z ϕt ,nϕt

(k); z̄ϕt ,nϕt
(k), Sk

)/
(PG)

ϕt . (9)

where _z ϕt ,nϕt
(k) is the concatenated measurement based on measurement cell zϕt ,nϕt

(k), z̄ϕt ,nϕt
(k) is

the predicted measurement and Sk represents the corresponding innovation covariance. The details
for obtaining these parameters can be referred to [28].

In (8), Pt
Dec is the probability that at least one target measurement is detected and is located in the

selection gate of track t, given as

Pt
Dec =

ϕt,max

∑
ϕt=1

PDGϕt , (10)

where PDGϕt is the probability that ϕt measurements are detected and are located in the selection gate
of track t, given by

PDGϕt = PDϕt(PG)
ϕt , (11)

and ρ is the clutter measurement density.
The predicted probability of target existence is given by
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P
(

χt
k|Z

k−1
)
= p11P

(
χt

k−1|Z
k−1
)

, (12)

where p11 is the transition probability that a target exists at the previous scan and keeps its existence
state at the current scan, which is usually set as 0.98 [7].

The normalization constant κ used in (8) can be obtained based on the fact that the total probability
of all data association events is

M

∑
j=1

P
(

ε j|Zk
)
= 1, (13)

where M is the number of joint events.
In all the derivations, pzϕt ,nϕt

is used as an abbreviation of the measurement cell likelihood

p
(

zϕt ,nϕt
(k) |χt

k, Zk−1
)

and this value is calculated by a modulated Kalman filter which will be given
later.

Let us have another look at each joint event in terms of the tracks. Define ηt
ε j
= zϕt ,nϕt

(k) as the
event that measurement cell zϕt ,nϕt

(k) is assigned to track t under joint event ε j, and ηt
ε j
= z0 (k) as

the event that there is no measurement assigned to track t under joint event ε j. The corresponding
probabilities can be found in (8) as

P
(

ηt
ε j
= zϕt ,nϕt

(k)
)
= PDGϕt P

(
χt

k|Z
k−1
) pzϕt ,nϕt

ρϕt
ϕt! (14)

and
P
(

ηt
ε j
= z0 (k)

)
= 1− Pt

DecP
(

χt
k|Z

k−1
)

. (15)

The probability of a feasible joint event ε j, from the point of view of tracks ε j =
{

η1
ε j

, . . . , ηN
ε j

}
,

can be rewritten as

P
(

ε j|Zk
)
= κ−1

N

∏
t=1

P
(

ηt
ε j

)
. (16)

where N is the total number of tracks.
Therefore, a feasible joint event consists of the measurement cell-to-track assignments for all the

cluster tracks, in which each track is assigned with a measurement cell (zϕt ,nϕt
(k) or z0 (k)).

3.4. Markov Chain Sequence

In MD-JIPDA, the number of feasible joint events grows exponentially with the number of
measurement cells and the number of tracks involved. When MD-JIPDA is used for closely spaced
multitarget tracking considering clutter measurements, the computational load for the feasible joint
event probability calculation becomes intractable. This is the fatal weakness for applying MD-JIPDA
or any other algorithms which use feasible joint events for data association to real-time multiple
detection environments. Therefore, the algorithm with a limited number feasible joint events should
be executed for real-time applications. In addition, the limited size feasible joint events need to
represent the significant joint events and neglect insignificant joint events to obtain a reasonable data
association performance.

Let us consider the Markov process which can be used to sequentially assign measurement cell to
a track. The Markov process satisfies

P (ηn+1 = an+1|ηn = an, ηn−1 = an−1, . . . , η1 = a1) = P (ηn+1 = an+1|ηn = an) , (17)

which indicates that the state at current time ηn+1 depends only on the last state ηn and has nothing
to do with the previous states. Utilizing the property of (17), one can generate the state transition
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much more efficiently since not the entire past state but only the last state is necessary for the current
state generation.

Utilizing the Markov property in (17), we can sequentially generate Markov chain. For the
measurement cell-to-track assignment process, a Markov chain can be represented by the corresponding
matrix ∆t of which each element ∆t

e f is the transition probability from selecting ze (k) to selecting z f (k).
The transition probabilities for each track are defined as

∆t
e f

∆
= ∆

(
ηt

ε j+1
= z f (k) |ηt

ε j
= ze (k)

)
, (18)

which represents that ze (k) is assigned to track t under joint event ε j and z f (k) is assigned to track t
under ε j+1, where e, f ∈

{
0,
(

ϕt, nϕt

)}
. These transition probabilities satisfy

∑ f ∆t
e f = 1. (19)

The transition probabilities that satisfy the condition that the current selection is the same as the
last one are

∆t
ee =

PDGϕt P
(

χt
k|Z

k−1
)

pzϕt ,nϕt
ϕt!

κρϕt
, e =

(
ϕt, nϕt

) (20)

and

∆t
ee =

1− Pt
DecP

(
χt

k|Z
k−1
)

κ
, e = 0. (21)

where these values are generated according to (14) and (15).
Assume that the number of measurement cells of track t at scan k is Mt

c (k). The transition
probabilities that satisfy the condition that the current selection is different from the last one are
given by

∆t
e f =

1
Mt

c (k)
[1− PDGϕt P

(
χt

k|Z
k−1
)
·

pzϕt ,nϕt

κ · ρϕt
ϕt!], e =

(
ϕt, nϕt

)
, e 6= f (22)

and

∆t
e f =

1
Mt

c (k)
[1−

1− Pt
DecP

(
χt

k|Z
k−1
)

κ
], e = 0, e 6= f . (23)

The normalization constant κ of these transition probabilities is given as

κ = 1− Pt
DecP

(
χt

k|Z
k−1
)
+ ∑

ϕt
∑
nϕt

PDGϕt P
(

χt
k|Z

k−1
) pzϕt ,nϕt

ρϕt
ϕt!. (24)

In each feasible joint event, any two measurement cells assigned to different tracks should not
contain the same measurements.

The transition probability matrix for each track is given as (25). This matrix considers all possible
transitions among the measurement cells (including z0 (k)) of a track.
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∆t =


∆t

0,0 ∆t
0,(1,1) ∆t

0,(1,2) ∆t
0,(2,1)

∆t
(1,1),0 ∆t

(1,1),(1,1) ∆t
(1,1),(1,2) ∆t

(1,1),(2,1)
∆t
(1,2),0 ∆t

(1,2),(1,1) ∆t
(1,2),(1,2) ∆t

(1,2),(2,1)
∆t
(2,1),0 ∆t

(2,1),(1,1) ∆t
(2,1),(1,2) ∆t

(2,1),(2,1)



=



1−Pt
DecP(χt

k |Z
k−1)

κ
1
3

(
1− ∆t

0,0

)
1
3

(
1− ∆t

0,0

)
1
3

(
1− ∆t

0,0

)
1
3

(
1− ∆t

(1,1),(1,1)

) PDG1P(χt
k |Z

k−1)pz1,1
κρ

1
3

(
1− ∆t

(1,1),(1,1)

)
1
3

(
1− ∆t

(1,1),(1,1)

)
1
3

(
1− ∆t

(1,2),(1,2)

)
1
3

(
1− ∆t

(1,2),(1,2)

) PDG1P(χt
k |Z

k−1)pz1,2
κρ

1
3

(
1− ∆t

(1,2),(1,2)

)
1
3

(
1− ∆t

(2,1),(2,1)

)
1
3

(
1− ∆t

(2,1),(2,1)

)
1
3

(
1− ∆t

(2,1),(2,1)

) 2PDG2P(χt
k |Z

k−1)pz2,1
κρ2



(25)

Suppose two tracks, t and t + 1, have selected the same measurements
{

zk,1, zk,2
}

and ϕt,max =

ϕt+1,max = 2. After measurement cell generation process, three measurement cells are generated,
which are z1,1 (k) =

{
zk,1
}

, z1,2 (k) =
{

zk,2
}

and z2,1 (k) =
{

zk,1, zk,2
}

, for both track t and t + 1.
The Markov chain state set is {z0 (k) , z1,1 (k) , z1,2 (k) , z2,1 (k)}. The state transition for a track, such as
t, from ηt

ε j
= ze (k) to ηt

ε j+1
= z f (k) is accepted with probability ∆t

e f .

3.4.1. Data Association Sequences for a Track

An example of the transition relation among measurement cells of track t is shown in Figure 1,
in which z0 (k), z1,1 (k), z1,2 (k) and z2,1 (k) are considered. From this figure, each measurement cell
can transform to the other measurement cells with corresponding transition probabilities. Suppose
that track t selects z1,2 (k) in the data association sequence ηt

ε j
, which means

ηt
ε j
= z1,2 (k) ; (26)

then the third row of (25) should be used to determine which measurement cell should be selected for
track t in the next data association sequence ηt

ε j+1
. Assume the corresponding transition probabilities are

∆t
(1,2),0 = 0.2,∆t

(1,2),(1,1) = 0.2 (27)

and

∆t
(1,2),(1,2) = 0.4,∆t

(1,2),(2,1) = 0.2. (28)

Then generate a random probability P ∈ [0, 1] to select a measurement cell for ηt
ε j+1

based on (29).
Suppose that P = 0.35, which indicates that z1,1 (k) should be chosen for track t in the data association
sequence ηt

ε j+1
.

0 ≤ P ≤ ∆t
(1,2),0, ηt

ε j+1
= z0 (k)

∆t
(1,2),0 < P ≤ ∆t

(1,2),0 + ∆t
(1,2),(1,1), ηt

ε j+1
= z1,1 (k)

∆t
(1,2),0 + ∆t

(1,2),(1,1) < P ≤ ∆t
(1,2),0 + ∆t

(1,2),(1,1) + ∆t
(1,2),(1,2), ηt

ε j+1
= z1,2 (k)

∆t
(1,2),0 + ∆t

(1,2),(1,1) + ∆t
(1,2),(1,2) < P ≤ ∆t

(1,2),0 + ∆t
(1,2),(1,1) + ∆t

(1,2),(1,2) + ∆t
(1,2),(2,1), ηt

ε j+1
= z2,1 (k)

(29)
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      ( )0
z k

     ( )1,1
z k

     ( )1,2
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     ( )2,1
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Figure 1. Transition relationship among the measurement cells of a track.

The measurement cell selection for track t in ηt
ε j+1

is only related to the selection of track t in ηt
ε j

based on the transition matrix, which is the core of the proposed Markov chain sequences. Based on

this process, track t generates the Markov chain sequence of length K which is
{

ηt
ε j

}K

j=1
, and then track

t + 1 also generates its Markov chain sequence of length K following the same procedure.

3.4.2. Joint Data Association Events for Multiple Tracks

If ηt+1
ε j+1

= ze (k) 6= z0 (k) and ηt
ε j+1

= z f (k) 6= z0 (k), and ze (k) and z f (k) contain the same

measurement, then regenerate ηt+1
ε j+1

until it selects the measurement cell which has no common
measurement with z f (k) to satisfy the condition of the multiple detection feasible joint event.
Using the transform relation given in Figure 1 and the length of Markov chain sequence K is set
to be 5, i.e., the number of FJEs in MD-MD-JIPDA is 5. The possible Markov chain sequence

for track t and t + 1 can be
{

ηt
ε j

}5

j=1
= {z0 (k) , z1,1 (k) , z0 (k) , z2,1 (k) , z1,2 (k)} and

{
ηt+1

ε j

}5

j=1
=

{z2,1 (k) , z1,2 (k) , z1,1 (k) , z0 (k) , z2,1 (k)}. Then, we need to check whether the track-to-measurement

cell association sequences denoted by
{

ηt
ε j

, ηt+1
ε j

}
, j = 1, . . . , 5 satisfy the multiple detection feasible

joint event condition.
Figure 2 demonstrates the feasible joint events generation process using the Markov chain

association sequences of track t and t + 1.

 t t+1 FJE condition checking 

1e  ( )0z k  ( )2,1z k  Satisfied 

2e  ( )1,1z k  ( )1,2z k  Satisfied 

3e  ( )0z k  ( )1,1z k  Satisfied 

4e  ( )2,1z k  ( )0z k  Satisfied 

5e  ( )1,2z k  ( )2,1z k     ( )1,1z k  Satisfied after regeneration 

 

Figure 2. Feasible joint event generation in multiple detection Markov chain joint integrated
probabilistic data association (MD-MC-JIPDA).

In this example,
{

ηt
ε1

, ηt+1
ε1

}
= {z0 (k) , z2,1 (k)},

{
ηt

ε2
, ηt+1

ε2

}
= {z1,1 (k) , z1,2 (k)},

{
ηt

ε3
, ηt+1

ε3

}
=

{z0 (k) , z1,1 (k)},
{

ηt
ε4

, ηt+1
ε4

}
= {z2,1 (k) , z0 (k)} and

{
ηt

ε5
, ηt+1

ε5

}
= {z1,2 (k) , z2,1 (k)}. Among them{

ηt
ε5

, ηt+1
ε5

}
= {z1,2 (k) , z2,1 (k)} violates the multiple detection feasible event condition since z1,2 (k)

and z2,1 (k) contain the same measurement zk,2. So, ηt+1
ε5

of track t + 1 should be regenerated until the
multiple detection feasible joint event condition is satisfied.
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Then, the probability for the feasible joint event ε j =
{

ηt
ε j

, ηt+1
ε j

}
, j = 1, . . . , 5 is obtained by (16).

The length of total feasible joint events K in MD-MC-JIPDA can be predetermined based on the
complexities of different scenarios.

3.5. Track Update

The association probabilities of a measurement cell to a track are generated based on the
corresponding feasible joint events. For simplicity, the time index k in zϕt ,nϕt

(k) and z0(k) is omitted.

Denote by Ξ
(

t, zϕt ,nϕt
(k)
)

the set of feasible joint events that allocate cell zϕt ,nϕt
(k) to track t. Notice

that if there is no feasible joint event that allocates measurement cell zϕt ,nϕt
(k) to track t, the association

probability for this measurement cell is 0.
The event that no measurement in the cluster is target t detection is the union of the data

association sequences that allocate z0 (k) to track t, given by

P
(
ηt = z0 (k)

)
= ∑

ε j∈Ξ(t,z0(k))
P
(

ε j|Zk
)

. (30)

The probability that no measurement in the cluster comes from target t and that target t exists is
expressed as

P
(

ηt = z0 (k) , χt
k|Z

k
)
=

(
1− Pt

Dec
)

p
(

χt
k|Z

k−1
)

1− Pt
Dec p

(
χt

k|Zk−1
) P

(
ηt = z0 (k) |Zk

)
. (31)

The probability that measurement cell zϕt ,nϕt
(k) originates from target t and that target t exists is

P
(

ηt = zϕt ,nϕt
(k), χt

k|Z
k
)
= ∑

ε j∈Ξ
(

t,zϕt ,nϕt
(k)
) P
(

ε j|Zk
)

. (32)

Events
{

ηt, χt
k
}

are mutually exclusive and the union of these events is the target existence event
χt

k. Therefore, the a posteriori probability of target existence is calculated by

P
(

χt
k|Z

k
)
= P

(
ηt = z0 (k) , χt

k|Z
k
)
+

ϕt,max

∑
ϕt=1

cϕt

∑
nϕt=1

P
(

ηt = zϕt ,nϕt
(k), χt

k|Z
k
)

. (33)

The association probabilities are expressed by

βt
k (0) = p

(
ηt = z0 (k) |χt

k, Zk
)
=

P
(

ηt = z0 (k) , χt
k|Z

k
)

P
(
χt

k|Zk
) (34)

and

βt
k

(
zϕt ,nϕt

(k)
)
= p

(
ηt = zϕt ,nϕt

(k)|χt
k, Zk

)
=

P
(

ηt = zϕt ,nϕt
(k), χt

k|Z
k
)

P
(
χt

k|Zk
) . (35)

For each association event, there is an update state generated by the modulated Kalman filter
using the corresponding measurement cell. The detailed process of track state update can be found
in [28].

After obtaining the data association probabilities and corresponding update states, the state of
track t is generated according to a Gaussian mixture that considers all the association events. The final
output for each track contains a track state and the probability of target existence.
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3.6. Computational Complexity Analysis

In this section, we analyze the complexity of MD-JIPDA and MD-MC-JIPDA.
Suppose that there are N cluster tracks and M measurement cells which do not contain the

same measurement in the cluster, then the number of feasible joint events is obtained as [17]
M!N! ∑N

i=0
1

i!(M−i)!(N−i)! which has the complexity of O
(

MN) if M > N, or similarly the feasible

joint event generation shows the complexity of O
(

NM) if N > M. From this, the number of feasible
joint events increases exponentially with M and N.

Compared to MD-JIPDA, MD-MC-JIPDA is much more efficient when many tracks share
measurements since MD-MC-JIPDA requires only a certain number of FJEs. The complexity of
the joint measurement cell-to-track assignment of MD-MC-JIPDA is O (1) since the number of the
joint assignments required by MD-MC-JIPDA is a predetermined constant K which can be adjusted
according to the complexity of the tracking scenario.

4. Simulation

This section demonstrates the simulation performances of MD-LM-IPDA, MD-LM-ITS [32],
MD-JIPDA and MD-MC-JIPDA in terms of target existence estimation, target state estimation accuracy,
computational efficiency and OSPA distance [33,34]. As shown in Figure 3, five targets move in
a [0 m, 70 m] × [0 m, 70 m] Cartesian coordinate using a NCV model. The target state is a four
dimensional vector given by

[
x y ẋ ẏ

]
, where x and y are the positions and ẋ and ẏ represent the

velocities in the X and Y direction, respectively. The surveillance duration T is set to be 1 s. The state
propagation and measurement generation equations are introduced in Section 2, in (1) and (2)

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , (36)

H =

[
1 0 0 0
0 1 0 0

]
, (37)

and the covariance of vk is

Q = q · kron
([

T3/3, T2/2; T2/2, T
]

, I2

)
, (38)

where ‘kron’ represents the Kronecker product and I2 is the two-by-two identity matrix. Note that the
covariance of w (k) is

R = diag
(

σx
2,σy

2
)

. (39)

in which σx = σy = 0.5 m.
There are many metrics that can influence the multitarget tracking performance such as (1).

the clutter measurement density; (2). the target detection probability; and (3). the spacing of the
targets. Tracking becomes more difficult when the targets are closely spaced and move across each
other, which could result in ambiguity of the data association among tracks and measurements. Hence,
these five targets move across each other around scan 19 to test the performance.

The two-point differencing, Chapter 3.2 in [2], is used to initialize tracks. At each scan, each track
uses the gating method to select measurements. Once the measurement is selected, it is marked and
will not be used for track initialization. The PTE is used to cover the false track discrimination problem
and once the PTE of a track exceeds the confirmation threshold, it becomes a confirmed track and
stays confirmed. Then, the following method is used to determine whether this confirmed track is a
confirmed true track or a confirmed false track.
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condition 1 :
(

x̂k|k − xk

)T
P−1

0

(
x̂k|k − xk

)
≤ 20

condition 2 :
(

x̂k|k − xk

)T
P−1

0

(
x̂k|k − xk

)
≥ 40

(40)

Once track becomes a confirmed track, the normalized distance squared(
x̂k|k − xk

)T
P−1

0

(
x̂k|k − xk

)
is calculated. If this normalized distance squared is within the

confirmed true track test threshold (≤20), the track becomes a confirmed true track for the
corresponding target; if this normalized distance squared is out of the confirmed true track test
threshold (>20), the track is a confirmed false track for the corresponding target. If the normalized
distance squared of a confirmed true track exceeds the confirmed false track test threshold, which is
set as 40 in this manuscript, this confirmed true track is counted as a confirmed false track for the
corresponding target. Otherwise, it keeps the confirmed true track status for the corresponding target.
At each scan, this normalized distance squared is calculated between each of the confirmed tracks
and each of the targets. If there are many confirmed true tracks for one target or there are targets
sharing the same confirmed true tracks, the auction algorithm [2] is used for the assignments between
confirmed true tracks and targets. If a track is counted as the confirmed false track for all the targets,
it is a confirmed false track, otherwise it is the confirmed true track. In (40), x̂k|k is the state estimate at
scan k, xk is the true target state at scan k, and P0 represents the initial track covariance given by

P0 =

[
R R/T

R/T 2R/T2

]
. (41)

When the track is initialized, it is assigned an initial PTE. The initial PTEs of MD-LM-IPDA,
MD-LM-ITS, MD-JIPDA and MD-MC-JIPDA are different; this is so that these algorithms can be
compared under the condition that all of them have the same number of confirmed false tracks.
The values for the simulation parameters are shown in Table 1, where CFTs stands for the number of
confirmed false tracks.

0 10 20 30 40 50 60 70

X (m)
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20
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m
)

Target 1

Target 3

Target 2

Target 4

Target 5

Figure 3. Simulation scenario (dots are target-originated measurements and asterisks are clutter measurements).
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Table 1. Simulation parameters for different algorithms.

MD-LM-IPDA MD-LM-ITS MD-JIPDA MD-MC-JIPDA

Initial PTE 0.000025 0.000065 0.0001 0.000075
Confirmation PTE 0.95 0.95 0.95 0.95
Termination PTE 0.000025/2 0.000065/2 0.0001/2 0.000075/2
Number of CFTs 2 2 2 2

In order to obtain stable performances, data from 200 Monte Carlo simulation runs was used,
where the surveillance period lasts 35 s. Only one sensor is located at the origin of the Cartesian
coordinates which detects each target with probabilities PD1 = 0.5 (the probability that there is a single
target detection is 0.5) and PD2 = 0.4 (the probability that there are two target detections is 0.4) at each
scan. The amount of clutter at each scan follows a Poisson distribution with an average value of 5.
The number of FJEs in MD-MC-JIPDA is set to be 300.

Here we introduce some parameters for track retention statistics and these parameters are counted
before and after the target crossing:

• nCases: the number of tracks that are following a target at scan 13.
• nOK: the percentage of “nCases” tracks that are still following the original target at scan 33.
• nSwitched: the percentage of “nCases” tracks that end up following a different target at scan 33.
• nMerged: the percentage of “nCases” tracks that disappeared due to tracks merging between scan

13 and 33.
• nLost: the percentage of “nCases” tracks that are not following any target at scan 33.
• nResult: the number of tracks that are following a target at scan 35.
• CPU time [s]: the average computation time for one recursion cycle on a 3.10 GHz Intel PC

platform and run with the Matlab Program.

These statistics are used to indicate the tracking performances before and after the target crossing.
nCases is used to record the number of the confirmed true tracks at a certain time before the target
crossing. nOK indicates the number of the confirmed true tracks that continuously track the same
target before and after the target crossing. nSwitch indicates the number of tracks which swap the
target after the target crossing. This happens from the influence of target measurement that is shared
among cluster tracks and results in the tracking object changes without track termination. nMerged
shows that after the target crossing, several tracks pursue the same target and thus they are merged
due to similar target state estimates. nLost track is generated due to track errors, which results in the
PTE drop below a certain threshold and the track is terminated. This kind of track loss usually results
from the fact that the data association is invalid to some extent due to the target crossing. If nOK is
bigger, it indicates that the tracking performance is better. The number of nOK tracks plus the number
of nSwitch tracks comprise the number of the survived tracks in nCases tracks after the target crossing.
The sum of the number of nMerged tracks and the number of nLost tracks becomes the number of
terminated tracks. Finally, nResult shows the number of the confirmed true tracks at the end of the
whole tracking period after the target crossing. These parameters together constitute the performance
description of target tracks before and after the target crossing, which are important indices to verify
the algorithm. The similar tracking performance analysis using these statistic parameters can be
found in [5,28,35].

The number of confirmed true tracks for all five targets and the root mean square position error
of target 5 are shown in Figures 4 and 5, respectively. In Figure 4, the perfect number of confirmed
true tracks (i.e., 100%) is 1000. There is a severe drop in the number of confirmed true track near the
target crossing time, which indicates that all the algorithms in comparison experience data association
difficulty when targets are located closely. However, when the targets intersect each other, there are
obvious differences among the four algorithms, which indicates that MD-MC-JIPDA maintains many
more tracks compared to LM-based algorithms and slightly more tracks compared to MD-JIPDA.
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Figure 4. Number of confirmed true tracks for all targets.
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Figure 5. Root mean square error for target 5.

As for the root mean square position error, the performances of these four algorithms have the
same trend of increases in the error when the targets cross. However, MD-JIPDA and MD-MC-JIPDA
have obviously smaller position estimation errors compared to LM-based algorithms, which indicates
MD-JIPDA and MD-MC-JIPDA are less affected by multitarget crossing. The increasing error near
the target crossing leads to more shared measurements among tracks. From these results, one can see
that MD-MC-JIPDA has the highest track retention rate with the satisfactory target state estimation
accuracy compared with the other algorithms.
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Table 2 demonstrates the track retention performances of MD-LM-IPDA, MD-LM-ITS, MD-JIPDA
and MD-MC-JIPDA. From this table, MD-JIPDA and MD-MC-JIPDA are shown to have much higher
percentages of nOK compared to the LM-based algorithms. MD-LM-ITS has better nOK performance
compared to MD-LM-IPDA since the tracks in MD-LM-ITS maintain several track components,
each component has a multi-scan data association history, for propagation, which makes MD-LM-ITS
tracks more stable in the target crossing. Detailed analyzing for MD-LM-ITS is referred to [32].
MD-MC-JIPDA has a higher summation of nOK and nSwitched, which indicates more survived target
tracks, and this is the reason that the CTT performance of MC-MC-JIPDA is much better compared
to LM-based algorithms and slightly better compared to MD-JIPDA. Comparing the summation of
nMerged and nLost, MD-MC-JIPDA has the lowest percentage of the terminated tracks. All these
four algorithms have similar numbers of nResult, which suggests that the tracks are recovered after a
certain time period by the track initialization.

Table 2. Statistic parameters.

MD-LM-IPDA MD-LM-ITS MD-JIPDA MD-MC-JIPDA

nCases 994 995 995 995
nOK 43.13% 54.25% 68.84% 63.50%
nSwitched 18.14% 17.81% 13.97% 21.03%
nMerged 38.43% 27.84% 16.88% 14.57%
nLost 0.30 % 0.10% 0.31% 0.90%
nResult 980 975 984 989
CPU time [s] 0.42 2.49 202.97 1.69

By comparing the simulation times in Table 2, in which CPU time is the average execution time
per each run, in seconds, one can see that MD-LM-IPDA, MD-LM-ITS and MD-MC-JIPDA require only
a fraction of the CPU time needed for MD-JIPDA. MD-MC-JIPDA is an effective algorithm that can be
processed in real-time for this scenario.

OSPA was used recently for multi-target tracking performance evaluation [33,34]. Here, we add
the OSPA performance of these four algorithms for comparison. At each scan, the algorithm output the
tracks with PTE higher than the threshold (given as 0.5) to generate the OSPA distance and cardinality.
The other parameters used for these four algorithms are given in Table 1.

In Figure 6, OSPA distances (for p = 1 and c = 10) versus scan for 200 Monte Carlo simulation
runs are shown. It can be seen that all these four algorithms show the same trend that OSPA distance
is increased after the target crossing. The result suggests that both MD-JIPDA and MD-MC-JIPDA
outperform MD-LM-ITS which in turn outperforms MD-LM-IPDA. Combined with the performance
and the analysis given before, this result is due to the fact that MD-JIPDA and MD-MC-JIPDA have
better data association performances when the cluster tracks share the cluster measurements.

The cardinality statistics of these four algorithms are shown in Figure 7. From this figure one can
see that MD-LM-IPDA has the worst tracking performance for the target crossing. The difference in
cardinality statistics between MD-JIPDA and MD-MC-JIPDA is marginal. However, it can also be seen
that MD-JIPDA and MD-MC-JIPDA have more reliable target number estimation performances.
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5. Conclusions

The MD-MC-JIPDA algorithm is proposed for multiple detection multitarget tracking. Instead of
enumerating all possible data association events, MD-MC-JIPDA generates a small number of feasible
joint events according to the Markov chain sequences implemented by each of the cluster tracks.
This joint data association mechanism significantly simplifies data association complexity.

In the scenario with a fixed number of targets crossing each other, MD-MC-JIPDA outperforms
MD-LM-IPDA and MD-LM-ITS in the sense of the true track maintenance and the target trajectory
estimation accuracy. MD-MC-JIPDA needs only a fraction of the simulation time required by
MD-JIPDA but has a similar tracking performance compared with MD-JIPDA. From the tracking
performance and the required simulation time, it can be seen that MD-MC-JIPDA is a real-time
algorithm suitable for the multiple detection multitarget tracking.

The potential future works for the proposed algorithm are: (1) find the method to adaptively select
the number of FJEs for MD-MC-JIPDA instead of predetermination; (2) in some scenarios, the switch
of the tracks may cause the problem for the tracking consistency which encourages us to find a way to
reduce the percentage of the track switch; (3) apply this tracking algorithm to the OTHR application.
(3) ’fit’ the discrete estimates obtained by MD-MC-JIPDA to a continuous-time tracking function,
which can be used to refine the estimates for any time in the effective fitting period [36].
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Abbreviations

The following abbreviations are used in this manuscript:
PDA Probabilistic data association.
MD-JPDA Multiple detection joint probabilistic data association.
MD-MC-JIPDA Multiple detection Markov chain joint integrated probabilistic data association.
FTD False track discrimination.
MHT Multiple hypothesis tracker.
MAP Maximum a posteriori.
JIPDA Joint integrated probabilistic data association.
LM-IPDA Linear multitarget integrated probabilistic data association.
PTE Probability of target existence.
MC-JIPDA Markov chain JIPDA.
OTHR Over-the-horizon-radar.
MD-JIPDA Multiple detection JIPDA.
MD-LM-IPDA Multiple detection LM-IPDA.
MD-LM-ITS Multiple detection linear multitarget integrated track splitting.
FJEs Feasible joint events.
NCV Nearly constant velocity.
CFT Confirmed false track.
RMSE Root mean square error.
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Nomenclature
t A track as well as the potential target being tracked by this track.
mk The number of selected measurements at scan k.
L The maximum number of scattering feature points of the target.
ϕt,max The maximum number of target-originated measurements, which satisfies ϕt,max =

min(L, mk).
ϕt The number of target originated measurements ϕt ∈ {1, 2, . . . , ϕt,max}.
nϕt A variable that enumerates the measurement cells under the condition that there are ϕt

measurements generated by target t, nϕt ∈
{

1, 2, . . . , cϕt

}
and cϕt = Cmk

ϕt = mk !
ϕt !(mk−ϕt)!

.

zϕt ,nϕt
(k) A measurement cell specified by ϕt and nϕt at scan k.

χt
k The event that target t exists at scan k.

ε j The jth feasible joint event (FJE) which assigns measurement cells to tracks.
ηt = z0 (k) The data association event for that no measurement cell is associated to track t.
ηt = zϕt ,nϕt

(k) The data association event for that measurement cell zϕt ,nϕt
(k) is associated to track t
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