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Abstract: High Definition (HD) maps are becoming key elements of the autonomous driving because
they can provide information about the surrounding environment of the autonomous car without
being affected by the real-time perception limit. To provide the most recent environmental information
to the autonomous driving system, the HD map must maintain up-to-date data by updating changes
in the real world. This paper presents a simultaneous localization and map change update (SLAMCU)
algorithm to detect and update the HD map changes. A Dempster–Shafer evidence theory is
applied to infer the HD map changes based on the evaluation of the HD map feature existence.
A Rao–Blackwellized particle filter (RBPF) approach is used to concurrently estimate the vehicle
position and update the new map state. The detected and updated map changes by the SLAMCU
are reported to the HD map database in order to reflect the changes to the HD map and share
the changing information with the other autonomous cars. The SLAMCU was evaluated through
experiments using the HD map of traffic signs in the real traffic conditions.

Keywords: high definition (HD) map; autonomous cars; map change detection; cloud map;
localization

1. Introduction

The autonomous cars are one of the important future technologies that will change the paradigm
of the automotive and transportation industry. The realization of the autonomous car can allow
the human driver to reduce the burden of driving and prevents the accident caused by the driver
carelessness. In addition, the autonomous cars managed by the intelligent transportation system can
improve the traffic flow and optimize the energy consumption. For the autonomous driving of the
cars, the autonomous driving system must first understand the surrounding environment. Then, it can
determine the optimal behavior and trajectory and control the vehicle to follow the planned behavior
and trajectory [1].

Perception sensors such as camera, radar, and lidar can provide the nearby environmental
information of the autonomous car based on the sensor data processing. However, the current
perception technologies of the data processing have constraints to detect the all surrounding
environment because of the limitations of sensor visibility range and recognition performance.
To overcome the limitations, the pre-built environmental map can be used to obtain the environmental
information, which is called High Definition (HD) map. The HD map contains the several physical
information on the roads, such as lanes, traffic signs, traffic lights, barriers, and road surface marking,
within the 10–20 cm accuracy [2]. By searching the nearby physical features on the HD map, the
autonomous car can access the information without the perception processing and the sensor
visibility limitations.

Sensors 2018, 18, 3145; doi:10.3390/s18093145 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0543-2198
https://orcid.org/0000-0002-3382-6250
https://orcid.org/0000-0002-3505-6675
http://dx.doi.org/10.3390/s18093145
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3145 2 of 16

However, there is always a possibility that the physical environments on the HD map are changed
because new physical features are added, or the physical features saved on the HD map disappear
or move. The changes of the physical features which are not reflected on the HD map can cause
the unexpected problems for the autonomous driving due to the incorrect understanding of the
surrounding environmental information. For example, the planning system can make an incorrect
decision about the behavior and trajectory due to the use of HD map that has not been updated.
The localization of the autonomous car might estimate the inaccurate position due to the landmark
misalignment between the perception and the HD map. To prevent these problems, the changes of HD
map must be detected and managed to keep up-to-date road information.

This paper proposes a simultaneous localization and map change update (SLAMCU) algorithm
to detect the HD map changes and to update the changes to the HD map database. The SLAMCU
does not use the special mapping equipment for the map updating, but it uses the onboard sensors of
autonomous cars (or intelligent vehicles), such as perception sensors (camera, lidar, and radars) and
vehicle motion sensors (a wheel speed sensor, a steering angle sensor, and an inertial measurement unit).
For the detection of the map changes, the SLAMCU algorithm uses the evidence (Dempster–Shafer)
theory for the reasoning of the HD map existence. The HD map existence can be updated by Dempster
combination rule based on the detection confidence and the field-of-view (FoV) configuration of the
perception sensors. The map changes can be classified into three classes including the normal, delete,
and new based on the results of existence inference. For the normal HD map, the SLAMCU algorithm
performs a localization that estimates the vehicle position. The delete HD maps are excluded for
the localization update. For the new map feature, the SLAMCU execute a SLAM (Simultaneous
Localization and Mapping) that estimate the position of the map and vehicle simultaneously.
A Rao–Blackwellized particle filter (RBPF) is used to concurrently perform the localization and the
SLAM. The detected and updated map changes by the SLAMCU of the individual car can be uploaded
to the map database of the HD map provider in order to reflect the map changes to the HD map and
share with the other autonomous and intelligent vehicles.

This paper is organized as follows. Section 2 presents the definition of the HD and the problems of
its changes. Section 3 introduce the SLAMCU algorithm, and Section 4 explains the map change
management system. Section 5 describes the implementation of SLAMCU based on the RBPF,
and Section 6 provides verification of the SLAMCU based on the experiences. The final section
provides conclusion and future works.

2. High Definition (HD) Map for Autonomous Cars

2.1. High Definition (HD) Map

The autonomous cars require the surrounding environment information, such as objects,
traffic control devices, and roadway geometry, in order to perform the planning and control.
Perception sensors, such as cameras, radars, and lidars, can provide the information of surrounding
environments in real time, but the sensors have limitations for the perception range and recognition
performance. The perception sensors cannot detect the physical environments that are located far from
the ego-vehicle or are blocked by obstacles. Also, not all physical environments on the road can be
recognized using the current perception technology. To overcome the limitation of perception, we can
apply a HD map for the autonomous cars [3–5].

The High definition (HD) map is a detailed representation of the physical environment features,
which the autonomous cars can use for autonomous driving. The HD map can be called a Highly
autonomous driving (HAD) map or a precise map, but we unified the terminologies into the HD
map in this paper. The compositions of the HD map classified into three types of map feature: static
object, traffic control devices, and roadway geometry. The static object represents something that
can be collided with the ego-vehicle, such as buildings, walls, trees, poles, and barriers. The traffic
control devices can provide information about traffic rules that must be followed on the road, such as
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road surface markings, speed bump, traffic signs, and traffic lights. The roadway geometry provides
information that should be followed by vehicles to reach the desired destination and can be represented
by polylines, polynomial curves, or splines.

The autonomous car can utilize the HD map for autonomous driving by accessing information
about the surrounding environment stored on the map. To access the surrounding environment
information on the map, the current pose (position and heading) of the ego-vehicle must be provided
to the searching engine of the HD map. Therefore, a localization algorithm that estimates the
current vehicle pose is an essential component for the intelligent driving system using the HD map.
The localization is able to estimate the pose using a dead reckoning (DR) of vehicle motion sensors or
global navigation satellite system (GNSS). The HD map can also be used for accurate localization by
aligning landmark perception with the HD map landmarks [6–8]. For instance, the autonomous car
can estimates the position of ego-vehicle by matching the traffic sign perception from the camera and
the traffic sign position data in the HD map. The landmarks must be static features that are recognized
by sensors and saved in the HD map, such as buildings, walls, trees, poles, traffic sign, traffic light,
and lanes.

2.2. Previous Studies

There were many previous studies to use the HD map for the autonomous driving. A route
network definition file (RNDF) was used as the HD map in the DARPA challenges to provide the
routes to autonomous cars [9]. Google self-driving cars used the 3D high-accurate HD map [10].
The demonstration in Bertha Benz Memorial Route by the Daimler utilized a Lanelets that is an
efficient data structure for the drivable environment map as the HD map [11]. Not only these studies,
there have been many autonomous car tests based on the HD map [12–19]. These previous studies
are evidence that the HD map is a critical factor in the future industry of autonomous. A technical
report [20] also forecasts that the HD map is one of the key technical components of the autonomous
car era. Therefore, many mapping companies, such as HERE [21] and TomTom [22], are preparing or
starting to provide the HD map for the era of autonomous cars. HERE provides a HD map that contains
various semantic features, such as road geometry, lane boundaries, barriers, traffic signs, and traffic
lights, in 10-to-20 cm accuracy, as shown in Figure 1a. TomTom also provides semantic features similar
to HERE and provides depth information for static objects via Road DNA [23], as shown in Figure 1b.

(a) (b)

Figure 1. Examples of the HD map. (a) HERE (b) TomTom.

A ground mapping is mainly used for the HD map building due to the high accuracy and
reliability although aerial mapping is much cheaper and faster. The process of ground mapping
consists of three steps: a data acquisition, a data processing, and a database management. The data
acquisition is a process to collect the information about the physical environments by surveying
with special mapping vehicles equipped with various mapping sensors such as a real-time kinematic
(RTK)-GNSS, an inertial measurement unit (IMU), cameras, and lidars. After the data acquisition,
the HD map features (static object, traffic control devices, and roadway geometry) are extracted through
the data processing. The final step is the database management for providing a service of the map
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management and access. Due to these series of multiple processes, the mapping cost of HD map is
much higher than the mapping of the topological map that is used for the in-car navigation module.

2.3. Problems of HD Map Changes

The most significant problem with the HD map is the change in the physical features. The change
of physical feature can give the incorrect environment information to the autonomous driving system,
and it can cause a negative impact on the safe autonomous driving. The localization based on the
alignment of landmark perception and HD map also can be suffered from degradation of the accuracy
and reliability due to a misalignment by the map changes. Therefore, the changes of HD map must be
detected and managed by the autonomous driving system to prevent the performance degradation.

To detect and manage HD map change issues, we must clearly define what the HD map change
is. There are three cases for the changes of the physical features on the road as shown in Figure 2a:
(1) a physical feature is moved; (2) a new physical feature is inserted; and (3) the physical feature is
deleted. Since (1) the movement of physical features can be described as a series of (3) the deletion of
physical feature and (2) the insertion of the new physical feature, we can define the changing physical
feature as two classes that are a new physical feature and deleted physical feature. To reflect the
physical feature changes to the HD map-based autonomous driving, we can classify the map features
into three classes. The map features on the HD map can be classified into (1) normal map feature
mHD{normal} and (2) deleted map feature mHD{delete}. To deal with the insertion of the new physical
feature, a new map is required to manage the (3) new map feature mnew, as shown in Figure 2b.

(a) (b)

Physical features

Moved

Deleted

Inserted

Normal

HD map
Deleted

Normal

New map

Inserted

Deleted

Inserted

Figure 2. Definition of the HD map changes. (a) physical world. (b) HD map mHD and new map mnew.
The map component can be classified into mHD{normal}, mHD{delete}, mHD{insert}.

3. Simultaneous Localization and Map Change Update(SLAMCU) for HD Map

3.1. Management of the HD Map Changes by Individual Autonomous Vehicles

There are two ways to keep the up-to-date HD map that reflects physical feature changes. The first
method is applying the ground mapping based on the special mapping vehicles to the map change
detection and update. The special mapping vehicles survey all roads to collect the mapping data,
the map feature changes are detected in the data processing step, and the changed map features are
uploaded to map database. However, the ground mapping-based map change update is too expensive
and not agile because it is based on the special mapping vehicles with limited frequency and range
of operation.

The second way to recognize and update the HD map changes is to use the perception and
localization of individual autonomous cars (or intelligent vehicles with the perception and localization
capabilities) driving on the road. This method is more cost-effective than the first because there is no
need to operate special mapping vehicles to monitor map changes. In addition, the HD map can keep
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up to date with the latest information because the map change update can be performed by multiple
autonomous vehicles at the same time.

The process of the map change update based on the individual autonomous cars can be divided
into three steps as shown in Figure 3. The first step is a map change classification based on the physical
features perception and the localization. The map features in the HD map is classified into the normal
HD map feature mHD{normal} and the deleted HD map feature mHD{delete}. The new physical features
that are not in the HD map are classified to the new map feature mnew. The second step is to utilize the
classified features into the autonomous driving. The mHD{normal} is used for the autonomous driving
and localization of autonomous vehicles. Conversely, the mHD{delete} has no effect on the autonomous
driving and localization. For the new map feature mnew, the autonomous car should estimate the state
(position) of the mnew, concurrently use for the autonomous driving and localization. The algorithm for
the first and second step is Simultaneous Localization and Map Change Update (SLAMCU). The final
step is reporting and uploading the map changes to the HD map database server (map provider). For
the updating to the map server, we can apply a standard map update protocol such as SENSORIS [24].

However, there are constraints of the individual vehicles based map change update due to the
performance limitation of localization and perception on the vehicles. The perception limitation can
cause the misclassification of the map feature changes, and the state estimation of new map features
have poor accuracy compared to the mapping with special mapping vehicles. Nevertheless, the map
change update based on the individual vehicles is worth because it can provide the probable location
of map changes to the map provider, and it can supply the temporary information of the new map
features that can be used before the mapping with the special mapping vehicles.

Map change 

Classification

Deleted

Normal

New

Localization and 

New map update

Upload of map 

change

Deleted

New
New map 

update

Localization

Normal

HD map 

database server

(a) (b) (c)

Map change

Normal

HD map

Normal

Normal

Upload

Figure 3. Process of the map change update. The first step is map change classification, the second step
is the utilization the HD map and the updating the new map features, and final step is the upload to
HD map database server.

3.2. Analysis the SLAMCU Using Graph Structure

The simultaneous localization and map change update (SLAMCU) has two major functional
requirements. The first requirement is to classify the HD map features into the normal mHD{normal}
and the deleted mHD{delete}, and to only apply the normal feature mHD{normal} for the localization
and autonomous driving. The second functional requirement is to find the unregistered new physical
feature, to register the found physical feature to new map feature mnew, to estimate the state of the
mnew, and to apply the mnew to the localization and autonomous driving. To design and implement
the functional requirements of the SLAMCU based on the probabilistic framework, we analyze the
SLAMCU problem using the graph of dynamic Bayesian networks (DBN).

A directed graph of a DBN based on the Markov process assumption can represent the
various types of localization and mapping problems using the probabilistic framework. The DBN is
composed of nodes for probabilistic random variables and directed edges for representing conditional
dependencies between two nodes. The nodes of the localization and mapping problems consist of the
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state, map, input, and measurement. The state x1:t = {x1, . . . , xt} indicates a sequence of the vehicle
pose from discrete time steps 1 to t. The input u1:t = {u1, . . . , ut} represents the vehicle motion
input, and the measurement z1:t = {z1, . . . , zt} represents the observation of the map features by
perception sensors. The map m indicates the position of map features that can be observed by the
perception of autonomous cars. The edges that represent probabilistic constraints between the nodes
consists of a state transition model and measurement model for the localization and mapping problems.
The state transition model p(xt|xt−1, ut) represents a motion constraint between the two adjacent
vehicle state xt and xt−1 regarding the motion control input ut. The state transition model can predict
the future vehicle state xt using the previous state xt−1 and input ut. The measurement model p(zt|xt, mt)

describes the probability of measurement zt given the state xt with the map m. The measurement
model can estimate the probability distribution of the measurement zt based on the current state xt

and map features m.
The SLAMCU problem can be interpreted by graph structure as shown in Figure 4. The known

nodes are input u1:t, measurement z1:t, and the map features mHD{normal,delete} on HD map.
The unknown nodes are state x1:t and new map feature mnew. The SLAMCU wants to estimate the
recent state xt+1 and the new map feature mnew based on the known nodes and the edge constraints.
The first functional requirement of the SLAMCU can be represented through the graph structure as
a localization problem with a data association. The localization estimates the state x1:t using the input
ut, measurement zt, and the HD map features mHD{normal,delete}. The existence inference-based map
management system generates links between the measurement zt and the normal HD map features
mHD{normal} by the edge of the measurement model, and disconnects the zt to the deleted HD map
features mHD{delete}. The second functional requirement can be interpreted as a SLAM (Simultaneous
Localization and Mapping) problem that concurrently estimate the state xt and the new map feature
mnew. The existence inference-based map management generates a new link between the measurement
zt and the new map features mnew by the measurement model edge. In conclusion, the SLAMCU can be
designed and implemented by the combination of localization and SLAM with the map management
based on the existence inference of the physical features.

xt-1

ut-1

zt-1

xt

ut

zt

xt+1

ut+1

zt+1

mHD

{normal}

State transition 
model

Measurement
model

: Unknown

: Known

: Estimation

mHD

{delete}
mnew

Figure 4. dynamic Bayesian networks (DBN) Graph representation of the SLAMCU.

4. Map Management of SLAMCU

4.1. Functional Objectives of the Map Management

A map management method classifies the map changes and performs the data association between
measurement and map. The overall structure of the map management system is described in Figure 5.
First, the map management finds the new physical features that are not in the HD map mHD based on
the measurement zt with inverse measurement model and registers the new feature into the new map
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mnew. Second, the existence of the each map feature in the HD map mHD and the new map mnew is
inferred based on the evidential approach (Dempster–Shafer theory). The existence represents whether
the physical feature really exists in the position of the corresponding map feature. The existence of
each map feature is represented by three states of [existent, non-existent, tentative]. Third, the map
features in the HD map mHD and new map mnew are classified into the three classification types of
normal, deleted, and new based on the result of existence inference. The map features classified into
the deleted and new are reported to the map database as the changed map features. Finally, the data
association is performed based on the result of map classification types. The only normal HD map
feature and new map features are associated with the measurement zt for the SLAMCU update.

zt

{Normal}

[Existent]

mHD, n

{Delete}

[Non-existent]

mHD, n+1

{New}

[Existent]

mnew, k

{-}

[Non-existent]

mnew, k+1

{-}

[Tentative]

mnew, k+2

Existence 

Inference 

Classification 

Data association 
New map feature

registration

Figure 5. Process of the map change update.

4.2. Existence Inference Based on the Evidence Theory

4.2.1. Dempster-Shaper Theory for the Existence Inference

The existence of the map feature is an important factor to classify the map type and determine the
data association. The map existence represents the possibility that real physical features exist in the map
feature location stored on the map. Probabilistic approaches can be applied to infer the map existence.
If the physical feature is non-existent in the map feature position, the map existence probability of a map
feature is zero. On the other hand, the map existence probability is one if the real physical feature is
existent in the map feature position. However, the probabilistic approach cannot explicitly handle the
existence of tentative (unknown), indicating an unclear situation due to the insufficient measurement
updates. Also, the conflict existence, which represents a situation about different measurements for the
same map feature, is ambiguous to describe using the probability approach. The probability of the
both tentative and con f lict are denoted by 0.5 using the probabilistic approach, but it is unsuitable to
explicitly represent the both situations.

To deal with the tentative (unknown) and con f lict state, Dempster–Shafer (DS) theory can be
applied to infer the existence of the map features on the HD map mHD and new map mnew. The two
states of Exist ∃ and Non-exist @ for the map feature existence are determined as a frame of discernment
Ω = {∃,@}. The existence based on the DS theory takes into account the power set 2Ω = {φ, ∃,@, Ω},
which is the set of all subsets of the Ω = {∃,@}. This means that the DS-based existence inference can
consider tentative state of Ω (both ∃ and @ are possible) and con f lict state φ (the ∃ and @ are conflict
each other) explicitly.

For each existence state in the power set, a mass function mass can be applied to quantify
the evidence of the existence. The mass functions of mass(∃) and mass(@) represent the evidence
of the existence states is existent and non-existent, respectively. The mass function of mass(Ω),
which considers the union of ∃ and @, represents the existence is tentative (unknown), and mass(φ)
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represents the existence state is conflicted by a different inference information. The sum of mass
functions for the power set should be one based on the definition of the mass function in the DS theory.

The mass functions of the measurement zt for the elements of the power set at time t can be
determined based on the existence confidence λ of the measurement. The existence confidence λ

represents a belief level between [0, 1] of measurement zt for the perception of physical landmark
features that are located in the perception field-of-view (FoV). If the map features are located in the
perception FoV and are detected to the measurement zt, then the mass functions of the measurement
at time t can be represented by

masszt(φ) = 0, masszt(∃) = λ, (1)

masszt(@) = 0, masszt(Ω) = 1− λ

On the other hand, if the map features are located in the FoV but the physical feature for the
corresponding map feature is not detected by the measurement zt, then the mass functions of the
non-measurement can be represented by

masszt(φ) = 0, masszt(∃) = 0, (2)

masszt(@) = λ, masszt(Ω) = 1− λ

4.2.2. Inference of the Map Feature Existence Based on the Dempster Combination Rule

The instant mass functions of the measurement masszt at time t cannot be directly used to
determine the map features existence of the HD map massHDt and new map massnewt . This is because
the measurement can contain uncertainty due to the sensor noise and limitations of recognition.
Therefore, the measurement existence should be incrementally integrated to the existence of the
corresponding map feature massHDt and massnewt . The initial mass functions of HD map features with
index i can be defined based on the existence confidence of HD map feature λHD, as described in

massHD0{i}(φ) = 0, massHD0{i}(∃) = λHD, (3)

massHD0{i}(@) = 0, massHD0{i}(Ω) = 1− λHD

The mass functions of new map features with index j can be initialized by the vacuous
mass function:

massnew0{j}(φ) = 0, massnew0{j}(∃) = 0, (4)

massnew0{j}(@) = 0, massnew0{j}(Ω) = 1

that represents the no prior information. After the initialization at t = 0, the measurement
existence masszt is incrementally accumulated into the map feature existence massHDt and massnewt .
Dempster combination rule ⊕ of evidence theory is used to accumulate the measurement existence
masszt to the each map feature existence at time t− 1, as described in

massHDt{i} = massHDt−1{i} ⊕masszt (5)

massnewt{j} = massnewt−1{j} ⊕masszt

The Dempster combination rule ⊕ can be constructed based on the Dempster normalization

mass1⊕2(A) =
mass1∩2(A)

1−mass1∩2(φ)
, ∀A ⊆ Ω, A 6= φ (6)

mass1⊕2(φ) = 0
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with the conjunctive combination rule

∀A ⊆ Ω, mass1∩2(A) = ∑
B∩C=A|B,C⊆Ω

mass1(B) ·mass2(C) (7)

4.3. Process of the Map Management

The process for the implementation of the functional objectives (Figure 5) consists of four
steps: a pre-data association, an updating the map feature existence, a classification of map changes,
and a data association.

4.3.1. Pre-Data Association

The first step is pre-data association between the measurement set Zt = {zt,1, zt,2, . . . } and the
map feature set Mt = {mHD,1, mHD,2, · · · , mnew,1, mnew,2, · · · } located in the sensor FoV, as shown
in Figure 6. In the pre-data association, each measurement is associated with each map feature by
maximizing the likelihood of the measurement zt with a certain likelihood threshold.

Pre-data

association

Measurement set Zt Map feature set Mt

zt,1

mHD,1

mnew,1

mHD,2zt,2

zt,3

Figure 6. Pre-data association between the measurement set and map feature set.

4.3.2. Updating the Map Feature Existence

There are three types of pre-data association: (1) unassociated measurement [zt, 1]; (2) associated
measurement-map feature [zt,2 − mHD,1, zt,3 − mnew,1]; and (3) unassociated map feature [mHD,2].
The unassociated measurements are registered as the new features into the new map mnew with the
existence initialization using the (4). The map feature existence for the associated measurement-map
feature is updated based on the masszt of (1) using the Dempster combination rule of (5). The map
feature existence for the unassociated map feature is updated based on the masszt of (2).

4.3.3. Classification of Map Changes

The representative existence of each map feature can be determined to be the existence state with
the maximum mass function. For the HD map features, the map feature of Existent is classified into
Normal class and the Non-existent feature is classified into Delete class. For the new map features,
the only Existent map feature is classified into New class, and the others are not classified. The map
features classified into the Delete or New class are considered as map changes.

4.3.4. Data Association

The classification result of the map changes is used to the final data association for the updating
of the SLAMCU. As shown in Figure 5, the only Normal class of HD map feature and New class of
new map feature are associated with the measurement zt.
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5. SLAMCU Based on Rao–Blackwellized Particle Filter

The SLAMCU is a problem to estimate the unknown vehicle pose state xt and new map features
mnew based on the known control input u1:t, measurement z1:t, and the HD map features mHD.
Therefore, the SLAMCU can be represented in the posterior of conditional probability as described
in (8).

p(x1:t, mnew|u1:t, z1:t, mHD) (8)

The Equation (8) can be factorized into (9).

p(x1:t|u1:t, z1:t, mHD)p(mnew|x1:t, u1:t, z1:t) (9)

If the mnew contains the N number of features, the (9) can be represented into (10).

p(x1:t|u1:t, z1:t, mHD)
N

∑
i=1

p(mnew,i|x1:t, u1:t, z1:t) (10)

A Rao–Blackwellized particle filter (RBPF) can be applied to implement the posterior (10).
The RBPF is a combination of the standard particle filter and the Kalman filter. Because of the hybrid
characteristics of the RBPF, it is available to take the both advantages of the particle filter and Kalman
filter. Therefore, there were many studies to use the RBPF for localization and mapping [25–27].
Among these previous studies, FastSLAM is the most successful SLAM implementation based on
the RBPF [28]. Therefore, the SLAMCU implementation follows the FastSLAM framework; however,
the different things with the FastSLAM are (1) the SLAMCU take into account the HD map and (2) the
map management system is needed to manage the HD map changes and new map features.

The SLAMCU based on the RBPF uses particle filter to estimate the posterior of vehicle pose state
p(x1:t|u1:t, z1:t, mHD). For the new map feature mnew, the SLAMCU uses Extended Kalman filter (EKF)
to estimate the posterior of p(mnew|x1:t, u1:t, z1:t).

The particles Yt in SLAMCU are described as

Y[k]
t =< x[k]t , µ

[k]
1,t, Σ[k]

1,t, . . . , µ
[k]
N,t, Σ[k]

N,t > (11)

where [k] is the index of particle, µn,t and Σn,t are the mean and variance of the Gaussian model of the
n-th new map feature location. The total number of particles is M, so the range of the index k is from
1 to M. The process of the SLAMCU based on the RBPF consists of four steps: a prediction, an update
of a new map feature, an importance weighting, and a resampling.

5.1. Prediction

At the prediction step, the new sample state xt of each particle k is predicted by applying the state
transition model to the previous state xt with control input ut, as described in (12).

x[k]t ∼ p(xt|x[k]t−1, ut) (12)

The state transition model can be implemented by vehicle motion models, such as kinematic
and dynamic vehicle models, that have uncertainty characteristics for the control input and model
prediction accuracy.

5.2. Updating the Estimate of New Map Features

The next step is to update the estimate of n-th new map features mnew,n for each particle. The n-th
new map feature for each particle can be modeled by a Gaussian probability function, as described
in (13).

m[K]
new,n ∼ N(µ

[k]
n,t, Σ[k]

n,t) (13)
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Before the update, a map management process is necessary (1) to detect the new physical features
that are not registered on the HD map; (2) to infer the existence of the new map feature; and (3) to
associate the perceptual measurement with the new map feature.

For the non-associated map features to the measurement zt, the estimate of the new map feature
is not updated as:

< µ
[k]
n,t, Σ[k]

n,t >=< µ
[k]
n,t−1, Σ[k]

n,t−1 > (14)

For the associate map feature to the measurement zt, the posterior of the new map feature can be
updated using

p(mnew|x1:t, u1:t, z1:t)

= ηp(zt|xt, mnew)p(mnew|x1:t−1, u1:t−1, z1:t−1) (15)

where η is the normalization factor. The p(mnew|x1:t−1, u1:t−1, z1:t−1) can be represented by Gaussian
model of the previous step mean and covariance N(µ

[k]
n,t−1, Σ[k]

n,t−1). The posterior of new map feature
mnew can be updated based on the linearlization technique of the EKF measurement update for the
measurement model p(zt|xt, mnew), as described in

K[k]
t = Σ[k]

ct ,t−1H[k]
t (H[k]

t
T

Σ[k]
ct ,t−1H[k]

t + Rt)
−1

µ
[k]
ct ,t = µ

[k]
ct ,t−1 + K[k]

t (zt − ẑ[k]t )
−1

Σ[k]
ct ,t = (I − K[k]

t H[k]
t )Σ[k]

ct ,t−1 (16)

ẑ[k]t = h(x[k]t , µ
[k]
ct ,t)

H[k]
t = ∂h(x[k]t , µ

[k]
ct ,t)/∂xt

The ct is the index of the associated map feature with measurement zt, the R is the measurement
covariance matrix, the h represents the function of the measurement model, the H is the Jacobian of
the measurement model h, and the K is the Kalman gain for updating the new map feature.

5.3. Importance Weight

The weight ω
[k]
t of each particle should be updated by evaluating the likelihood of perceptual

measurement zt. For the importance weight of the SLAMCU, there are two types of the measurement
likelihoods that one is conditioned on the HD map feature mHD and the other is conditioned on the
new map feature mnew. The weight for the likelihood conditioned on the HD map feature ω

[k]
HD,t can be

calculated as

ω
[k]
HD,t = p(zt|x[k]t , mHD) (17)

≈ η|2πRt|−
1
2 exp{(zt − ẑ[k]HD,t)

T
R−1

t (zt − ẑ[k]HD,t)}

where ẑ[k]HD,t = h(xk
t , mHD). The weight for likelihood conditioned on the new map feature ω

[k]
new,t can

be calculated as

ω
[k]
new,t = η

∫
p(zt|x[k]t , mnew)p(mnew)dmnew (18)

≈ η|2πQ[k]
t |
− 1

2 exp{(zt − ẑ[k]t )
T

Q[k]
t
−1

(zt − ẑ[k]t )}
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where Q[k]
t = H[k]

t
T

Σ[k]
ct ,t−1H[k]

t + Rt. The weight ω
[k]
t of each particle can be updated using the equation:

ω
[k]
t = ω

[k]
HD,t ×ω

[k]
new,t ×ω

[k]
t−1 (19)

5.4. Resampling

Resampling is performed to randomly generate the new set of particles according to the
importance weight of particles. The purpose of the particle resampling is to prevent the weight
concentration of the few particles. The resampling is performed only if the following condition
is satisfied:

M̂e f f = 1/ΣM
k=1ω

[k]
t < αM (20)

Me f f is the effective number of samples that represents the degree of depletion. When all the
particles have even weight values, the Me f f has the same value with a number of particles M.
In contrast, when all the weights are concentrated to a single particle, the Me f f has its minimum value
of one. The scale factor α is selected according to the probabilistic characteristics of the particle filter.

6. Experiments

An experiment was conducted to evaluate the SLAMCU in the real driving situation of 20 km-long
highway of France, as shown in Figure 7. The SLAMCU algorithm is able to be applied to many types
of features in the HD map, such as lane marking, guardrail, traffic light, and traffic sign. We selected
the traffic sign as the validation feature of the SLAMCU because it is straightforward to qualitatively
evaluate the proposed algorithm.

Trajectory

HD map

Figure 7. Test sites for the evaluation of the SLAMCU. The green line represents the 20 km-long
highway trajectory, the red points shows the position of traffic signs on the HD map.

6.1. Experimental Environment

In order to evaluate the algorithm in the real in-vehicle environment, the traffic signs are measured
by a commercial camera which is installed in mass-product vehicles. The camera performs the image
processing at 15 FPS to measure the objects in the horizontal view of 40◦ and the detection range of
80 m. The measurements are transmitted by the CAN bus with 500 Kbps. A HD map produced by
HERE offered the position information of the traffic sign features. The traffic signs in the map include
lots of information such as position, size, shape, facing orientation, and type. Using the measurements
and prior map information, the algorithm performs the RBPF including localization and map change
update. The computer with a processor Intel(R) Core(TM) i5-4670 3.40 GHz and 16 GB of RAM takes
30.39 ms on average to process the algorithm.
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6.2. Existence Inference Based on the DS Theory

The changes of the map features are classified based on its existence. The existence could be
evaluated by the mass functions of the power set based on the DS theory. Figure 8 shows the
mass functions of each existence state according to the sequence of the measurement input for
cases of the deletion of HD map feature (upper figure) and the creation of new map feature (lower
figure). To determine the deletion of HD map feature, the existence mass functions of the HD map
feature was initialized with the (3) and updated based on the Dempster combination rule (5) with
the non-measurement existence (2). The existence confidence λ of the traffic sign detection was
0.9 and the existence confidence of HD map feature λHD was 0.95. For the creation of new map
feature, the existence mass functions of the new map feature were initialized from the position of
the measurement with the (4) and updated based on the combination rule (5) with the measurement
existence (1). Although there were outliers for step 4 of the both process, it did not affect the final
classification of the map changes.

Figure 8. Mass functions of existence state for the deletion of HD map feature and the creation of new
map feature.

6.3. Classification of the Map Changes

Table 1 shows the confusion matrix to evaluate the classification performance of the SLAMCU for
the changes to the HD map. The entire accuracy was 96.12% for the classification of normal, deleted,
and new map features. The accuracy of the normal classification was about 98%, and the one missing
was due to the visibility occlusion of the traffic sign by a large truck. If the perception sensor is not
able to detect the physical features due to the occlusion, there is no way to update the HD map.
Therefore, the SLAMCU algorithm automatically does not take into account the occluded features for
the update. The classification accuracy of the new map features was 92%, and the wrong classifications
occurred because there are not enough measurement sequence of the traffic signs due to the fast
vehicle speeds and slow detection of cameras. The map features classified into new and delete were
possible to report to the map provider for the reflection of the map changes. For the new map features,
SLAMCU estimated the position of the new traffic signs based on the RBPF approach.
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Table 1. Confusion matrix for classification of the map feature changes.

Predicted Class

True class

Normal Deleted New Unclassified Accuracy

Normal 54 1 0 0 98%

Deleted 0 9 0 0 100%

New 0 0 36 3 92%

6.4. Estimation Accuracy of the New Map Features

The evaluation of position error for the traffic signs classified into the new map feature is shown in
Figure 8. The reference position of the new map features for the evaluation obtained by the GraphSLAM
based post-processing with real-time Kinematics RTK-GPS. An average of the position error was about
0.8 m and the standard deviation was about 0.9 m, as shown in Figure 9. The position error was caused
by the uncertainty of the traffic sign detector using the camera vision. Although there was about
one-meter error for the new feature estimation, it is enough to report the location of the map feature
change to the map provider and use it as a temporary map feature until the precise ground mapping
is performed.

Figure 9. Mapping error for the position estimation of new map features.

7. Conclusions

This paper proposes a simultaneous localization and map change update (SLAMCU) algorithm
to detect and update the HD map changes. The SLAMCU is performed using the onboard sensors of
individual autonomous cars.

(1) The SLAMCU algorithm applies the evidence (Dempster–Shafer) theory to detect the HD map
changes based on the reasoning of the HD map existence. The existence of the map features on
the HD map and the new map can be evaluated by Dempster combination rule. Based on the
existence inference, the map features can be classified into three classes including the normal,
delete, and new map features.

(2) A Rao–Blackwellized particle filter (RBPF) is used to concurrently perform the localization and
the SLAM in the SLAMCU framework. The normal HD map features are used to update the
localization by matching with the feature perception. The delete HD map is excluded for the
localization update in order to prevent the performance degradation. The new map features are
updated its position and used to localization based on the RBPF framework. The detected and
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updated map features are uploaded to the map database of the HD map provider in order to
update the map changes of the HD map and share the changes with the other vehicles.

(3) Experiments were performed to evaluate the SLAMCU using on the traffic sign HD map provided
by HERE. The experiment results show that the SLAMCU based on the individual cars is sufficient
to extract and manage the HD map changes without the special mapping equipment.

This paper presents the SLAMCU process operating in the individual vehicles with validation in
the small area. The authors plan to research the integration process of the reported map changes from
the multiple SLAMCUs for the wider area of HD map.
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