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Abstract: Airborne gravimetry from a helicopter has been a feasible tool since the 1990s,
with gravimeters mounted on a gyro-stabilised platform. In contrast to fixed-wing aircrafts,
the helicopter allows for a higher spatial resolution, since it can move slower and closer to the
ground. In August 2016, a strapdown gravimetry test was carried out over the Jakobshavn Glacier
in Greenland. To our knowledge, this was the first time that a strapdown system was used in a
helicopter. The strapdown configuration is appealing because it is easily installed and requires
no operation during flight. While providing additional information over the thickest part of the
glacier, the survey was designed to assess repeatability both within the survey and with respect to
profiles flown previously using a gyro-stabilised gravimeter. The system’s ability to fly at an altitude
following the terrain, i.e., draped flying, was also tested. The accuracy of the gravity profiles was
estimated to 2 mGal and a method for inferring the spatial resolution was investigated, yielding a
half-wavelength spatial resolution of 4.5 km at normal cruise speed.
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1. Introduction

The first airborne gravimetry flight test was carried out in 1958 by mounting a LaCoste shipboard
gravimeter on board an Air Force KC-135 fixed-wing aircraft [1]. The observed gravity values were
averaged over 5 min intervals, yielding an accuracy of about 10 mGal, which was adequate for geodetic
purposes at the time. However, since this accuracy did not meet the requirements of the exploration
industry, the idea of using a helicopter platform emerged. The helicopter would be able to fly closer
to the ground and move at a slower speed, allowing for a higher spatial resolution of the gravity
measurements. After an unsuccessful test in 1963, the U.S. Naval Oceanographic Office made the first
successful helicopter test in 1965 using an Air Force CH3E helicopter, equipped with the latest LaCoste
& Romberg platform stabilised gravimeter [2].

Initially, most development of airborne gravimetry was driven by government mapping agencies
and military branches of the U.S. government. These efforts were aimed at surveying large-scale regions
and involved fixed-wing aircrafts [3,4]. From 1970, the exploration industry joined the effort, leading to
the introduction of a helicopter-borne gravity system by Carson Services in 1977 and other companies in
the 1990s [5]. Most airborne systems consist of a single-axis accelerometer on a gyro-stabilised platform
that attempts to null the horizontal accelerations through a mechanical feedback loop. The AIRGrav
system from Sander Geophysics (SGL) differs from these systems in that it uses three inertial-grade
accelerometers on a fully gyro-stabilised platform, which does not attempt to compensate for the
horizontal accelerations. The advantages of this approach are: lower accelerometer noise, higher
resolution and less sensitivity to turbulence [6]. The claimed resolution of the AIRGrav system is
0.2 mGal at 2.2 km (fixed-wing) and 0.2 mGal at 0.7 km (helicopter). Although helicopter-mounted
gravimetry is mostly aimed at exploration, it is also carried out for research purposes such as studying
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tectonically active regions [7,8] and mapping bathymetry below ice shelves [9]. In particular, the use of
helicopter-based gravimetry operated from a ship at sea may play an important role in studying ice
shelves and marine-terminating glaciers in remote areas otherwise inaccessible.

The AIRGrav system development was to some degree inspired by pioneering work on the use
of Inertial Measurement Units (IMU) for airborne gravimetry at the University of Calgary in the
1990s [10]. Since the gyroscopes of the IMU measures angular rates, the rotational motion can be
accounted for computationally, instead of having a control loop feeding a mechanical platform. As a
result, the platform can be completely neglected and the IMU installed in a strapdown configuration,
i.e., by physically attaching the unit to the vehicle. This approach is appealing because it is easily
installed and does not require any operation during the flight. The first test of a Strapdown Airborne
Gravimetry (SAG) system was carried out in 1995 using a fixed-wing aircraft. The reported accuracy
was 2–3 mGal at 5–7 km (half wavelength) resolution after applying 90–120 s (full wavelength)
filtering [11]. The higher dynamic range of the IMU made the gravity system more resilient to
turbulence and less filtering was required to obtain an accuracy similar to the traditional single-sensor
stabilised-platform systems [12]. However, the instability of the accelerometers propagates into the
gravity estimates and corrupts the long wavelength information, which is vital for geodetic applications.
The majority of the sensor instability has been shown to originate from temperature variation and
to a large extent accounted for using laboratory calibration methods [13]. In collaboration with the
Technical University of Darmstadt, the National Space Institute of Denmark (DTU Space) has flown a
SAG system on a number of campaigns showing significant improvement after applying temperature
calibrations [14]. A large component of the difference in accelerometer stability between the IMU and
traditional systems may therefore be due to temperature stabilisation.

In order to test the feasibility of using a strapdown IMU in a helicopter environment, a flight
test was carried out in August 2016 over the Jakobshavn Glacier in Greenland. This location was
chosen because it has previously been surveyed using the SGL AIRGrav system within NASA’s
Operation IceBridge (OIB). Since the fast-flowing ice stream is more than 1 km thick [15], the relatively
fast-moving fixed-wing aircraft flown by OIB is not expected to capture the full resolution of the
gravity signal in this area. The slower-moving helicopter platform may therefore add information
to the gravity signal over the glacier, while the OIB flight lines provide a reference for the helicopter
estimates. It should be noted that Jakobshavn Glacier was surveyed by a helicopter in 2012 using the
SGL AIRGrav system [16]. This data was however unavailable to the authors for this study.

2. Instrumentation, Survey Overview and Data

In August 2016, a SAG system was mounted inside a Eurocopter AS350 helicopter at Ilulissat
airport (JAV), Greenland. The SAG system consists of an iMAR iNAT IMU unit (iNAT), two JAVAD
DELTA GNSS receivers and two NovAtel ANT-532-C dual frequency GNSS antennas along with some
batteries and cables. The installation was done using straps and tape and took less than an hour,
see Figure 1.

The entire survey amounts to approximately 400 km (3.5 h), see Figure 2, and was designed
to repeat flight lines both from OIB and within the survey itself. The profile between JAV and
Kangia North GPS station (KAGA) was repeated three times, but not flown at the same altitude for
operational reasons. The three profiles between the waypoints P1–P2, P3–P4 and P5–P6 correspond
to flight lines from OIB. Two of these lines were flown in draped mode and one at constant altitude.
From Figure 2a–c, it is evident that the fixed-wing aircraft from OIB was equipped with an autopilot,
whereas the helicopter was not. Finally, a line from P7 to KAGA that crosses over the three OIB lines
was additionally flown. This resulted in seven flight lines of approximately 300 km (1.5 h). The average
ground speed for these seven profiles was 52 m/s (standard deviation of 6 m/s).
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Figure 1. Photographs from the installation: (left) the Inertial Measurement Unit (IMU) is physically
strapped to the floor of the helicopter; (right) the GNSS antenna is taped to the inside of the windscreen.

Figure 2. Survey overview: (a) ground track of the entire survey (white) along with line profiles (black)
on top of Landsat-8 image from 9 August 2016; (b) ground track of the three repeat lines between
Ilulissat Airport (JAV) and Kangia North GPS station (KAGA); (c) ground track of the profiles between
P1 and P2; (d) ground track of the profiles between P3 and P4; (e) ground track of the profiles between
P5 and P6. Coordinates are with respect to UTM zone 22. Notice the difference in scale between the x-
and y-axes.
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2.1. The IMU Data

The iNAT unit outputs accelerations and angular rates at 300 Hz with associated time and
temperature stamps. It contains an internal GNSS receiver that provides time stamps in GPS time.
A simple warm-up temperature calibration was applied to the vertical z-axis accelerometer only [17].
This led to a reduction in the accelerometer drift (see Table 1).

Table 1. Accelerometer drift over the entire flight.

x-axis y-axis z-axis

Total drift
- without calibration 1.730 −1.192 −8.422 mGal
- with calibration 1.419 −0.820 3.496 mGal

Drift rate
- without calibration 391.8 −269.8 −1907 µGal/h
- with calibration 321.3 −185.7 791.8 µGal/h

2.2. The GNSS Data

The GNSS receivers log both GPS and GLONASS observations at 1 Hz. Using NovAtel’s Waypoint
software suite, a Precise Point Positioning (PPP) solution was produced using the final GPS and
GLONASS ephemerides from the International GNSS Service (IGS). The GNSS observations were
thus processed independently from the IMU observations, in order to arrive at position and velocity
estimates, with associated error covariance matrices.

Using data from the nearby KAGA GPS station, a differential GNSS solution was also produced.
The differential solution did, however, not lead to any improvement compared to the PPP solution.
One possible explanation is that the KAGA receiver only logs GPS observations, leading to a reduction
in the number of satellites used for the solution.

2.3. AIRGrav Gravity Estimates from Operation IceBridge

Gravity estimates from OIB are available with 70 s, 100 s and 140 s full wavelength filters applied to
the Eötvös corrected gravity disturbance estimates (see acknowledgements). The three lines flown in this
survey were covered by OIB in the years 2010, 2011 and 2012. A visual comparison of the three profiles
for each line indicated that the 100 s filter led to reasonable agreement between the gravity estimates. The
internal mean and standard deviation (STD) of the difference in OIB gravity estimates for each line and
year are shown in Table 2. Since the gravity response associated with glacier mass change is expected to
be below 1 mGal for this two year period, it is clear that the stated 0.2 mGal accuracy of the AIRGrav
system is not reached over the Jakobshavn Glacier. This may be due to the high speed of the aircraft
not accounting for the full resolution of the gravity signal in this area. The average ground speed for
these nine profiles was 134 m/s (standard deviation of 9 m/s), meaning that the spatial resolution is
approximately 6.7 km (half wavelength). The nine OIB lines were flown in draped mode at a similar
altitude for each line (the maximum difference is 300 m and the standard deviation is 80 m).

Table 2. Mean and standard deviation (STD) of the difference in gravity estimates (100 s full wavelength
filtering) along the three Operation IceBridge (OIB) lines.

2010–2011 2010–2012 2011–2012

P1–P2 Mean 1.03 1.04 −0.13 mGal
STD 2.66 2.93 1.65 mGal

P3–P4 Mean 0.65 0.44 −0.20 mGal
STD 1.84 1.82 1.43 mGal

P5–P6 Mean −0.17 −1.06 −0.95 mGal
STD 2.70 3.19 3.74 mGal
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3. Processing Methodology

Observations from IMU and GNSS are often combined in order to improve the navigation solution.
Although the main objective is not improving the navigation solution, the tools for IMU/GNSS
integration are well-developed and can be exploited here. In the first two of the following five
sub-sections, the concepts of inertial navigation and IMU/GNSS integration will be briefly introduced.
In the third sub-section, we describe how this framework can be exploited to arrive at gravity estimates,
the fourth sub-section introduces external gravity observations, i.e., tie values, and the final sub-section
outlines how smoothing is performed.

In this context, it is important to introduce some reference frames that are relevant for our purposes
(see Table 3). Since the IMU is rigidly attached to the helicopter, the observations are naturally resolved
about the body frame (b-frame) of the helicopter. Being inertial sensors, the accelerometers and
gyroscopes measure with respect to inertial space, which is represented by an inertial reference frame
(i-frame). The Earth-Centred-Earth-Fixed frame (e-frame) is relevant because coordinates and velocity
are defined with respect to this frame. Finally, the attitude of the vehicle is usually specified with
respect to the navigation frame (n-frame), which is moreover closely related to the gravity field.

Table 3. Overview of relevant reference frames.

Frame Origin z-axis x-axis y-axis

i Earth centre of mass Earth rotational axis Equatorial plane, Completes right-
vernal equinox handed system

e Earth centre of mass Earth rotational axis Equatorial plane, Completes right-
Greenwich meridian handed system

n Instrument Down along North Eastlocation ellipsoidal normal

b Instrument Through-the-floor Forward Starboard (right)location (down)

3.1. Inertial Navigation

Initialisation of the position is done using the GNSS solution, while the attitude is initialised
through levelling and gyrocompassing ([18] (Chapter 5.6.2)). After initialisation, inertial navigation is
performed by sequentially adding small increments derived by integrating the IMU observations of
specific force, fb, and angular rate, ωb

ib. Before integration, the observations are transformed from the
b-frame into the n-frame and corrected for the effect of gravity along with any fictitious forces arising
from the choice of reference frame. This process is expressed mathematically in terms of a coupled set
of differential equations ([19] (Chapter 4.3.4)):

φ̇ = vN/ (RN + h) ,

λ̇ = vE/ (RE + h) / cos φ,

ḣ = −vD,

v̇n = Cn
b fb − (2Ωn

ie + Ωn
en) vn + gn,

Ċn
b = Cn

b Ωb
nb ,

(1)

where (φ, λ, h) are geodetic coordinates, vn the Earth-referenced velocity resolved about the n-frame
axes and Cn

b is the rotation matrix from the b-frame to the n-frame. The parameters RE and RN are the
radii of curvature of the prime vertical and meridian, respectively. The term Ωn

ie is the rotation of the
Earth with respect to inertial space and Ωn

en is the transport-rate, i.e., the rotational motion required to
keep the reference frame aligned with the north, east and vertical axes as the vehicle travels across the
surface of the Earth. Both of these rotational rates are resolved about the n-frame axes and expressed in
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skew-symmetric form. For a more complete introduction, the reader is referred to standard textbooks,
e.g., [18–20]. Finally, the rotational rate, Ωb

nb, is related to the observed angular rate as

ωb
nb = ωb

ne + ωb
ei + ωb

ib = ωb
ib − Cb

n (ωn
en + Cn

e ωe
ie) . (2)

The gravity vector, gn, is approximated using a model of normal gravity ([21] (Chapter 2.8)),
which can be computed as described in ([22] (Chapter 4)). The implementation of Equation (1) is
discussed in ([18] (Chapter 5)). The combined system of IMU and inertial navigation processor is
denoted an Inertial Navigation System (INS). The attitude in terms of three Euler angles, ψnb =

(αnb, βnb, γnb), can be derived from the transformation matrix, Cn
b , as ([18] (Equation (2.25))):

αnb = arctan2

(
Cn

b3,2, Cn
b3,3

)
, βnb = − arcsin

(
Cn

b3,1

)
and γnb = arctan2

(
Cn

b2,1, Cn
b1,1

)
. (3)

3.2. IMU/GNSS Integration

The GNSS position estimates are only used to initialise the position for inertial navigation,
meaning that the INS and GNSS navigation solutions are independent. The GNSS system provides
estimates of position and velocity, while the INS provides estimates of position, velocity and attitude.
These two estimates are combined in a cascaded (loosely coupled) approach using an Empirical Kalman
Filter (EKF). The Kalman filter framework revolves around a linear dynamic system model ([23]
(Equations (4)–(102))):

ẋ = F(t) x(t) + G(t)ws(t), (4)

where x(t) is known as the state vector and contains all the variables describing the system, i.e., position,
velocity, attitude and sensor biases, F(t) is the system matrix describing the dynamics of the system,
i.e., the navigation equations, ws(t) is a vector representing stochastic input to the system and G(t)
is a system noise distribution matrix, relating the stochastic driving terms to the state variables.
The stochastic components imply that the state variables also have a stochastic nature and are defined
in terms of probability density functions (PDFs). However, assuming that the associated PDFs are
Gaussian, these distributions are completely defined in terms of their first two moments, i.e., the mean
and covariance.

The system matrix, F(t), is formed using the navigation Equation (1), while the system noise
vector, ws(t), represents sensor errors such as random noise and bias variation. Since the system model
is linear, the navigation equations are linearised about the trajectory generated by the INS. This kind of
linearisation is what characterises the EKF. Inertial navigation is then performed in a recursive manner
by generating a navigation solution from current time, tk, until the time where the next GNSS estimates
are available, tk+1. The associated error covariance estimates are accordingly propagated as

Pk+1 = Φk Pk Φ>k + Γk Qk Γ>k , (5)

where the transition matrix, Φk, and system noise, Γk Qk Γ>k , can be formed from Equation (4) using
the method of Van Loan [24,25]. The transition matrix, Φk, is formed using the system matrix, F(t),
such that it eventually defines the correlation between the navigation parameters through the error
covariance matrix. In this way, the stochastic driving terms do also not influence the navigation
estimates themselves, but only the error covariance matrix. These stochastic processes are defined
by the user and will eventually determine the weighting of information between INS and GNSS
navigation estimates. Here, random noise on the accelerometer and gyro observations are modelled
as white noise processes, while the bias variation is modelled as Brownian motion, i.e., random walk
processes. These processes are defined in terms of Power Spectral Density (PSD) of the associated
white noise processes and are tuned by the user to give the best navigation solution. The values used
for processing this data are shown in Table 4.
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Table 4. Stochastic models and amplitude of the associated Power Spectral Densities (PSDs).

Error Model PSD Amplitude

Accelerometer noise White noise 0.05 mm/s/
√

s
Gyroscope noise White noise 0.2 arcsec/

√
s

Accelerometer bias variation Random walk 0.01 mGal/
√

s
Gyroscope bias variation Random walk 3.0 × 10−5 ◦/h/

√
s

Any observations, z(tk), at discrete time instances, tk, are included into the Kalman filter using a
linear measurement model ([23] (Equations (4)–(136))):

z(tk) = H(tk) x(tk) + wm(tk), (6)

where H(tk) is the measurement matrix relating those observations to the system variables and wm(tk)

is a measurement noise vector. The observations are thus assumed to be a linear combination of
state variables, corrupted by noise. The formation of such a measurement model for GNSS position
and velocity observations is discussed in ([18] (Chapter 14.3)). From the GNSS and INS estimates,
p̂k,GNSS = (φk,GNSS, λk,GNSS, hk,GNSS), v̂n

k,GNSS, p̂k,INS and v̂n
k,INS, the measurement innovation is formed:

δzk ≈
[

p̂k,GNSS − p̂k,INS
v̂n

k,GNSS − v̂n
k,INS

]
, (7)

which is used to update the Kalman filter estimates as ([18] (Equations (3.24) and (3.61))):

x̂k = x̂−k + Kk δzk and Pk = P−k −Kk
(
Hk P−k

)
, (8)

where the superscript minus denotes values before the measurement update and Kk is a weighting
factor determining the influence of the new information. This factor is also known as the Kalman gain
and is derived by minimising the trace of the updated error covariance matrix, Pk, i.e., minimising
squared errors.

The processing is thus performed using a semi-cascaded approach. First, the GNSS observations
are processed into position and velocity estimates for the entire survey. Having initialised the INS
solution, inertial navigation is performed until the next GNSS estimates are available. The INS solution
is used to form a linear system model (4), which allows the propagation of the error covariance matrix
forward in time, alongside the INS estimates. The stochastic error terms accounting for sensor errors
will also influence this forward propagation. The INS and GNSS estimates are combined, using a
least squares approach based on the associated error covariance, in order to yield statistically optimal
estimates of the state variables. These optimal estimates are then used to correct the INS estimates,
which are again propagated forward in time. This is illustrated in Figure 3.

The Kalman filter therefore has a cyclic nature, alternating between forward propagations and
measurement updates. Since correlation between different state variables is built through the forward
propagation phase, the Kalman filter also provides estimates of other states than those directly observed.
In this way, the GNSS observations are not only used to correct the navigation solution, but also to
continually calibrate the IMU, since estimates of sensor errors will be available.
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Figure 3. Overview of processing and data integration architecture.

Finally, in order to minimise linearisation errors and processing time, an error-state
implementation was used in contrast to a total-state implementation. This means that the system
model can be expressed as


δṗ(t)
δv̇n(t)

δψ̇nb(t)
ḃa(t)
ḃg(t)

 =


03 03

FINS(t) Cn
b 03

03 Cn
b

06×9 06




δp(t)
δvn(t)

δψnb(t)
ba(t)
bg(t)

+


03 03 03 03

I3 03 03 03

03 I3 03 03

03 03 I3 03

03 03 03 I3




wa(t)
wg(t)

wa,bias(t)
wg,bias(t)

 , (9)

where δ denotes errors, ba are accelerometer biases and bg are gyroscope biases. The stochastic terms
wa(t), wg(t), wa,bias(t) and wg,bias(t) are white noise processes defined in terms of their PSD. The form
of the matrix, FINS(t), is derived from the navigation equations by first applying a perturbation
operator and then linearising with respect to the state variables ([19] (Chapter 5.4)).

3.3. Modelling Gravity as a Stochastic Process

Since the gravity model used for inertial navigation is not perfect, the gravity error (or disturbance)
can be modelled as a stochastic process ([19] (Chapter 6.6)). A third-order exponentially time-correlated
(Gauss–Markov) model is characterised by the autocorrelation function ([26] (Table 2.2-1)):

R(τ) = σ2e−β|τ|
(

1 + β|τ|+ 1
3 β2|τ|2

)
, (10)
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where σ is the standard deviation and β is a correlation parameter related to the correlation time as
T = 2.903/β. Since the Kalman filtering framework only allows the stochastic driving terms to be
zero-mean white noise processes, the system model must be augmented as [27]:

ṗ(t)
v̇n(t)

ψ̇nb(t)
ḃa(t)
ḃg(t)

d
dt δg(t)
d
dt δġ(t)
d
dt δg̈(t)


=



03 03 03 03 03

FINS(t) Cn
b 03 I3 03 03

03 Cn
b 03 03 03

015×9

03 03 03 03 03

03 03 03 03 03

03 03 03 I3 03

03 03 03 03 I3

03 03 −β3I3 −3β2I3 −3βI3





p(t)
vn(t)

ψnb(t)
ba(t)
bg(t)
δg(t)
δġ(t)

δg̈



+



03 03 03 03 03

I3 03 03 03 03

03 I3 03 03 03

03 03 I3 03 03

03 03 03 I3 03

03 03 03 03 03

03 03 03 03 03

03 03 03 03 I3




wa(t)
wg(t)

wa,bias(t)
wg,bias(t)
wGM3(t)

 ,

(11)

where the additional terms serve to “shape” the white noise into a Gauss–Markov process. The PSD
amplitude of the associated white noise process, wGM3(t), is related to the uncertainty and correlation
parameters of the Gauss–Markov process as

SGM3 =
16
3

σ2 β5 =
16
3

σ2 (|vhor| β′
)5 , (12)

where the along-track correlation, β = |vhor| β′, is specified in terms of distance instead of time and
v2

hor = v2
N + v2

E is the ground speed. This is because the gravity signal varies with position rather
than time.

3.4. Introducing External Gravity Observations

External gravity observations can be introduced into the Kalman filter framework similar to
position and velocity estimates, using a measurement model. For this flight test, we introduced
observations from an A10 gravity meter at both JAV and KAGA stations. Although these observations
represent only the magnitude of the gravity vector, the tie values are introduced as vector estimates

zδg =
[
0 0 δg

]>
with Rδg ≡

0.03 0 0
0 0.03 0
0 0 0.03

 , (13)

where Rδg is the associated error covariance matrix in units of mGal. The A10 measurement is corrected
for the gravity model at the measurement location, meaning that the gravity disturbance is formed.

3.5. Smoothing

Instead of applying a regular filter, the Kalman filter estimates are smoothed by processing the
data both forward and backward in time. The two solutions are then combined as

x̂k = Pk

(
P−1

f ,k x̂ f ,k + P−1
b,k x̂b,k

)
and Pk =

(
P−1

f ,k + P−1
b,k

)−1
, (14)
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where f denotes the forward solution and b the backward solution. This is accomplished in a
processor-efficient way using the Rauch–Tung–Striebel (RTS) smoother ([26] (Chapter 5)).

4. Results

Inertial navigation was performed using an implementation of Equation (1) and combined
with GNSS velocity and position estimates using a Kalman filtering framework as described above.
This resulted in an integrated IMU/GNSS solution, which was subsequently smoothed using an
implementation of the RTS smoother. The gravity disturbance was modelled as a third-order
Gauss–Markov process with initial parameters of σ = 100 mGal and β = 2.903/20 km. From the
resulting gravity disturbance estimates, the autocorrelation function was estimated for each of the
seven profiles (see Figure 4). A least squares fit of the Gauss–Markov autocorrelation function in
Equation (10) yielded parameters of σ = 57.84 mGal and 1/β = 5.647 km, implying a correlation length
of around 16 km, which was used for a second processing iteration.

Figure 4. Estimated autocorrelation functions for the seven profiles along with the (least squares)
best fitting third-order Gauss–Markov autocorrelation function. The parameters σ = 57.84 mGal and
1/β = 5.647 km.

4.1. Repeated Lines

Gravity disturbance estimates for the three flights along the JAV-KAGA profile are shown in
Figure 5, along with flight altitude and topography from the SRTM30 data product. The gravity
variation clearly varies with topography, noticing that the areas around 15–25 km and 35 km are
covered by ice.

The mean and standard deviation of the differences between the three profiles are shown in
Table 5. Since the long wavelength information is assumed to be corrupted by sensor error variation,
the profiles are corrected for a bias and linear trend, before the differences are formed.

Table 5. Mean and standard deviation of the difference in gravity estimates for the three repeated
lines along the JAV-KAGA profile. The difference was formed from the profiles directly and by first
removing a bias and linear trend from each profile.

No Correction Bias + Trend

Lines 1–2 Mean −0.83 0 mGal
STD 2.00 1.95 mGal

Lines 1–3 Mean −3.25 0 mGal
STD 2.73 2.38 mGal

Lines 2–3 Mean −3.31 0 mGal
STD 2.28 2.15 mGal
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Figure 5. Profiles for the three repeated lines between JAV and KAGA. The gravity disturbance was
modelled using a third-order Gauss–Markov model with uncertainty, σ = 57.84 mGal, and correlation,
1/β = 5.647 km: (top) gravity disturbance estimates; (middle) ellipsoidal height; (bottom) topography
from SRTM30 with respect to WGS84 ellipsoid.

4.2. Comparison with AIRGrav Profiles

Gravity disturbance estimates along the three profiles, P1–P2, P3–P4 and P5–P6, are shown in
Figures 6–8, along with the AIRGrav gravity profiles from OIB. From the height profiles, it is evident
that the lines P1–P2 and P3–P4 were flown in draped mode (following the topography). The first line
closely follows the terrain, whereas the second line is more smooth. The third line, P5–P6, was flown
at constant altitude. The OIB lines were also flown in draped mode. Since the gravity signal attenuates
with distance from source, the elevation will influence the spatial resolution of the gravity profile.
However, aircraft dynamics will influence the observed signal and may therefore also have an impact
on the recovered gravity signal.

Figure 6. Gravity disturbance estimates for the profile between P1 and P2 for two different
Gauss–Markov correlation lengths: (top) gravity disturbance profile; (bottom) height profile.
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Figure 7. Gravity disturbance estimates for the profile between P3 and P4 for two different
Gauss–Markov correlation lengths: (top) gravity disturbance profile; (bottom) height profile.

The AIRGrav instrument was carried by a fixed-wing aircraft flying at approximately 134 m/s,
whereas the iNAT instrument was flown in a helicopter at approximately 52 m/s. Therefore, the iNAT
gravity profiles have a higher spatial resolution than the OIB profiles. This is also evident from the
figures, indicating that the glacier gravity anomaly is more sharp than indicated by the OIB profiles.
Since the correlation length of the Gauss–Markov stochastic process will influence the resolution of the
gravity profile, it was increased in order to arrive at gravity profiles with a resolution similar to that
of the OIB estimates. The optimal similarity in terms of Root-Mean-Square (RMS) difference occurs
around 1/β = 30 km. The resulting profiles are also shown in the above figures and the statistics of
the differences are shown in Table 6.

Figure 8. Gravity disturbance estimates for the profile between P5 and P6 for two different
Gauss–Markov correlation lengths: (top) gravity disturbance profile; (bottom) height profile.
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Table 6. Mean and standard deviation of the difference in gravity estimates along the three profiles.
The gravity estimates were smoothed by increasing the correlation parameter to 1/β = 30 km.

No Correction Bias + Trend

2010 2011 2011 2010 2011 2012

P1–P2 Mean 7.10 8.86 8.46 0 0 0 mGal
STD 3.79 4.90 4.20 3.59 4.20 3.70 mGal

P3–P4 Mean 10.8 10.4 10.5 0 0 0 mGal
STD 4.96 4.42 4.19 3.84 3.51 2.83 mGal

P5–P6 Mean 8.46 8.04 6.07 0 0 0 mGal
STD 3.40 2.96 5.28 3.16 2.91 5.22 mGal

4.3. Cross-Over Evaluation

The gravity profile along the P7-KAGA line is shown in Figure 9 together with the gravity
estimates from the crossing lines. This line was flown at constant altitude over the glacier before
increasing in altitude to reach the KAGA site. The cross over differences are listed in Table 7.

Table 7. Difference in gravity disturbance at the intersection points between the P7-KAGA line and the
three OIB lines.

iNAT OIB 2010 OIB 2011 OIB 2011

P1–P2 2.36 0.85 2.56 3.61 mGal
P3–P4 4.83 20.2 20.0 22.2 mGal
P5–P6 0.07 4.42 2.98 7.78 mGal

Figure 9. Profile along the P7-KAGA line which crosses over the three OIB lines: (top) gravity
disturbance profile along with values from crossing lines; (bottom) height profile.

5. Discussion

The statistics from the repeated lines in Table 5 suggest that the gravity estimates are biased with
respect to one another. As argued in the introduction, the temperature variation is suspected to corrupt
the long wavelength information in the gravity estimates. The first two profiles are least biased and
are flown consecutively at the beginning of the survey. The third profile, which has a larger bias,
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was flown at the end of the survey, where the sensor errors have had time to evolve. With the mean
value removed, the agreement between the profiles are 2.00–2.73 mGal and, by additionally removing
a linear trend, the agreement improves to 1.95–2.38 mGal. The convention for comparing airborne
gravity estimates is in terms of the Root-Mean-Square-Error (RMSE), which is related to the standard
deviation as

σ =

√
∑ (x− x̄)2

N − 1
, RMS =

√
∑ x2

N
and RMSE = RMS/

√
2 , (15)

meaning that the accuracy is better than 2 mGal. The cross over differences from Table 7 do also fit
within this confidence level.

Since the RTS smoother does not have an associated filter length, it is not straightforward to
associate the profiles with a spatial resolution. This is, however, an important issue, if the results
are to be compared with other studies. In Figures 6–8, it was shown how the correlation length of
the Gauss–Markov process could be varied to effectively control the degree of smoothing applied
to the gravity profile. However, since the standard deviation of the process will also influence the
degree of smoothing, the connection between correlation length and equivalent filter length is also not
straightforward. Moreover, the parameters of the stochastic model will influence the Kalman filter
estimates themselves and not only the RTS smoothed estimates, further complicating the issue.

In order to estimate the equivalent filter length and thus the spatial resolution of the gravity
estimates, a set of alternative gravity estimates, independent of any stochastic model, was derived
from the data. From Equation (1), the specific force, fb, observed by the IMU is related to gravity as

gn = v̇n −
(

Cn
b fb − (2Ωn

ie + Ωn
en) vn

)
, (16)

where the term inside the parenthesis can be formed using the RTS smoothed Kalman filter estimates.
The observed specific force is corrected for bias variation, resolved about the n-frame axes and corrected
for the velocity dependent fictitious forces. The term, v̇,n can be derived from the GNSS position
solution using a 2nd order central difference approach. Gravity estimates are derived by differencing
these two components and applying a two-pass Butterworth filter. By tuning the filter length to match
the Kalman filter gravity estimates, an estimate of the equivalent filter length is available. This was
done on a line-to-line basis. Then, using the average ground speed along each line, the filter length
was converted to a (half-wavelength) spatial resolution. The average spatial resolution for the seven
lines is 3.2 km with a standard deviation of 1.1 km. The power spectrum for the entire survey is shown
in Figure 10.

Figure 10. Power spectrum of the estimated gravity disturbance across the entire flight. The spectrum
is also shown for the over-smoothed estimates and the estimated spatial resolutions are indicated by
vertical lines.

Due to the significant variation in estimated spatial resolution, a conservative estimate is 4.5 km,
where the power spectrum reaches the 102 magnitude level. Also shown in the figure is the power
spectrum for the over-smoothed solution, i.e., with 1/β = 30 km, containing less power in the 6–20 km
wavelength interval. Using the same approach as before, the spatial resolution was estimated to
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5.8 km with a standard deviation of 1.1 km. Since these estimates were tuned to mimic the AIRGrav
OIB profiles, the expected spatial resolution is 6.7 km, which is within the confidence bounds. Some
inconsistency may also originate from the filter, since the shape of the filter applied in the AIRGrav
processing is unknown to the authors.

This approach does, however, not seem to form a consistent connection between spatial resolution
in terms of a filter and in terms of a stochastic model. As this connection is important in order to
compare results, further investigations are encouraged.

6. Conclusions

It has been shown that strapdown airborne gravimetry is feasible from a helicopter platform.
The strapdown system is attractive since it is easily installed and does not require any operation during
the flight. Moreover, no signs of degradation were seen during draped flying. With mean values
removed, the accuracy was estimated to better than 2 mGal at a half-wavelength spatial resolution of
4.5 km.

It was also found that the fixed-wing OIB profiles across the Jakobshavn Glacier underestimated
the peak gravity anomaly by up to 20 mGal as a consequence of the faster aircraft speed.
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